一轮复习配套讲义:选修4-2 矩阵与变换.pdf
]高二数学选修4-2 矩阵与变换ppt课件
![]高二数学选修4-2 矩阵与变换ppt课件](https://img.taocdn.com/s3/m/231cacf2960590c69ec37685.png)
1
0
的特征向量为 0 和 1
10 x
1
0
= x· +(–y) ·
0 -1 y
0
1
矩阵只改变其特征向量的长度不改变其方向
22
矩阵的特征向量是在变换下“基本” 不变的量
23
矩阵表示的变换,把直线或者变成 直线,或者变成一个点
直线的向量方程 一般地,在平面直角坐标系中,经过点
M0(x0,y0)且平行于非零向量 的直线l的方程为
v0
v1
v2
14
矩阵表示的变换,把直线或者变成 直线,或者变成一个点
给量向定量OuuMuM矩uur0v阵'变0。M成,它向把量点OuuMMuu0ur0变,成点M把M向0’,量即v0把变向成 对l上任意一点X,矩阵M把点X变成点
高中数学选修4- 2
矩阵与变换
1
主要内容
通过几何变换讨论二阶方 阵的乘法及性质、矩阵的逆 和矩阵的特征向量,初步展 示矩阵应用。
2
特色
突出矩阵的几何意义
从具体到一般,从直观到抽象
用实例展示矩阵应用广泛性
3
矩阵---几何变换的代数表示
几何代数化----向量 平面几何变换 : 二阶矩阵乘向量
X’,根据矩阵变换的性质有
15
矩阵乘法的几何意义——变换的合成 乘法满足结合律,不满足交换律
1/2 0 0 –1 的变换过程(先旋转后压缩):
0 1 10
0 –1 1/2 0 的变换过程(先压缩后旋转):
10 01
16
逆变换与逆矩阵
伸压变换之逆为伸压变换
1/2 0 01
20 01
20 01
1/2 0 01
《金版新学案》高三一轮(北师大版)理科数学(+课时作业):选修4-2第2课时逆矩阵、特征值与特征向省
![《金版新学案》高三一轮(北师大版)理科数学(+课时作业):选修4-2第2课时逆矩阵、特征值与特征向省](https://img.taocdn.com/s3/m/da4e94930408763231126edb6f1aff00bfd57006.png)
故 M=46
2 4.
(2)由(1)知,矩阵 M 的特征多项式为 f(λ)=(λ-6)(λ-4)-8=λ2-10λ
+16,故其另一个特征值为 λ=2.
设矩阵 M 的另一个特征向量是 e2=xy, 则 Me2=46xx++42yy=2xy,
工具
选修4-2 矩阵与变换
所以64xx+ +24yy= =22xy, , 所以矩阵 M 的另一个特征值对应的特征向量的坐标之间的关系是 2x+y=0.
解析: 已知方程组可以写为2 -5x=4, 3 1y 6
令 M=23
-5,其行列式为2
1
3
-51=2×1-3×(5)=17≠0,
所以 M-1=-111377
115277,所以xy=M-164=20,
பைடு நூலகம்
x=2, 即方程组的解为y=0.
工具
选修4-2 矩阵与变换
关于特征值问题的一般解法如下:
给定矩阵 A=ac
(2)求矩阵 M 的另一个特征值及对应的一个特征向量 e2 的坐标之间
的关系.
解析:
(1)设 M=ac
b, d
则a c
db11=811=88,
故ac++db==88.,
a c
db-12=-24,
工具
选修4-2 矩阵与变换
故--ac++22db==4-. 2,
联立以上两方程组解得 a=6,b=2,c=4,d=4,
阵乘法的消去律成立.
工具
选修4-2 矩阵与变换
求矩阵 A=12
3的逆矩阵. 2
解析: 方法一:设矩阵 A 的逆矩阵为 A-1=ac db,
则由2
3a
b=1
0,
1 2c d 0 1
[精品]新高中高考数学第一轮复习精编同步讲义选修4-2矩阵与变换
![[精品]新高中高考数学第一轮复习精编同步讲义选修4-2矩阵与变换](https://img.taocdn.com/s3/m/5b7da0b2dd88d0d233d46ab8.png)
选修4-2 矩阵与变换 A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系. 2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 可逆,那么该方程组有唯一解⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤a b c d -1⎣⎢⎢⎡⎦⎥⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bc a ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎢⎡⎦⎥⎥⎤x y ,则A ⎣⎢⎢⎡⎦⎥⎥⎤x y =λ⎣⎢⎢⎡⎦⎥⎥⎤x y , 即⎣⎢⎢⎡⎦⎥⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-a x -by =0-cx + λ-d y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的特征方程.(3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根. 解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤x 2y 2. 则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ab c d 的特征值,ξ1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.诊 断 自 测1. ⎣⎢⎢⎡⎦⎥⎥⎤1 00 -1 ⎣⎢⎢⎡⎦⎥⎥⎤57=________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 -1⎣⎢⎢⎡⎦⎥⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+ -1 ×7=⎣⎢⎢⎡⎦⎥⎥⎤5-7. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤5-7 2.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-12 12,则AB =________.解析 AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12=⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12 =⎣⎢⎢⎡⎦⎥⎥⎤0 00 0. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤0 00 0 3.设A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B =⎣⎢⎢⎡⎦⎥⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B -1=⎣⎢⎢⎡⎦⎥⎥⎤0 1-1 0 ∴(AB )-1=B -1A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0 ⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 11 0. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 14变换作用下的结果为________. 解析⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 14y=⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2.答案 y =14x 25.若A =⎣⎢⎢⎡⎦⎥⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤2 a b 1 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T .解 设T =⎣⎢⎢⎡⎦⎥⎥⎤ac bd ,则T :⎣⎢⎢⎡⎦⎥⎥⎤30→⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤30=⎣⎢⎢⎡⎦⎥⎥⎤3a 3b =⎣⎢⎢⎡⎦⎥⎥⎤03,解得⎩⎪⎨⎪⎧a =0,b =1;T :⎣⎢⎢⎡⎦⎥⎥⎤21→⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤21=⎣⎢⎢⎡⎦⎥⎥⎤2a +c 2b +d =⎣⎢⎢⎡⎦⎥⎥⎤ 1-1, 解得⎩⎪⎨⎪⎧c =1,d =-3,综上可知T =⎣⎢⎢⎡⎦⎥⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1,得|M |=1, 故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 3-1 2. 从而由⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎢⎡⎦⎥⎥⎤ 2-3,故⎩⎪⎨⎪⎧x =2,y =-3,∴A (2,-3)为所求.规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用.【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,(1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤acb d , 则由⎣⎢⎢⎡⎦⎥⎥⎤21 32⎣⎢⎢⎡⎦⎥⎥⎤acb d =⎣⎢⎢⎡⎦⎥⎥⎤10 01,得⎩⎪⎨⎪⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤acb d =⎣⎢⎢⎡⎦⎥⎥⎤21 32,(2)已知方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎪⎨⎪⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A-1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 因此,由AX =B ,同时左乘A -1,有A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎪⎨⎪⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a 21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量.解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a 21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧x +y =0,2x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量;②对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量.规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤acb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -c -b λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧λ-a x -by =0,-cx + λ-d y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值.设矩阵M 的特征向量为⎣⎢⎢⎡⎦⎥⎥⎤x y , 当λ1=2时,由M ⎣⎢⎢⎡⎦⎥⎥⎤x y =2⎣⎢⎢⎡⎦⎥⎥⎤x y ,可得⎩⎪⎨⎪⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎢⎡⎦⎥⎥⎤11是M 的属于λ1=2的特征向量. 