等腰三角形的性质(第2课时)
1.1等腰三角形的性质和判定 第二课时 课件(苏科版九年级上)

D
B E
C
A
练一练:
2、在三角形纸片ABC中,∠C=90°, ∠A=30°,AC=3,折叠纸片,使A点与 B点重合,折痕与AB、AC分别相交于点D 1 和点E,折痕DE的长为 ; B D C E A
练一练:
3、如图,在△ABC中,BA=BC,∠ABC=120°, AB的垂直平分线交AC于点D,则AD与DC的 1 数量关系是 AD= DC ;
已知:如图,在△ABC和△A'B’C’中, ∠ACB=∠A’C’B’=90°,AB=A’B’, AC=A’C’
求证: △ABC≌△A’B’C’
A(A′)
A
A′ C′ B′
B C(C′)
B′
C
B
说说你的证明思路。 还有其他的证明方法吗?
zxxk
斜边和一条直角边对应相等的两个直角三 角形全等.简写成“斜边、直角边”或“HL”.
在RtΔABC和RtΔA'B’C’中, AB=A’B’ AC=A’C’
∴ Rt△ABC≌Rt△ A’B’C’(HL)
A
A′
,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别为E、F, 且DE=DF。 求证:△ABC是等腰三角形。 A
E
(课本P12 习题1.2 1)
B
E D
F C
例2:已知:如图,∠C=∠BED=90°,且 CD=DE,AD=BD,求∠B的度数。 A 2 1
E
B
C
D
拓展与延伸 《评价手册》P4 问题导引
在直角三角形中,30°角所对的直角 边长等于斜边长的一半。
练一练:
1、如图,∠A=90°,∠C=75°,AC=12mm, DE垂直平分BC,则BE= ; 24㎜
2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第2课时 等腰三角形的判定

13.3 等腰三角形
13.3.1 等腰三角形 第2课时 等腰三角形的判定
知识点一 等角对等边
1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为( D )
A.2
B.3
C.4
D.5
2.如图,已知OC平分∠AOB,CD∥OB,若OD=8 cm,则CD等于( A )
A.8 cm B.4 cm
C.15 cm
D.20 cm
3.(课本P79练习T1改编)如图,在△ABC中,AB=AC,∠A=36°,BD平 分∠ABC交AC于点D,则图中等腰三角形有___△__A_B_C_,__△__A_B_D_,__△__B_D_C___.
4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=3 cm,则AB=___3_c_m___.
C.8个
D.9个
考查角度一 等腰三角形的判定 11.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O, 给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等腰 三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.
9.在如图所示的三角形中,若AB=AC,则能被一条直线分成①②③
B.①②④
C.②③④
D.①③④
10.在如图所示的正方形网格中,网格线的交点称为格点.已知点A,B是两
格点,如果点C也是图中的格点,且使得△ABC为等腰三角形,那么这样
的点C有( C )
A.6个
B.7个
5.如图,在△ABC中,AB=AC,D是AB上一点,过点D作DE⊥BC于点E, 并与CA的延长线交于点F,试判断△ADF的形状,并说明理由. 解:△ADF是等腰三角形.理由如下:∵AB=AC, ∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠DEC=90°, ∴∠BDE+∠B=90°,∠F+∠C=90°, ∴∠BDE=∠F.∵∠BDE=∠ADF, ∴∠ADF=∠F,∴AF=AD, ∴△ADF是等腰三角形.