当λ2=4时,由M ⎣⎢⎢⎡⎦⎥⎥⎤x y =4⎣⎢⎢⎡⎦⎥⎥⎤x y , 可得⎩⎪⎨⎪⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎢⎡⎦⎥⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程. [审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解.(2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法.解 (1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab c d ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-2 1=⎣⎢⎢⎡⎦⎥⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎢⎡⎦⎥⎥⎤1 23 4. (2)因为⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 23 4⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 . (3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N = ⎣⎢⎢⎡⎦⎥⎥⎤1-1 01.解 MN =⎣⎢⎢⎡⎦⎥⎥⎤10 02⎣⎢⎢⎡⎦⎥⎥⎤ 1-1 01=⎣⎢⎢⎡⎦⎥⎥⎤1-2 02. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-2 02⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎢⎡⎦⎥⎥⎤x y →⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎢⎡⎦⎥⎥⎤3 45 6⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′.答案 ⎣⎢⎢⎡⎦⎥⎥⎤3 45 6 2.计算⎣⎢⎢⎡⎦⎥⎥⎤3 75 8⎣⎢⎢⎡⎦⎥⎥⎤2-1等于________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤3 75 8⎣⎢⎢⎡⎦⎥⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎢⎡⎦⎥⎥⎤-1 2. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-1 2 3.矩阵⎣⎢⎢⎡⎦⎥⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤5 00 1=5,∴⎣⎢⎢⎡⎦⎥⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 01. 答案⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13⎣⎢⎢⎡⎦⎥⎥⎤07=⎣⎢⎢⎡⎦⎥⎥⎤7a 91,⎣⎢⎢⎡⎦⎥⎥⎤3 a b 13⎣⎢⎢⎡⎦⎥⎥⎤3.5 0=⎣⎢⎢⎡⎦⎥⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0.∴λ=0或λ=3. 答案 0或36.已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 23 4,α=⎣⎢⎢⎡⎦⎥⎥⎤12,β=⎣⎢⎢⎡⎦⎥⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎢⎡⎦⎥⎥⎤24+⎣⎢⎢⎡⎦⎥⎥⎤ 0-12=⎣⎢⎢⎡⎦⎥⎥⎤ 2-8,M (2α+4β)=⎣⎢⎢⎡⎦⎥⎥⎤1 23 4⎣⎢⎢⎡⎦⎥⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10 21的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-4 3,B =⎣⎢⎢⎡⎦⎥⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =.答案⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤acb d ,由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3.由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值.解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2-3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.11.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎢⎡⎦⎥⎥⎤21. (1)求矩阵A ;(2)若向量β=⎣⎢⎢⎡⎦⎥⎥⎤74,计算A 5β的值. 解 (1)A =⎣⎢⎢⎡⎦⎥⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎢⎡⎦⎥⎥⎤21,当λ2=3时,得α2=⎣⎢⎢⎡⎦⎥⎥⎤11. 由β=m α1+n α2,得⎩⎪⎨⎪⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎢⎡⎦⎥⎥⎤21+35⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤435339. 12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ ax bx +y ,得⎩⎪⎨⎪⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =1.因为a >0,所以⎩⎪⎨⎪⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎢⎡⎦⎥⎥⎤1 01 1,A 2=⎣⎢⎢⎡⎦⎥⎥⎤1 01 1⎣⎢⎢⎡⎦⎥⎥⎤1 01 1=⎣⎢⎢⎡⎦⎥⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎢⎡⎦⎥⎥⎤1 0-2 1.。
高中数学选修42矩阵与变换知识点复习课课件苏教
![高中数学选修42矩阵与变换知识点复习课课件苏教](https://img.taocdn.com/s3/m/0a3cfaad162ded630b1c59eef8c75fbfc67d9413.png)
坐标变换:通过矩阵运算实 现图形的平移、旋转、缩放 等变换
动画制作:通过矩阵运算实 现图形的动画效果,如变形、
运动等
矩阵在其他领域中的应用
物理:在力学、电磁学、量子力学等领域,矩阵被用来描述物理系统的状态和变化
计算机科学:在计算机图形学、人工智能、数据挖掘等领域,矩阵被用来处理和表示数据
高中数学选修4-2矩阵 与变换知识点复习课 课件
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 矩阵与变换概述 03 矩阵的逆与行列式 04 矩阵的秩与特征值 05 矩阵的几何意义与线性变换的矩阵表示
06 矩阵的应用举例
单击添加章节标题
第一章
矩阵与变换概述
第二章
矩阵的定义与性质
矩阵的定义:由m行n列的数组 成的m*n个数阵
矩阵与线性变换的关系
矩阵是线性变换的一种表示方法 线性变换可以通过矩阵乘法来实现 矩阵的逆矩阵表示线性变换的逆操作 矩阵的秩表示线性变换的维数
矩阵的逆与行列式
第三章
矩阵的逆
逆矩阵的定义:满足AB=BA=I的矩阵B称为矩阵A的逆矩阵 逆矩阵的性质:逆矩阵的唯一性、逆矩阵的线性性、逆矩阵的乘法性质 逆矩阵的求法:利用初等行变换求逆矩阵、利用伴随矩阵求逆矩阵 逆矩阵的应用:求解线性方程组、求解矩阵方程、求解线性规划问题
行列式的定义与性质
行列式的定义: 矩阵中主对角线 元素的乘积
行列式的性质: 行列式等于其转 置行列式的值
行列式的计算方 法:利用行列式 的性质进行计算
行列式的应用: 求解线性方程组、 判断矩阵是否可 逆等
行列式的计算方法
初等变换法:通过行变换或列变换 将矩阵化为行阶梯形或列阶梯形, 然后计算行列式
选修4-2矩阵与变换知识点讲解
![选修4-2矩阵与变换知识点讲解](https://img.taocdn.com/s3/m/a8d33c2f2f60ddccda38a08b.png)
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 ⎣⎢⎡⎦⎥⎤2 3③ 概念一:象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示,叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行) ④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
概念二:由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2. 二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦三、二阶矩阵与线性变换— 2— 3— ⎣⎢⎡⎦⎥⎤80 9086 88231,3242x y mz x y z ++=⎧⎨-+=⎩简记为23324m ⎡⎤⎢⎥-⎣⎦1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。
最新-2021版一轮理数课件:选修42 矩阵与变换 精品
![最新-2021版一轮理数课件:选修42 矩阵与变换 精品](https://img.taocdn.com/s3/m/cc15b35f1a37f111f0855b65.png)
db=10
01得2ab++23c=d=0,0,
b+2d=1,
a=2, 解得bc==--13,,
d=2,
所以 A-1=2-1-32. (2)xy =A-1B=2-1-3213=-57, 即xy==5-. 7,
规律方法
1已知矩阵A要求A-1,可设A-1=ac db.由AA-1=A-1A=E可得. 2要用矩阵方法求解二元一次方程组,首先要求解系数所对应的 矩阵的逆矩阵.
2×8n+2n 8n-2n
得 An=2×83n-2n+1 83n+2n+1.
3
3
db-12 =
规律方法
计算 A 的特征向量的步骤:
1由矩阵
称为特征矩阵
eigenmatrix. 2求特征矩阵的行列式,λ-aλ-d-bc=0,即 λ2-a+dλ+
ad-bc=0.,这是 λ 的二次多项式,称为矩阵 A 的特征多项式
0 1 对称对应的矩阵为 A= 1 0 .
3.伸缩变换对应的二阶矩阵 A=k01 k02,表示将每个点的横坐 标变为原来的 k1 倍,纵坐标变为原来的 k2 倍. 4.投影变换:关于 x 轴的(正)投影变换对应的矩阵为
1 0
A= 0 0 .
1 k
5.沿与 x 轴平行的方向平移 ky 个单位的切变变换为 0 1 .
【例 3】 已知矩阵 A 有特征值 λ1=8 及对应特征向量 a1=11, 并有特征值 λ2=2 及对应的特征向量 a2=-12,求 An.
解析:设矩阵 A=ac db,则有ac db11=811且ac
2-12,解得 A=64 24.
设矩阵 An=eg fh,则有eg fh11=8n11
且eg fh-12=2n-12,
[跟踪训练] 2.利用逆矩阵知识解方程组24xx+ -y5=y=82 .
2014人教A版数学一轮复习指导课件 选修4-2 第1节 矩阵变换及其性质变换的复合与二阶矩阵的乘法
![2014人教A版数学一轮复习指导课件 选修4-2 第1节 矩阵变换及其性质变换的复合与二阶矩阵的乘法](https://img.taocdn.com/s3/m/90198e6ccf84b9d528ea7a2d.png)
换称做 点 O 叫做
旋转变换 旋转中心
,
5.投影变换
1 像 0 0 1 0 , 这类将平面内图形投影到某条直线(或 0 1 0
投影变换矩阵
某个点)上的矩阵,我们称之为 换称做
投影变换
,相应的变
.