等腰三角形性质第二节

特殊的等腰三角形性质02一、课前复习: 等腰三角形的性质:(1)等腰三角形的 相等;(2)等腰三角形 、 、 互相重合。
二、预习课前:1、等腰三角形中有一种特殊的等腰三角形是 三角形,即 叫等边三角形。
等边三角形又叫正三角形。
2、把等腰三角形的性质(等腰三角形的两个底角相等)用到等边三角形,能得到什么结论?__________________________________.等边三角形的性质:等边三角形的如图1,性质的几何语言为:△ABC 为等边三角形则:____________________________________________ 3、顶角为直角的等腰三角形成为____________________, 4、把等腰三角形的性质(等腰三角形的两个底角相等)用到等腰直角三角形中,你能得到什么结论?______________________. 性质应用:1、如图,△ABC 是等边三角形,DE ∥BC ,交AB ,AC 于D ,E 。
求证△ADE 是等边三角形。
2、探究:等边三角形三条中线相交于一点。
画出图形,找出图中所有的全等三角形,并证明它们全等。
E D CABAB 图1 CB图2AB三、课堂探究:例题:如图,△ABD ,△AEC 都是等边三角形,求证BE =DC2.在直角三角形中,如果一个锐角等于30°,那么 等于 的一半。
3、证明这个结论:已知:Rt △ABC,∠C=90°,∠A=30°.求证:AB=2BC 证明:例题:如图,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E,使CE=CD,过D 点作DM ⊥BE,垂足为M.求证:BM=EM.D CB A课堂检测:1.正△ABC 的两条角平分线BD 和CE 交于点I,则∠BIC 等于( )A.60°B. 90°C. 120°D. 150°2、在△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB ,若AB=a,则DB=3、等腰三角形中,一腰上的高与底边的夹角为30度,则此三角形中腰与底边的关系( )A 、腰大于底边B 、腰小于底边C 、腰等于底边D 、不能确定 4、在Rt △ABC 中,∠C=90度,∠A=30度,CD ⊥AB 于点D ,AB=8cm,则BC= , AD= .5、在△ABC中,∠ABC和∠ACB的平分线交于点O,过O作EF∥BC,AB=6cm ,AC=5cm .则△AEF的周长=6、如图1,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2cm,则AD=图(1) 图(2)7、如图2、 ∠C=90°,D是CA的延长线上一点, ∠BDC=15 °,且AD=AB,则BC= AD8. △ABC中,AB=AC, ∠BAC=120°,AD ⊥AC 交BC 于点D,求证;BC=3AD.思考题:如图,D、E分别为等边三角形ABC的边BC、AC上的点且BD=CE,连接BE、AD,交于点F,求∠AFE的度数。
13.3.1等腰三角形的性质(2)

A
D
F
∟
B
E
C
二、应用举例
15.已知:如图、在△ABC 中,AB=AC,AD是高、P 是AD上任意一点,并且 PE⊥AB、PF⊥AC,垂足分 别为E、F. 求证:PE=PF.
A
E
F
P
B
D
等腰三角形底边的高上的任意一点到两腰的距离相等
∟
C
二、应用举例
16.如图,已知△ABC中,AB=AC,F在AC上,在BA 的延长线上截取AE=AF, 连接EF并延长交BC于D, 求 证:ED⊥BC。
二、应用举例
3.已知等腰三角形有两边的长分别为3,6,则这个等 15 腰三角形的周长是 。 4.已知等腰三角形的周长为24,一边长为6,则另外两 9和9 边的长是 。 5、已知等腰三角形的周长为24,一边长为10,则另外 10, 7, 7 。 4或 两边的长是
注意: 涉及三角形边的运算一定要检验是否能构成三角形
二、应用举例
9、如图, ∠A =18°,AB=BC=CD=DE=EF,则 ∠DEF= 。
E
C A
B
D
F
二、应用举例
10、如图, ∠DEF =36°,AB=BC=CD=DE=EF,则 ∠A= 。 E
C A
B
D
F
二、应用举例
11、如图所示,AB=AC,BC=BD=ED=EA,求∠A 的度数.
A
E D B
3、等腰三角形性质3: 等腰三角形是轴对称图形.对称轴是底边上的中线 (顶角平分线,底边上的高)所在直线。
二、应用举例
1.已知等腰三角形的一个内角是80°,则它的另外两 个内角是 50,50或80, 20 。 2.已知等腰三角形的一个内角是100°,则它的另外两 个内角是 40, 40 。
八年级数学人教版(上册)第2课时等腰三角形的判定

讲授新课
方法总结:“等角对等边”是判定等腰三角形 的重要依据,是先有角相等再有边相等,只限 于在同一个三角形中,若在两个不同的三角形 中,此结论不一定成立.
侵权必究
讲授新课
如图,在△ABC中,AB=AC,∠ABC和∠ACB
的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
探究EF、BE、FC之间的关系.
∴ AC=AB. ( 等角对等边 ) B
C
即△ABC为等腰三角形. 侵权必究
讲授新课
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边).
C D
1
A2
B
∵∠1=∠2, ∴ DC=BC (等角对等边).
错,因为都不是在同一个三角形中.
侵权必究
讲授新课
求证:如果三角形一个外角的平分线平行于 三角形的一边,那:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB
于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
C
M A DB
N
侵权必究
讲授新课
如图,在△ABC中,∠ACB=90°,CD是AB 边上的高,AE是∠BAC的平分线,AE与CD交于点F, 求证:△CEF是等腰三角形.
第十三章 轴对称
13.3 等腰三角形
第2课时 等腰三角形的判定
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
学习目标
探索等腰三角形的判定定理及其应用
等腰三角形的性质定理2课时含答案

2.3 等腰三角形的性质定理(一)A组1.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为(C)A.36°B.60°C.72°D.108°(第1题)(第2题)2.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为(B)A.30°B.45°C.50°D.75°3.如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的度数为(A)A.40°B.30°C.70°D.50°(第3题)(第4题)4.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是(D)A.①②③B.②③④C.①③⑤D.①③④(第5题)5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE.若∠A=50°,则∠CDE的度数为(D)A.50°B.51°C.51.5°D.52.5°(第6题)6.如图,在△ABC中,AB=AC,BD⊥AC,∠ABC=72°,求∠ABD的度数.【解】∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∴∠A=36°.∵BD⊥AC,∴∠ABD=90°-36°=54°.(第7题)7.如图,将△ADE沿DE折叠,点A恰好落在BC边上的点A′处.若D为AB边的中点,∠B=50°,求∠BDA′的度数.【解】∵D是AB的中点,∴BD=AD.由折叠的性质,得A′D=AD,∴BD=A′D.∴∠BA′D=∠B=50°.∵∠B+∠BA′D+∠BDA′=180°,∴∠BDA′=180°-∠B-∠BA′D=80°.(第8题)8.如图,在△ABC中,已知AB=AC,AD=AE,∠BAD=28°,求∠EDC的度数.【解】∵AB=AC,∴∠B=∠C.同理,∠ADE=∠AED.设∠EDC=α,∠C=β,则∠ADE=∠AED=∠EDC+∠C=α+β,∠ADC=∠ADE+∠EDC=α+β+α=2α+β.∵∠ADC=∠BAD+∠B=28°+β,∴2α+β=28°+β,∴α=14°,即∠EDC=14°.B组(第9题)9.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM =BK,BN=AK.若∠MKN=44°,则∠P的度数为(D)A.44°B.66°C.88°D.92°【解】∵PA=PB,∴∠A=∠B.在△AMK 和△BKN 中,∵⎩⎪⎨⎪⎧AM =BK ,∠A =∠B ,AK =BN ,∴△AMK ≌△BKN (SAS ).∴∠AMK =∠BKN . ∵∠MKB =∠MKN +∠BKN =∠A +∠AMK , ∴∠A =∠MKN =44°, ∴∠P =180°-∠A -∠B =92°.10.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为(C)(第10题)A . ⎝⎛⎭⎫702n °B . ⎝ ⎛⎭⎪⎫702n +1°C . ⎝ ⎛⎭⎪⎫702n -1°D . ⎝ ⎛⎭⎪⎫702n +2°【解】 在△ABA 1中,∵∠A =70°,AB =A 1B , ∴∠BA 1A =∠A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角, ∴∠B 1A 2A 1=∠BA 1A2=35°.同理,∠B 2A 3A 2=12∠B 1A 2A 1=∠BA 1A 22,∠B 3A 4A 3=12∠B 2A 3A 2=∠BA 1A 23,…, ∴∠B n -1A n A n -1=∠BA 1A 2n -1=⎝ ⎛⎭⎪⎫702n -1°.11.如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连结AE ,BD 交于点O ,求∠AOB 的度数.(第11题)【解】设AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,∴△DCB≌△ACE(SAS),∴∠CDB=∠CAE.又∵∠DCH+∠DHC+∠CDB=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠AHO,∴∠AOH=∠DCH=60°.∴∠AOB=180°-∠AOH=120°.12.如图,在△ABC中,AB=AC,BD,CE是△ABC的两条高线,BD与CE相交于点O.(1)求证:OB=OC.(2)若∠ABC=70°,求∠BOC的度数.(第12题)【解】(1)∵AB=AC,∴∠ABC=∠ACB.∵BD,CE是△ABC的两条高线,∴∠BEC=∠CDB=90°.又∵BC=CB,∴△BEC≌△CDB(AAS),∴BE =CD .又∵∠BOE =∠COD ,∠BEO =∠CDO =90°, ∴△BOE ≌△COD (AAS ), ∴OB =OC . (2)连结DE .∵∠ABC =70°,AB =AC , ∴∠A =180°-2×70°=40°.∵∠A +∠AED +∠ADE =180°,∠OED +∠ODE +∠DOE =180°, ∴∠A +∠AEO +∠ADO +∠DOE =360°. 又∵∠AEO =∠ADO =90°, ∴∠A +∠DOE =180°,∴∠BOC =∠DOE =180°-40°=140°.(第13题)13.如图,在△ABC 中,已知BC =AC ,∠BAC 的外角平分线交BC 的延长线于点D .若∠ADC =12∠CAD ,求∠ABC 的度数.(第13题解)【解】 如解图,设∠ABC =x ,∠CAD =y , 则∠ACD =2x ,∠ADC =12∠CAD =12y ,∴⎩⎪⎨⎪⎧x +2y =180°,2x +32y =180°,解得⎩⎪⎨⎪⎧x =36°,y =72°.∴∠ABC =36°.数学乐园14.