• 6.切变变换 • 将每一点P(x,y)沿着与x轴平行的方向平移ky 切变变换 个单位,称为平行于 x轴的 .将 切变变换 每一点P(x,y)沿着与y轴平行的方向平移 kx个 切变变换矩阵 单位,称为平行于 y轴的 .对 应的矩阵叫做 .
x0 a12 与列向量 y 的乘法规则: a22 0
a11 2.二阶矩阵 a 21
________________________________________.
a11 a 21
a12 x0 a11×x0+a12×y0 = a22y0 a21×x0+a22×y0
2 A= 0
0 对应的变换下得到曲线 F,求 F 的方程. 1
x0′ 2 P′(x0′,y0′),则有 y ′=0 0
解:设 P(x0,y0)是椭圆上任意一点,点 P(x0,y0)在矩阵 A 对应的变换下变为点
x0 x0′=2x0, y ,所以 0 y0′=y0,
变换下变成点 P′(x′,y′).
x′ 1 则 y′=0 x′=5 1 x x+y 5 = = 即 , 0y 0 0 y′=0
∴P′(5,0).
答案:(5,0)
5.已知圆 C:x +y =1 在矩阵形
2
2
a A= 0
0 (a>0,b>0) b
选修4-2 矩阵与变换
![选修4-2 矩阵与变换](https://img.taocdn.com/s3/m/5b7726dab14e852458fb57b6.png)
明 考 向
目 数学(理) 录
第一节
矩阵的性质、变换及乘法
考什么
抓 基 础
怎么考 矩阵的运算及
3.变换的复合——二阶矩阵的乘法
(1)了解矩阵与矩阵的乘法的意义.
明 考 向
矩阵变换的应用是
高考考查的重点, 都以解答题形式考 查.
(2)理解矩阵乘法不满足交换律. (3)会验证二阶矩阵乘法满足结合律. (4)理解矩阵乘法不满足消去律.
目 录
选修4-2 矩阵与变换 第一节 第二节 矩阵的性质、变换及乘法 逆变换与逆矩阵,矩阵的特征向量
数学(理)
选修4-2
矩阵与变换
目 数学(理) 录
第一节
矩阵的性质、变换及乘法
[备考方向要明了]
抓 基 础
考什么 1.了解二阶矩阵的概念. 2.二阶矩阵与平面向量(列向量)的乘法、平面图形的变换 (1)了解矩阵与向量的乘法的意义,会用映射与变换的观点看待二 阶矩阵与平面向量的乘法. (2)理解矩阵变换把平面上的直线变成直线(或点),即A(λ1α+λ2β) =λ1Aα+λ2Aβ. (3)了解几种常见的平面变换:恒等变换、伸缩变换、反射变换、 旋转变换、投影变换、切变变换.
2 2 2 2 x y ∴圆 C: x2+y2=1 在变换 T 的作用下变成了椭圆 + 4 16
提 能 力
明 考 向
0 1
0 1 , 关于 y=x 对称对
应的矩阵为 A=
1 0 .
目 数学(理) 录
第一节
矩阵的性质、变换及乘法
(3)伸缩变换:对应的二阶矩阵
抓 基 础
k1 A= 0
0 ,表示将每个 k2
点的横坐标变为原来的 k1 倍,纵坐标变为原来的 k2 倍. (4)投影变换:关于 x 轴的(正)投影变换对应的矩阵为 A
选修4-2矩阵与变换第二节矩阵的逆矩阵、特征值与特征向量分析
![选修4-2矩阵与变换第二节矩阵的逆矩阵、特征值与特征向量分析](https://img.taocdn.com/s3/m/229065ecad02de80d5d84093.png)
第二节矩阵的逆矩阵、特征值与特征向量[主匸離构]< O O Q <定义[距阵的逆矩阵、辐征值与特征向员». _________________________________________________匸杏征值与I怖向址1 .矩阵的逆矩阵(1)—般地,设p是一个线性变换,如果存在线性变换0,使得6严p齐I,则称变换p可逆,并且称O是p的逆变换.(2)设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA= AB = E,则称矩阵A可逆,或称矩阵A是可逆矩阵,并且称B是A的逆矩阵.(3)(性质1)设A是一个二阶矩阵,如果A是可逆的,则A的逆矩阵是唯一的,A的逆矩阵记为A_I.-1 - 1 -(4)(性质2)设A,B是二阶矩阵,如果A,B都可逆,则AB也可逆,且(AB) = B A2.二阶行列式与方程组的解I—{二阶行列式与方禅丽城i<⑸二阶矩阵A =, -d 可逆,当且仅当 det A= ad — bc^ 0时,A 1 = 工d」det A—edet A对于关于x ,y 的二元一次方程组ax+ by= m , cx+ dy= n ,我们把称为二阶行列式,它的运算结果是一个数值,记为 det A =a b记为D ,m b 记为D x ,a m c dn dc n i=ad - be. de 若将方程组中行列式记为D y ,则当D 丰0时,D x x =D y y=3. 矩阵特征值、特征向量的相关概念宅 b"l(1) 定义:设矩阵A = J ,如果存在实数 入以及非零向量 匕使得A E=入,,则称入是jc d 」 矩阵A 的一个特征值,E 是矩阵A 的属于特征值 入的一个特征向量.(2) —般地,设E 是矩阵A 的属于特征值 入的一个特征向量,则对任意的非零常数 k, K E也是矩阵A 的属于特征值 入的特征向量.⑶一般地,属于矩阵的不同特征值的特征向量不共线=0为矩阵A 的特征方程.4. 特征向量的应用(1) 设A 是一个二阶矩阵,a 是矩阵A 的属于特征值 入的任意一个特征向量,则A na=fa n *€ N ).(2) 性质1设兀h 是二阶矩阵A 的两个不同特征值,&, &是矩阵A 的分别属于特征 值入,h 的特征向量,对于任意的非零平面向量 a,设a= b E i + t 2 ^2(其中t i , t 2为实数),则对任意的正整数n,有A na=2jjj 2.加石测]< o o oo答案:152 1 - a 2解析:由题意|A | =2 2=2 x (a + 1) — 1 x (1 — a ) = a + 2a + 1 = 0 ,「a = — 1.h — a — bh — a — b A = ,称 f (h =为矩阵A 的特征多项式,方程£ d_ —c — d—c h — d(4)设矩阵2.若矩阵 3可逆,则k 的值不可能是k方程组的解为 1.矩阵—1的逆矩阵是 03.若矩阵A =可逆,则实数 a 的值为答案:—1x 3+ m 一4.对任意实数x,矩阵]总存在特征向量,则m的取值范围是___________2 — m 2k- x — 3 — m 解析:由条件得f( k=m— 2 — 2=(入一x)(入一2) — (m— 2)( — 3— m)2 » …一=入一(x+ 2) H 2x+ (m+ 3)(m— 2) = 0 有实数根,2 2所有A i= (x+ 2) — 4(2x + m + m— 6) > 0对任意实数 x恒成立,2所以A2= 16 + 4(4m + 4m — 28)<0,解得m的取值范围是一3< m W 2.答案:—3< m W 2.例1 求矩阵A= 3 2的逆矩阵.2 1【解析】法一:设矩阵A的逆矩阵为|x y\丄 W —5.已知矩阵M的特征值k= 8及对应的一个特征向量e i= £ l并有特征值k= 2及对应的一个特征向量e2= — 2则矩阵M =a解析:设M =JJDa +b =8, 故|c+ d = 8,a — 2b= 2,故|c— 2d=—788?'=.-1」-8」联立以上两个方程组解得 a = 6, b= 2, c= 4, d = 4,故M = f 2热点考向一求逆矩阵L— F ——― 1[求逆矩阵]公式3x+ 2z 3y+ 2w I 即 2x+ z 2y+ w 3x+ 2z= 1, 故2x+ z= 0,解得 x=— 1, z= 2, y = 2, w = — 3,【点评】 方法一是待定系数法;方法二是公式法.£变式训练1.已知变换矩阵 A 把平面上的点 P(2, — 1)、Q(— 1,2)分别变换成点 P i (3, — 4)、Q i (0,5).(1)求变换矩阵A ;—1(2)判断变换矩阵 A 是否可逆,如果可逆,求矩阵 A 的逆矩阵A理由.—1 —1 —23■ — 1 —1丿 f 1/- 3:A-1■— 1 21 卩1! 2 一=匸卜r 2a — b = 3,i< a= 2, 2c — d =— 4,b= 1,解得:j—a+ 2b = 0,c=—1,即a b c d-- y w3y+ 2w = 0,2y+ w = 1, 从而矩阵A 的逆矩阵A —1=■— 1 -23 2= •A法,.°det A = — 1.:如不可逆,请说明I I,依题意,可得l a£X z2 13N ►Hu贝_2 1-所以所求的变换矩阵2] ⑵'.det A = 2X 2- (— 1) X 1 = 5, ••A 可逆—11、 1551 |5—5A -1=1 = 1— u — n2 I 1 255丿‘5 5丿热点考向二 利用矩阵解二兀一次方程组步骤-求|a 1 b订的逆矩阵-求方程组的解 ---- 卫2 b 2」 -----------[例2 (1)求矩阵A = f J 的逆矩阵; (2)利用逆矩阵知识,2x+ 3y — 1 = 0, x+ 2y — 3= 0.【解析】 (1)法一:设矩阵A 的逆矩阵为A -1= r b 1,x d 」2a + 3c= 1,a = 2,b =— 3, c=— 1, d = 2.知 2b + 3d = 0, a+ 2c= 0, b+ 2d =1. ••|A |= 4— 3 = 1 ,解方程组:】=I :解之得2 Z3|1 1 | f 3- 3【I-1 2-1 2-1 1 -二 31⑵二元一次方程组的系数矩阵为 A = I c,-1 2」由(1)知A- J 2 - 3]二 1 2一[2x+ 3y= 1,因此方程[x+ 2y= 3有唯一解即x=-7,|y= 5.有无数解或无解.2x+ y= 8,2.用矩阵方法求解二元一次方程组4x- 5y= 2.解析:原方程组可以写成『==I8 ',4- 5」®」-2」3 1记M = ,114 — 5a1x+ b1y= C1【点评】二兀一次方程组(a1, b1不同时为零,a2x+ b2y= C2(a1 b[系数矩阵为A= |42 b2,只有当|A|工0时,方程组有唯一解A-1|C1a2, b2不同时为零)的,若A l= 0,则方程组|x L A-1=2 X (— 5) — 1 X 4 =— 14工 0,(1)求A 的特征值4 ⑵求A B .【解析】 (1)设A 的一个特征值为 入由题意知: "X — 1 — 2~\=0,即(入一 2)( X — 3) = 0,解得 X= 2, X= 3,44 44一故 A B = A ( a+ a )= (2 a )+ (3 a )= 16 a+ 81 a =【点评】 求矩阵的特征值及对应的特征向量是矩阵与变换的重点和难点,题首先要利用行列式求出特征 徝,然后求出相应的特征向量. 请注意每一个特征值对应无数 个特征向量,选择坐标为整数的解就能使后面计算〔一11豊.'M —1=1 14r =M -11 '=! i 4,,即方程组的解为‘=3,■1X= 2时,由厂1I X L 2j,得A 属于特征值2的特征向量a 1= I 2E=3f,得A 属于特征值3的特征向量(2)由于 B = 13 L ?!711=a 1 + a .其行列式例3 给定矩阵 A = I入,h 及对应特征向量 a, a;[113 ^97解决此类问简单、方便.ion一、填空题71 3_11•已知A = | 可逆,则实数a 的取值范围是 _________________a 6」 解析:矩阵A 可逆当且仅当det(A)丰0,•'a 的取值范围为(一a, 2) L(2 ,+s ). 答案:(一a, 2) U (2 ,+a )_3,则矩阵M 的特征向量可以是- 23.已知矩阵A =3,若矩阵A 属于特征值6的一个特征向量为 d属于特征值1的一个特征向量,求矩阵A ,并写出A 的逆矩阵.解析:由矩阵A 属于特征值6的一个特征向量为=I :可得, 一仁即 c + d= 6;-3] 由矩阵A 属于特征值1的一个特征向量a= 2 ,解得* 2,d = 4P 31 ,即 A = 2 4 .2•设矩阵 可得P即 3c — 2d= — 2,A 的逆矩阵是解析:矩阵M的特征多项式由于f (为=0得矩阵M 的特征值为 入=1 , ?2=— 1.经计算可得,矩阵M属于特征值x=1的一个特征向量为^3的一个特征向量为1(空3答案:「厂I —;3「ac 3,ab+ 3a = 1答案:2 —2 3丄 2 _2x — 2y =— 1, 解析:因为方程组---的矩阵形式是2x+ 2 y= 1,3 •设可逆矩阵A =J|a 3的逆矩阵A -1-4 5」解析:由AA - 1= E 得 ab + 3a ac — 3I71占b+ 5a 4c —5,而属于特征值匕-1 4b+ 5a= 0, 即4c — 5 =解方程组得a= 2, b= — 2 c= 3 2.承―韵=—1,4.已知二元一次方程组 ,呼x+%= 1 ,从线性变换的角度求解时应把向量—1_ 1绕原点作顺时针旋转的旋转变换.方程组就是把向量:1[绕原点作顺时针旋转沪旋转变换答案:n1+、321- .3 2答案:6. 现用矩阵对信息进行加密后传递,规定英文字母数字化为:解析:因为A =『4,所以det A = I14= 2工0,42->0 2对应信息为good”.n 变换得到—1,所以解4一i一1 - 2〕所以A -1=1,而密码矩阵为 ? 1 一B = I 67J3031 8_1 故明码矩阵X= A - 1B =-21 1 2 -31] 7 15]=I , 8」-15 4」[1 - 15A = _0,则 A -11解析:A =_01- 3 •41='X 1-丄X 區1工02 2 2 •4 11, b T 2,…,Z T 26,双方约定的矩阵为1 4,发送方传递的密码为67,30,31,8,此组密码所发信息为—P2答案:good--1 5[7. 矩阵M = 5 __________________________ 的特征值与特征向量分别为勺3一5 2=(入+ 1)( X — 3) — (— 2)( — -)= f — 2 - 8 = 0,得矩阵值为 X = 4, X = — 2.&= — 2的一个特征向量.答案: &已知矩阵A = f — 1, B =『—1,,则满足方程AX = B 的二阶矩阵X =_— 4 3 _— 3 1年-11解析:・.A =「4 3 一2 — 1.•|A |== 2 X 3 — (— 1) X (— 4) = 2 工 0.—4 3 3 1 1•■A — 1=2 2::AX = B ,.・・X = A —1B ,5 1 -解析:M 的特征设属于特征值 ,则它满足方程(X+ 1)x+ (— 2)y= 0, 即卩 5x — 2y =0•故可取属于特征值 4的一个特征向量.设属于特征值 h= — 2的特征向量为x+ 2y = 0•故可取 -2为属于特征值量为综上所述,矩阵a-灯 属于■— 1 2〔有两个特征值 ?2=— 2的一个特征向量为 ?1= 4, ?2=— 2,属于入=4的一个特征向X = 4的特征向量为02\ = 4, a = || ■和 &=—2, J 5」而 A - 1AXB-B - 1= EXBB -1因为A - 1=- 3_2所以 X = A - 1CB「2 - 3110.已知矩阵A =6 2(1) 求矩阵A 的特征值及对应的特征向量; (2) 计算矩阵A n.当f= 8时,A 属于f 的特征向量为9一25-11AS2 ]7 317A = J ,B =,C =I- 2 -3」】12- 〕1C , 所以 1(A - A )XB B -1=A -1CB -19.已知矩阵 解析:AXB = 1,求满足AXB = C 的矩阵X . 0=X ( BB -1) = X , 所以 X = A - 1CB -1B -1=2 -31解析: (1)矩阵A 的特征方程为入一6=(—6)( — 4) — 8 = f - 10 入 + 16 = 0.得矩阵 A 的特征值为 f = 8, f= 2.当?2= 2时,A属于h的特征向量为⑵设A n =n n n nA a i = 8 a i, A a= 2 a,(1)求证:M和N互为逆矩阵;⑵求证:向量a同时是M和N的特征向量;(3)指出矩阵M和N的一个公共特征值.-2 — 1-j,3 — 3,2 们;1 0]解析:(1)证明:因MN = J = J ,.1 2〜2」J 1」-—3 2na + b= 8c+ d= 8n即a — 2b= 2nc-2d=— 2 2n解得a=n ^n2X 8 + 2n8 —2n8n+ 2n+i2 X 8n—2n+1c=故A n=2 X 8n+ 2n 8n—2nI 3 32 X 8n—2n+18n+ 2n+ 13 311.