(1)已知在△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知在△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.(第14题)导学号:91354010【解】 (1)如解图①②(共有2种不同的分割法).(第14题解)(第14题解③)(2)设∠ABC =y ,∠C =x ,过点B 的直线交边AC 于点D . 在△DBC 中,①若∠C 是顶角,如解图③,则∠CBD =∠CDB =90°-12x ,∠A =180°-x -y . 故∠ADB =180°-∠CDB =90°+12x >90°,此时只能有∠A =∠ABD ,即180°-x -y =y -⎝⎛⎭⎫90°-12x ,∴3x +4y =540°,∴∠ABC =135°-34∠C .②若∠C 是底角,第一种情况:如解图④,当DB =DC 时,∠DBC =x .在△ABD 中,∠ADB =2x ,∠ABD =y -x .若AB =AD ,则2x =y -x ,此时有y =3x ,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角., ④), ⑤)(第14题解)第二种情况:如解图⑤,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°(∠C是小于45°的任意锐角).2.3 等腰三角形的性质定理(二)A组1.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.若∠BAC=64°,则∠BAD 的度数为__32°__.,(第1题)),(第2题))2.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,已知BC=6,∠B =65°,则BD=__3__,∠ADB=__90°__,∠BAC=__50°__.3.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为(C)A.35°B.45°C.55°D.60°,(第3题)),(第4题)) 4.如图,在△ABC中,AB=AC=6,AD⊥BC,垂足为D,CD=4,则△ABC的周长为(B)A.18 B.20C.22 D.24(第5题)5.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC于点F,则DE=DF,请说明理由.【解】连结AD.∵AB=AC,D为BC的中点,∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴DE=DF.(第6题)6.如图,在△ABC中,AB=AC,AD是BC边上的中线,作∠ABE=∠ABD,且BE=DC,连结AE.求证:AB平分∠EAD.【解】∵AB=AC,AD是BC边上的中线,∴BD=DC,AD⊥BC.又∵BE=DC,∴BD=BE.又∵∠ABD=∠ABE,AB=AB,∴△ABD≌△ABE(SAS),∴∠BAD=∠BAE,即AB平分∠EAD.(第7题)7.如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG分别交AD,AC于点E,G,EF⊥AB,垂足为F.求证:EF=ED.【解】∵AB=AC,AD是BC边上的中线,∴AD⊥BC.又∵BG平分∠ABC,EF⊥AB,∴EF=ED.B组(第8题)8.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则(B)A.当∠B为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当β为定值时,∠CDE为定值D.当γ为定值时,∠CDE为定值【解】∵AB=AC,∴∠B=∠C.∵AD=AE,∴∠ADE=∠AED=γ.∵∠AED=∠C+∠CDE,∠ADC=∠B+α,即γ=∠C+∠CDE,γ+∠CDE=∠B+α,∴2∠CDE=α.9.如图,∠BOC=9°,点A在OB上,且OA=1,按以下要求画图:以点A为圆心,1为半径向右画弧交OC于点A1,得第一条线段AA1;再以点A1为圆心,1为半径向右画弧交OB于点A2,得第二条线段A1A2;再以点A2为圆心,1为半径向右画弧交OC于点A3,得第三条线段A2A3……这样一直画下去,最多能画__9__条线段.(第9题)【解】由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,….∵∠BOC=9°,∴∠A1AB=2∠BOC=18°.同理可得∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,∠A 5A 4B =54°,∠A 6A 5C =63°,∠A 7A 6B =72°,∠A 8A 7C =81°,∠A 9A 8B =90°,∴第10个三角形将有两个底角等于90°,不符合三角形的内角和定理,故最多能画9条线段.10.如图,在△ABC 中,AB =AC ,D 是BC 的中点,BF ⊥AC 于点F ,交AD 于点E ,∠BAC =45°.求证:△AEF ≌△BCF .(第10题)【解】 过点F 作FG ⊥AB 于点G .∵∠BAC =45°,BF ⊥AF ,∴∠ABF =45°.∵FG ⊥AB ,∴∠AGF =∠BGF =90°.在△AGF 和△BGF 中,∵⎩⎪⎨⎪⎧∠GAF =∠GBF =45°,∠AGF =∠BGF ,GF =GF ,∴△AGF ≌△BGF (AAS ),∴AF =BF .∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∴∠EAF +∠C =90°.∵BF ⊥AC ,∴∠AFE =∠BFC =90°,∠CBF +∠C =90°,∴∠EAF =∠CBF .在△AEF 和△BCF 中,∵⎩⎪⎨⎪⎧∠EAF =∠CBF ,AF =BF ,∠AFE =∠BFC ,∴△AEF ≌△BCF (ASA ).(第11题)11.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:DE =DF .(2)问:如果DE ,DF 分别是∠ADB ,∠ADC 的平分线,那么它们还相等吗?