给定矩阵21,向量02 =且 NM = I 2所以M 和N 互为逆矩阵.(2)证明:因为M%因为故1是矩阵M 和N 的一个公共特征值. ① 若a= 2, b= 3,求M 的逆矩阵② 若曲线C: x 2+ y 2= 1,在矩阵M 所对应的线性变换作用下得到曲线2C': x+ y 2= 1,求 a, b 的值.4•'2x 1= 1,2y 1= 0,3x 2= 0,3y 2= 1. 1 1即 x = 2,y 1 = 0, X 2= 0, y 2 = 3ax= x' by= y'-0 1J所以 a 是N 的特征向量.所以 a 是N 的特征向量.-1 |⑶由⑵知,M对应于特征向量―的特征值为1, N 对应于特征向量|彳 一 1的特征值也12. (2011年福建)设矩阵M =打0( b*其中 a>0, b>0) M T ;解析:①设M -1= -| y1.X2 y2则 MM -1= I 1-0 0'又 M =[1 - J) 3JO0:y 1 y 2-0 1②设C 上任一点P(x, y),在M 作用下得点P' (x' , y')2 2即亍+ b 2y~ 1为曲线C 的方程.|a= 2,又a>0, b>0,所以[b= 1.卫答案:「1又点P'(X’,y')在C'上,所以2・+ y' 2= 1.又C 的方程为x 2+ y 2= 1,a 2= 4,b 2= 1._1X= 3时,由.1• -1 =。
选修4-2矩阵与变换.docx
![选修4-2矩阵与变换.docx](https://img.taocdn.com/s3/m/7fbf0a7f9ec3d5bbfc0a7471.png)
第 1 页共 21 页选修 4- 2矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如123134,1,20这样的矩形数字 (或字母 )阵列称为矩阵,其35- 1中,同一横排中按原来次序排列的一行数(或字母 )叫做矩阵的行,同一竖排中按原来次序排列的一列数 (或字母 )叫做矩阵的列,而组成矩阵的每一个数(或字母 )称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法① [a 11a12 ]b11= [ a11×b11+ a 12×b 21 ] ;b21②a11a12x0=a11× x0+ a12× y0.a21a22 y0a21× x0+ a22× y02.几种常见的平面变换10(1) 当 M =时,则对应的变换是恒等变换.01(2)k010由矩阵 M =或 M =(k>0) 确定的变换 T M称为 (垂直 )伸压变换.01k(3)反射变换是轴对称变换、中心对称变换的总称.cos θ - sin θ(4) 当 M =时,对应的变换叫旋转变换,即把平面图形(或点 )逆时针旋转sin θcos θθ角度.(5)将一个平面图投影到某条直线 (或某个点 )的变换称为投影变换.1k10 (6) 由矩阵 M =或 M =k 确定的变换称为切变变换.011 3.矩阵的乘法一般地,对于矩阵a11a12b11b12M =a22, N=,规定乘法法则如下:a21b21b2211 12 11 12a bbb ba ab b11 11+ a 12 21a 11 12+ a 12 22MN =a 22b 21=a 21b 11+ a 22b 21.a 21 b22a 21b 12+ a 22b 224.矩 乘法的几何意(1) 的复合:在数学中,一一 的平面几何 常可以看做是伸 、反射、旋 、切 的一次或多次复合,而伸 、反射、切 等 通常叫做初等 ; 的矩 叫做初等 矩 .(2)MN 的几何意 : 向量x 矩 乘法α= 施的两次几何 (先 T N 后 T M )y的复合 .·(3) 当 向量 施 n ( n > 1 且 n ∈ N * )次 T M , 地我M n = M ·M ·⋯ ·M .5.矩 乘法的运算性(1) 矩 乘法不 足交 律于二 矩A ,B 来 ,尽管 AB , BA 均有意 ,但可能 AB ≠BA .(2) 矩 乘法 足 合律A ,B ,C 二 矩 , 一定有(AB)C = A(BC).(3) 矩 乘法不 足消去律.A ,B ,C 二 矩 ,当 AB = AC ,可能 B ≠C. [ 小 体 ]1 8 1 x1.已知矩 A =3,矩 B =.若 A =B , x + y = ________.2y 3解析: 因 A = B ,x = 8, + =10.所以y = 2,x y答案: 102.已知x x ′2x + 3y , 它所 的 矩 ________.y→=y ′x + yxx ′ 2 3 x解析: 将它写成矩 的乘法形式→′ =1 ,所以它所 的 矩y1yy2 3 1 .12 3答案:111.矩 的乘法 着 的复合,而两个 的复合仍是一个 ,且两个 的复合 程是有序的,易 倒.2.矩阵乘法不满足交换律和消去律,但满足结合律.[ 小题纠偏 ]1 2 , B =4 2 1.设 A =4k ,若 AB = BA ,则实数 k 的值为 ________.37解析: AB =1 24 2 =4+ 2k163 4k 7,12+ 4k 3442 1 21016BA = k7 34 = ++ 28,k 21 2k 因为 AB = BA ,故 k = 3.答案: 32.已知 A =1 0 , B =- 1 0- 1 00 0 0 1, C =,计算 AB , AC.0 - 1解: AB =1 0 - 1 0- 1 00 1 =,1 0 - 10 - 1 0 . AC =0 0- 1= 0 0 0考点一二阶矩阵的运算 基础送分型考点 —— 自主练透[ 题组练透 ]1 11 11.已知 A =2 2,计算 A 2, B 2.1 , B = - 1- 1 1221 1 11 1 1 解: A 2=2 2 2 2 2 2 . 1 1 1 =1 1 12 2222 21111B 2=- 1 - 1 - 1 =.- 12.(2014 江·苏高考 )已知矩阵 A =- 1 211 21 ,B =,向量 α= ,x ,y 为实数. 若x2- 1 yA α=B α,求 x + y 的值.解: 由已知,得 A α= - 12 2 = - 2+ 2y , α= 11 2 = 2+ y y2 - 1 y1 x 2+ xy4- y第 4 页共 21 页因为 A α= B α,所以 - 2+ 2y2+ y=,2+ xy 4- y- 2+ 2y = 2+ y ,故2+ xy =4- y.x =- 12,所以 x + y = 7 解得2.y = 4.3.已知矩阵 A =1 0 - 4 3 31 , B = 4 - 2且 α= ,试判断 (AB)α与 A(B α)的关系.2 4解: 因为 AB =1 0- 43 -4 31 2= ,4 - 2 4 - 1- 43 3所以 (AB)α=- 1 4= ,48 因为 B α=-433 =0 ,4 - 2441 0 0 0A(B α)=24=. 18所以 (AB)α= A(B α).[ 谨记通法 ]1.矩阵的乘法规则两矩阵 M , N 的乘积 C = MN 是这样一个矩阵;(1) C 的行数与 M 的相同,列数与 N 的相同;(2) C 的第 i 行第 j 列的元素C ij 由 M 的第 i 行与 N 的第 j 列元素对应相乘求和得到. [ 提醒 ] 只有 M 的行数与 N 的列数相同时,才可以求MN ,否则无意义.2.矩阵的运算律(1) 结合律 (AB)C = A(BC);(2) 分配律 A(B ±C)= AB ±AC , (B ±C)A = BA ±CA ;(3) λ(AB)= (λA )B = A( λB ).考点二平面变换的应用重点保分型考点 —— 师生共研[ 典例引领 ]2 - 2 2 2已知曲线 C :xy = 1,若矩阵 M =对应的变换将曲线C 变为曲线 C ′,求2 222曲线 C ′的方程.解: 设曲线 C 上一点 (x ′ , y ′ )对应于曲线 C ′ 上一点 (x ,y),2 - 222x ′x所以=y,22 ′y222 222′=所以x + y y - x所以 ′ - ′ = , ′ +′ = ,y ′ = ,所以 x ′ y ′=2 x2 yx2x2 yy.x22x + y y - x = 1,×2 2所以曲线 C ′ 的方程为 y 2- x 2= 2.[ 由题悟法 ]利用平面变换解决问题的类型及方法:(1) 已知曲线 C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法 )求解.(2) 已知曲线 C ′是曲线 C 在平面变换作用下得到的,求与平面变换对应的变换矩阵, 常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组 )求解.[ 即时应用 ]a 022x + y已知圆 C :x 2+ y 2= 1 在矩阵 A =(a>0,b>0) 对应的变换作用下变为椭圆=0 b9 41,求 a , b 的值.解:设 P(x ,y)为圆 C 上的任意一点, 在矩阵 A 对应的变换下变为另一个点 P ′ (x ′ ,y ′ ),x ′ a 0x x ′= ax , 则 =,即y ′0 byy ′ = by.2 2 2222xya xb y又因为点 P ′ (x ′ , y ′ )在椭圆 9 + 4 = 1 上,所以 9 + 4 = 1. 由已知条件可知,x 2+ y 2=1,所以 a 2 = 9, b 2= 4.因为 a>0 , b>0 ,所以 a = 3, b = 2.考点三 变换的复合与矩阵的乘法 重点保分型考点 —— 师生共研[ 典例引领 ]在平面直角坐标系xOy 中,已知点 A(0,0),B(- 2,0),C(- 2,1).设 k 为非零实数,矩阵k 0 0 1A 1,B 1,C 1,M =1 , N =,点 A , B , C 在矩阵 MN 对应的变换下得到点分别为1 0△ A 1B 1C 1 的面积是△ ABC 面积的 2 倍,求 k 的值.k 0 0 1 0 k解: 由题设得 MN =1 1=,1 0 由 0k 0 0 0 k - 2,=,=1 00 01- 20 k -2k,可知 A 1(0,0),B 1(0,- 2), C 1(k ,- 2).1 0=1- 2计算得△ABC 的面积是1,△A 1 1 1 的面积是 |k|,B C则由题设知: |k|= 2× 1= 2.所以 k 的值为 2 或- 2.[ 由题悟法 ]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[ 即时应用 ]1 0已知圆 C :x 2+ y 2= 1,先将圆 C 作关于矩阵 P =的伸压变换,再将所得图形绕原0 2点逆时针旋转 90°,求所得曲线的方程.0 - 1解: 绕原点逆时针旋转 90° 的变换矩阵 Q =,1 0则 M = QP =0 - 11 0 0 - 210 2=.1设 A(x 0, y 0 为圆 C 上的任意一点,在T M 变换下变为另一点 A ′ (x 0′ , y 0′ ),)′-x 0′ =- 2y 0,2则=,即y 0 ′ 10 y 0y 0′ = x 0,x 0= y 0′ ,所以x 0′y 0=- 2 .又因为点 A(x 0, y 0) 在曲线 x 2+ y 2= 1 上,2x 0′ 2所以 (y 0′ ) + -= 1.2故所得曲线的方程为x4+ y 2 =1.0 11, N =1 ,求 MN .1.设 M =00 120 11 0 0 112.解: MN =0 =1211 2 T 把曲2.(2016 南·京三模 )已知曲线 C :x 2+ 2xy + 2y 2= 1,矩阵 A =所对应的变换1 0线 C 变成曲线 C 1,求曲线 C 1 的方程.1 2 解: 设曲线 C 上的任意一点 P(x , y), P 在矩阵 A =对应的变换下得到点 Q(x ′ ,1 0y ′ ).1 2 x x ′ x + 2y = x ′ ,则10 =, 即y′ x = y ′ ,yx ′ -y ′所以 x = y ′ , y = .2x ′ - y ′+2x ′ - y ′2= 1,即 x ′ 2+ y ′ 2= 2,代入 x 2+ 2xy +2y 2= 1,得 y ′ 2 +2y ′ ·22所以曲线 C 1 的方程为 x 2+ y 2= 2.3. (2016 南·通、扬州、泰州、淮安三调 )在平面直角坐标系xOy 中,直线 x + y - 2= 0 在矩阵 A =1 ax + y - b = 0(a , b ∈ R) ,求 a + b 的值.1 对应的变换作用下得到直线2解: 设 P(x , y)是直线 x + y -2= 0 上任意一点,由 1a x =x + ay ,得 (x + ay)+ (x + 2y)- b = 0,即 x + a + 2 - b= 0.12 y x + 2y2 y 2a + 22 = 1, a = 0,所以 a +b = 4.由条件得解得-b=- 2,b = 4,2第 8 页共 21 页4.已知 M =1- 22 - 12 , W =- 3,试求满足 MZ = W 的二阶矩阵 Z .3 1a b解: 设 Z =d ,c则 MZ = 1 - 2 a b a - 2cb -2d=.23 c d 2a + 3c 2b +3d又因为 MZ = W ,且 W =2 - 1,- 31a - 2cb - 2d 2 - 1所以+ = - 3 1 , +3c3d2a 2ba = 0,a - 2c = 2,1b =-b - 2d =- 1,7,所以解得2a + 3c =- 3, c =- 1,2b + 3d = 1.d = 37.0 1 - 7故 Z =.- 1371 15. (2016 苏·锡常镇一调 )设矩阵 M =y = sin x 在矩阵, N = 2,试求曲线21MN 变换下得到的曲线方程.11解: 由题意得 MN = 1 0 2 0= 20 . 0 20 1 0 2设曲线 y = sin x 上任意一点 P(x , y)在矩阵 MN 变换下得到点 P ′ (x ′, y ′ ),x ′1x则2,=yy21x = 2x ′ , 即 x ′ = 2x ,得1y ′ = 2y ,y =2y ′ .因为 y = sin x ,所以 1 ′ =′ ,即 ′ = ′2ysin 2xy2sin 2x .因此所求的曲线方程为 y = 2sin 2x.6.(2017 苏·锡常镇调研 )已知变换 T 把平面上的点 (3,- 4),(5,0)分别变换成 (2,- 1),(-1,2),试求变换 T 对应的矩阵 M .a b a b3 2 a b 5 =- 1解: 设 M =,由题意,得= , ,c dc d- 4 - 1 c d 0 213a - 4b = 2, a =- 5,13,3c - 4d =- 1,b =-20所以解得2 5a =- 1,c =5,5c = 2.11d = 20.113-5-20即 M =.2 11 5207.(2016 ·通、扬州、淮安、宿迁、泰州二调南 )在平面直角坐标系xOy 中,设点 A(- 1,2)- 1 0 在矩阵 M =对应的变换作用下得到点 A ′,将点 B(3,4)绕点 A ′逆时针旋转90°得0 1到点 B ′,求点 B ′的坐标.解: 设 B ′(x , y),- 1 0- 11 依题意,由0 1=,得 A ′ (1,2) .22―→ ―→则 A ′ B = (2,2) , A ′ B = (x - 1, y - 2).0 - 1记旋转矩阵 N =,1 00 - 1 2x - 1 - 2x - 1 则=,即=,10 2- 2- 2y 2y 解得x =- 1,y = 4,所以点 B ′ 的坐标为 (- 1,4).1 0 1 02x 2- 2xy + 1= 0 在矩阵 MN 对应的变换作8.已知 M =, N =,求曲线0 2- 1 1用下得到的曲线方程.1 0 1 01 0解: MN =2 - 11=,- 22设 P(x ′ , y ′ )是曲线 2x 2- 2xy + 1= 0 上任意一点,点 P 在矩阵 MN 对应的变换下变为点 P ′ ( x , y),x1 0 x ′x ′则有=2 ′=,y- 2- ′ + ′y2x 2yx = x ′ ,即y =- 2x ′ + 2y ′ ,x ′ =x ,于是yy ′ =x + 2.代入 2x 2- 2xy + 1= 0 得 xy = 1,所以曲线 2x 2- 2xy + 1=0 在 MN 对应的变换作用下得到的曲线方程为xy = 1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1) 对于二阶矩阵 A , B ,若有 AB = BA = E ,则称 A 是可逆的, B 称为 A 的逆矩阵.