【解】 (1)∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC .∵DE ⊥AB ,DF ⊥AC ,∴DE =DF .(2)相等.理由如下:由(1)知AD ⊥BC ,∠DAE =∠DAF ,∴∠ADB =∠ADC =90°.∵DE ,DF 分别是∠ADB ,∠ADC 的平分线,∴∠ADE =12∠ADB ,∠ADF =12∠ADC ,∴∠ADE =∠ADF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,AD =AD ,∠ADE =∠ADF ,∴△ADE ≌△ADF(ASA),∴DE =DF .数学乐园(第12题)12.如图,在等腰三角形ABC 中,AB =AC ,∠BAC =50°.∠BAC 的平分线与AB 的中垂线相交于点O ,点C 沿EF 折叠后与点O 重合,求∠CEF 的度数.【解】 连结BO .∵∠BAC =50°,∠BAC 的平分线与AB 的中垂线相交于点O ,∴∠OBA =∠OAB =12∠BAC =25°.∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB =65°.∴∠OBC =65°-25°=40°.根据等腰三角形的对称性,得∠OCB =∠OBC =40°.∵点C 沿EF 折叠后与点O 重合,∴EO =EC ,∠CEF =∠OEF ,∴∠EOC =∠ECO =40°,∴∠CEF =∠OEF =180°-2×40°2=50°.。
北师大版八年级下册数学 1.1 等腰三角形 第2课时 等边三角形的性质 教案

第2课时 等边三角形的性质1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点)一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究 探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质如图,在△ABC 中,AB =AC ,CD⊥AB 于点D ,BE ⊥AC 于点E ,求证:DE ∥BC .证明:因为AB =AC ,所以∠ABC =∠ACB .又因为CD ⊥AB 于点D ,BE ⊥AC 于点E ,所以∠AEB =∠ADC =90°,所以∠ABE =∠ACD ,所以∠ABC -∠ABE =∠ACB -∠ACD ,所以∠EBC =∠DCB .在△BEC 与△CDB 中,⎩⎪⎨⎪⎧∠BEC =∠CDB ,∠EBC =∠DCB ,BC =CB ,所以△BEC ≌△CDB ,所以BD =CE ,所以AB -BD =AC -CE ,即AD =AE ,所以∠ADE =∠AED .又因为∠A 是△ADE 和△ABC 的顶角,所以∠ADE =∠ABC ,所以DE ∥BC .方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等. 变式训练:见《学练优》本课时练习“课后巩固提升”第5题探究点二:等边三角形的相关性质【类型一】 利用等边三角形的性质求角度如图,△ABC 是等边三角形,E是AC 上一点,D 是BC 延长线上一点,连接BE ,DE .若∠ABE =40°,BE =DE ,求∠CED 的度数.解析:因为△ABC 三个内角为60°,∠ABE =40°,求出∠EBC 的度数,因为BE =DE ,所以得到∠EBC =∠D ,求出∠D 的度数,利用外角性质即可求出∠CED 的度数. 解:∵△ABC 是等边三角形,∴∠ABC=∠ACB =60°,∵∠ABE =40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE =DE ,∴∠D =∠EBC =20°,∴∠CED =∠ACB -∠D =40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 利用等边三角形的性质证明线段相等如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:BM =EM .解析:要证BM =EM ,由题意证△BDM ≌△EDM 即可.证明:连接BD ,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°.∵DM ⊥BC ,∴∠DMB =∠DME =90°,在△DMB 和△DME 中,⎩⎪⎨⎪⎧∠DMB =∠DME ,∠DBM =∠E ,DM =DM ,∴△DME ≌△DMB .∴BM =EM .方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型三】 等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是边BC上任意一点,点N 是边CA 上任意一点,且BM =CN ,BN 与AM 相交于Q 点,求∠BQM 的度数.解析:先根据已知条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠AQN =∠ABC =60°.解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌△BNC (SAS),∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.等腰三角形两底角的平分线(两腰上的高、中线)的相关性质等腰三角形两底角的平分线相等; 等腰三角形两腰上的高相等; 等腰三角形两腰上的中线相等. 2.等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60°.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质.让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.。
2.3.2 等腰三角形的性质定理2

(2)由(1)可以得到的结论是:等腰三角形底边上的中点到两腰的 距离相等.问:如果DE,DF分别是∠ADB,∠ADC的平分 线,它们还相等吗?