(2) 若二阶矩阵 A ,B 均存在逆矩阵,则 - 1- 1 - 1AB 也存在逆矩阵,且 (AB) = B A .(3) 利用行列式解二元一次方程组.2.逆矩阵的求法一般地,对于二阶矩阵a b - 1A =,当 ad - bc ≠ 0 时,矩阵 A 可逆,且它的逆矩阵 Ac dd- b ad - bc ad - bc=.- c aad - bcad - bc3.特征值与特征向量的定义设 A 是一个二阶矩阵,如果对于实数 λ,存在一个非零向量 α,使得 A α= λα,那么 λ称为 A 的一个特征值,而α称为 A 的属于特征值 λ的一个特征向量.4.特征多项式的定义a b是一个二阶矩阵, λ∈ R ,我们把行列式f(λ)=λ- a - b 2设 A =d - c= λ- (a + d)λcλ- d+ ad - bc 称为 A 的特征多项式.5.特征值与特征向量的计算设 λ是二阶矩阵a bλ与 α的步骤为:A =的特征值, α为 λ的特征向量,求c d第一步:令矩阵λ- a - b2A 的特征多项式 f(λ)=λ- d = λ- (a + d)λ+ ad - bc = 0,求出 λ- c的值.第二步: 将 λ的值代入二元一次方程组λ- a x - by = 0,得到一组非零解 x 0 ,于是- cx + λ- d y = 0,y非零向量 x 0即为矩阵 A 的属于特征值 λ的一个特征向量.y 06.A n α(n ∈ N * )的简单表示(1) 设二阶矩阵 A =a b , α是矩阵 A 的属于特征值 λ的任意一个特征向量,则A n α=cdn *).λα(n ∈ N, λ是二阶矩阵 A 的两个不同特征值,α, β是矩阵 A 的分别属于特征值 λ, λ(2) 设 λ1 212的特征向量,对于平面上任意一个非零向量γ,设 γ= t 1 α+ t 2β(其中 t 1, t 2 为实数 ),则 A n γ=n n* .1λ1α+ t 2λ2β(n ∈ N)t[ 小题体验 ]1 61.矩阵 M = - 2- 6 的特征值为 __________ .解析: 矩阵 M 的特征多项式为 f(λ)= λ- 1 - 6λ+2)( λ+ 3) ,令 λ= ,得 M 的特(f( ) 02 λ+ 6征值为 λ=-1 2, λ=-2 3.答案: - 2 或- 32.设2 a 2 a 的值为 ________.3是矩阵 M = 的一个特征向量,则实数322解析: 设是矩阵 M 属于特征值 λ的一个特征向量,3a 2 2 2则2 = λ , 33 32a + 6=2λ, λ= 4,故解得12= 3λ a = 1.答案: 11.不是每个二阶矩阵都可逆, 只有当ab中 ad - bc ≠ 0 时,才可逆, 如当 A =10 , c d0 01 0因为 1× 0- 0× 0= 0,找不到二阶矩阵 B ,使得 BA = AB =E 成立,故 A = 不可逆.0 2.如果向量 α是属于 λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量 α共线,故 t α也是属于 λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[ 小题纠偏 ]1.矩阵 A =2 35的逆矩阵为 ____________. 6x y 解析:法一: 设矩阵 A 的逆矩阵 A-1=,z w2 3 x y1 0 则6 z w= , 512x + 3z 2y + 3w 1 0即=0 1 , 5x + 6z 5y + 6w2x + 3z = 1,x =- 2,2y + 3w = 0,y = 1,所以解得55x + 6z = 0, z = 3,5y + 6w = 1,2w =- 3.A -1=-21故所求的逆矩阵5- 2 .3 3法二: 注意到 2× 6- 3×5=- 3≠0,故 A 存在逆矩阵 A-1,6 - 3- 3- 3- 21且 A -1==52 .- 5 2-3 3- 3 - 3- 2 1 答案:5 - 2331 222.已知矩阵 A =- 4 的一个特征值为 λ,向量 α= 是矩阵 A 的属于 λ的一个特a- 3 征向量,则 a + λ= _____.解析: 因为 A α= λα,所以2- 6= 2λ, 即解得2a + 12=- 3λ,所以 a + λ=- 3- 2=- 5.答案: - 51 2 2 2a- 4 - 3 = λ ,- 3a =- 3,λ=- 2,考点一求逆矩阵与逆变换重点保分型考点 —— 师生共研[ 典例引领 ]- 1 01 2 A -1已知矩阵 A =2, B =,求矩阵 B.6 解: 设矩阵 A 的逆矩阵为a bc,d- 1 0 a b1 0,即 - a - b 1 0则== ,2 c d12c 2d 0 11故 a =- 1, b = 0, c = 0, d =2.所以矩阵 A 的逆矩阵为 A -1=- 11 .2所以 A- 1 0 1 2- 1- 2-1B =1=.0 632[ 由题悟法 ]求一个矩阵 A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一: 待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义 AB = BA = E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.a b法二: 利用逆矩阵公式,对矩阵A = :c d①若 ad - bc = 0,则 A 的逆矩阵不存在.d- b ②若 ad - bc ≠ 0,则- 1ad - bc ad - bc.A =- caad - bc ad - bc[ 即时应用 ]11 1已知 A = 1, B =,求矩阵 AB 的逆矩阵.1 021 0 1- = 1≠ 0, 解:法一: 因为 A =1 ,且 1 ×2 02 0212 -111 0所以 A-1=22 =,20 1- 1 12 2 1- 1.同理 B-1=0 1因此 (AB)-1= B-1A -1=1- 1 1 0 1 - 20 2 =.0 1 0 211 1法二: 因为 A =10 , B =,20 1所以1 0 1 1 = 11 ,且× 1- × = 1≠ 0,AB=11 10 0 120 1222第 15 页 共 21 页1 - 1 21 11 - 2所以 (AB)-1=22.=20 1 01 12 2考点二特征值与特征向量的计算及应用重点保分型考点 —— 师生共研[ 典例引领 ]2 a已知矩阵 M =,其中 a ∈ R ,若点 P(1,- 2)在矩阵 M 的变换下得到点 P ′(- 4,0).2 1(1) 求实数 a 的值;(2) 求矩阵 M 的特征值及其对应的特征向量.解: (1) 由 2 a1- 4 ,得 - =-==3.2 1 -22 2a4? a2 3λ- 2 - 3(2) 由 (1)知 M =,则矩阵 M 的特征多项式为 f (λ)= =( λ- 2)( λ- 1)- 621- 2 λ- 12= λ- 3λ-4.令 f(λ)= 0,得矩阵 M 的特征值为- 1 与 4.λ- 2 x - 3y = 0,把 λ=- 1 代入二元一次方程组- 2x + λ- 1 y =0,得 x + y = 0,1所以矩阵 M 的属于特征值- 1 的一个特征向量为;-1λ- 2 x - 3y = 0,把 λ= 4 代入二元一次方程组- 2x + λ- 1 y = 0,得 2x - 3y = 0.所以矩阵 M 的属于特征值4 的一个特征向量为3.2[ 由题悟法 ](1) 求矩阵 A 的特征值与特征向量的一般思路为:先确定其特征多项式 f(λ),再由 f(λ)= 0求 出 该 矩 阵 的 特 征 值 , 然 后 把 特 征 值 代 入 矩 阵 A所 确 定 的 二 元 一 次 方 程 组λ- a x - by = 0, 即可求出特征向量.- cx + λ- d y = 0,(2) 根据矩阵 A 的特征值与特征向量求矩阵A 的一般思路:设 A =a b c ,根据 A α=λαd构建 a , b , c , d 的方程求解.