解:相等.理由如下.
由(1)知 AD⊥BC,∠BAD=∠CAD,∴∠ADB=∠ADC=90°.
∵DE,DF 分别是∠ADB,∠ADC 的平分线,
∴∠ADE=12∠ADB,∠ADF=12∠ADC,∴∠ADE=∠ADF. 在△ADE 和△ADF 中,
AD,AE.如果只添加一个条件使∠DAB=∠EAC,则添
加的条件不能为( C )
A.BD=CE
B.AD=AE
C.DA=DE
D.BE=CD
7.如图,在△ABC中,AB=AC,∠A=40°,直线MN分别 交AB,AC于点M,N,连结BN,且AN=BN,ND⊥BC于 点D,则∠BND的度数为( B ) A.65° B.60° C.55° D.50°
∴∠ACD=∠AED=90°,即 CD⊥AC.
14.如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于 点E,DF⊥AC于点F. (1)求证:DE=DF;
证明:∵D是BC的中点, ∴AD是等腰三角形ABC的中线. ∴AD也是等腰三角形ABC的角平分线. ∵DE⊥AB,DF⊥AC,∴DE=DF.
13.如图,在△ABC中,AB=2AC,AD平分∠BAC,AD=BD. 求证:CD⊥AC.
证明:取AB的中点为E,连结DE,则AB=2AE, ∵AB=2AC,∴AE=AC. ∵AD=BD,E为AB的中点, ∴DE⊥AB,即∠AED=90°. ∵AD平分∠BAC,∴∠DAE=∠DAC.
在△ADE 和△ADC 中, AE=AC, ∠DAE=∠DAC, AD=AD, ∴△ADE≌△ADC(SAS).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、如图, B、D、E、C在同一直线 上, 若AB=AC, ∠3=∠4, 求证:∠1= ∠2.
9、 求证:等腰三角形顶角的顶 点到两腰中线的距离相等.
B
D
拓展·提高
A E C
2、如图:在△ABC中,AB=AC,点D在AC上,且 A BC=AD=BD,求△ABC各角的度数。
D B
C
拓展·提高
3.已知:如图,△ABC中,∠C=90°, AC=BC,AD是角平分线。 C 求证:AB=AC+DC。 D 4.如图:在△ABC中, AB=AC,∠1=∠2, A 求证:AD平分∠BAC。 A E
上课啦!
15.3等腰三角形
(第2课时)
霍邱县乌龙镇中心学校龚家林
A
定理1.等腰三角形两个底角相
等,简写成“等边对等角”
B
C
D
定理2.等腰三角形的顶角平分线、底
边上的中线、底边上的高互相重合.简称 “三线合一”
推论:等边三角形三个内
角相等,每一个内角都等 于60°.
1、已知,如图AB=AC,AD=AE。 求证:BD=CE。
D
B
B
1
M
2
C
拓展·提高
5.已知,如图△ABC是
等边三角形,AE平分∠BAC 交BC于E,以BE为边向 △ABC的外部作等边△BED。 求证:BD⊥CD B
A
E D
C
6、已知, 如图 AD=DC, DE平分 ∠ADB, F是AC中点, 求证:DE⊥DF.
7、如图, AB=AE, ∠B=∠E, CB= ED. F是CD的中点, 求证:AF⊥CD.