[ 即时应用 ]1x 1 的属于特征值 - 21. (2015 江·苏高考 )已知 x , y ∈ R ,向量 a = 是矩阵 A =y 0 - 1的一个特征向量,求矩阵A 以及它的另一个特征值.解: 由已知,得 Aa =- 2a ,x 11- - 2即=x 1=,y0 - 1y2x - 1=- 2, x =- 1, 则即y = 2,y = 2,-11 所以矩阵 A =2.从而矩阵 A 的特征多项式f (λ)= (λ+ 2)( λ- 1),所以矩阵 A 的另一个特征值为1.1 2.已知二阶矩阵 M 有特征值 λ= 3 及对应的一个特征向量 α1=,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (9,15) ,求矩阵 M .解: 设 M = a b ,则a b 1 1 3 a + b = 3,= 3=,故c dc d 113c +d = 3.a b - 1 9-a + 2b = 9,又= ,故c d215- c + 2d = 15.联立以上两方程组解得a =- 1,b = 4,c =- 3,d = 6,- 1 4故 M =.- 3 6考点三根据 A , α计算 A n αn ∈ N *重点保分型考点 —— 师生共研[ 典例引领 ]1 23给定的矩阵 A = , B = .- 1 4 2 (1) , λ及对应的特征向量 α, α;求 A 的特征值 λ1 2 12(2) 求 A 4B.解: (1) 设 A 的一个特征值为 λ,由题意知:λ- 1 - 2= 0,即 (λ- 2)(λ- 3)= 0,所以 λ1= 2, λ2= 3.1λ- 4当 λ1= 2 时,由1 2 xx2 的特征向量 α1=24 = 2,得 A 属于特征值;- 1 yy1当 λ2= 3 时,由1 2 xx 3 的特征向量 α2=14 = 3,得 A 属于特征值.- 1 y y1(2) 由于 B =32 1= α+ α,= + 2 1 1 1 2故 A 4=4 α+ α = 4α+ 34α= 16α+ 81α= 32 81= 1132 + .16 8197[ 由题悟法 ]已知矩阵 A 和向量 α,求 A n α(n ∈ N * ),其步骤为:(1) 求出矩阵, λ和对应的特征向量 α, αA 的特征值 λ1 2 12. (2) 把 α用特征向量的组合来表示:α= s α1+ t α2.nnn表示 A n(3) 应用 A α= s λα11 + t λα.2α2[ 即时应用 ]已知 M = 1 2 , β= 1 ,计算 M 5β21 7.λ- 1 - 2解: 矩阵 M 的特征多项式为f( λ)=2= λ- 2λ- 3.- 2 λ- 1令 f(λ)= 0,解得 λ=1 3,λ=-2 1,12 xx,得x + 2y = 3x ,令= 32 1 y y2x + y = 3y ,从而求得 λ1=3 的一个特征向量为1α1=,11同理得对应λ2=-1的一个特征向量为α2=- 1.令β= mα1+ nα2,则 m=4, n=- 3.55α- 3α555551- 3× (- 1)51β==α-=-=×=M M (44(M3(Mα4(λα3(λα312)1)2) 1 1)22)41- 1975.9691.(2016 无·锡期末 )已知矩阵 A=1012-1对应的变换把直线 l 0, B=,若矩阵 AB21变为直线 l′: x+ y- 2= 0,求直线 l 的方程.解:由题意得 B-1=1- 2,01101- 21- 2所以 AB-1==,020102设直线 l 上任意一点 (x, y)在矩阵 AB-1对应的变换下为点 (x′, y′ ),则1- 2x=02yx′x′= x- 2y,,所以y′y′= 2y,将 x′, y′代入 l′的方程,得 (x- 2y)+ 2y-2= 0,化简后得 l: x= 2.12- 11-12. (2016 江·苏高考 )已知矩阵 A=0-2,矩阵 B 的逆矩阵 B=2,求矩阵02AB.解:设 B=ab,c d-11-1a b10则 B2=,=B c d010 2即错误 ! =错误 ! ,1a = 1, a - 2c = 1,1,11b = 1b - 2d = 0,4所以 B =4故解得.2c = 0,c = 0,121d =2d = 1,2,1 1 1 51424因此, AB = 0- 2=.1 0-123. (2016 南·京、盐城、连云港、徐州二模)已知 a , b 是实数,如果矩阵 3 aA =所b - 2对应的变换 T 把点 (2,3) 变成 (3,4).(1) 求 a , b 的值;(2) 若矩阵 A 的逆矩阵为 B ,求 B 2.3 a23解: (1) 由题意得=,b - 2 34所以 6+ 3a = 3,2b - 6= 4,所以 a =- 1, b = 5.3 - 1(2) 由 (1)得 A =.5 - 22 - 1由矩阵的逆矩阵公式得B =.5 - 32 - 1 2 - 1- 1 1所以 B 2==. 5 - 3 5 - 3 - 544. (2016 常·州期末 )已知矩阵 M =a 2 8 的一个特征向量是e =14的属于特征值 ,点b1P(- 1,2)在 M 对应的变换作用下得到点Q ,求 Q 的坐标.a 2 1 1 解: 由题意知4 b = 8×,11a + 2= 8,a = 6,故解得4+ b = 8,b = 4,6 2 - 1 =- 2所以42,所以点 Q 的坐标为 (-2,4).4 4- 1 45. (2016 苏·州暑假测试 )求矩阵 M =2 的特征值和特征向量.6λ+ 1 - 42解: 特征多项式f(λ)== λ+1)( λ-6)= λ-7)( λ+ 2) ,- = λ- λ-(85 14(- 2 λ- 6由 f(λ)= 0,解得 λ1= 7,λ2=- 2.8x - 4y = 0,1 将 λ= 7 代入特征方程组,得即 y = 2x ,可取为属于特征值 λ= 7 的11- 2x + y = 0,2一个特征向量.- - = ,4x 4y 0同理, λ=-2 2 时,特征方程组是即 x =- 4y ,所以可取为属于- 2x - 8y = 0,- 1特征值 λ2=- 2 的一个特征向量.M = - 1 4λ1= 7, λ2=- 2.属于 λ1=7 的一个特征向量综上所述,矩阵2 有两个特征值61,属于 λ2=- 2 的一个特征向量为4为- 1. 23 6λ= 8 的一个特征向量e = 6,及属于特征值 λ=- 36.矩阵 M =有属于特征值255的一个特征向量 e =13 ,计算 M3α2- 1 .对向量 α= 8.解: 令 α= me + ne ,将具体数据代入,有m = 1,n =- 3,所以 α=e - 3e 所以M 3α 1212 .3333 3 3 6 1 3 153= M - 3e = - 3M - 3× (-3) 3 =(e 1= λ - 3λ = 8.5- 1 2 479- 1 27. (2016 泰·州期末 )已知矩阵 M =5x 的一个特征值为- 2,求 M 2.2λ+ 1- 22解: 把 λ=- 2 代入-λ- + = ,得= ,= λ-5λ- x(x1)(x 5)x 3-2第 21 页共 21 页- 124所以矩阵 M =65,所以 M 2=.351428.已知二阶矩阵 M 有特征值 λ= 8 及对应的一个特征向量 e 1=1 ,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (- 2,4). 求:(1) 矩阵 M;(2) 矩阵 M 的另一个特征值,及对应的一个特征向量e 2 的坐标之间的关系;(3) 直线 l : x -y + 1= 0 在矩阵 M 的作用下的直线 l ′的方程.a ba b 1 18解: (1) 设 M =,则c d 1 = 8 = ,c d1 8a + = ,b-1-2-a + 2b =- 2,b8a= ,故故c d+ =8.24-c + 2d = 4.c da = 6,b = 2,62 联立以上两方程组,解得故 M =.c = 4,44d = 4,2(2) 由 (1) 知,矩阵 M 的特征多项式为f (λ)= (λ- 6)( λ- 4)- 8=λ- 10λ+ 16,故其另一个特征值为λ= 2.设矩阵 M 的另一个特征向量是e 2=x ,y则 Me 2=6x + 2yx ,解得 2x + y =0.= 2y4x + 4y(3) 设点 (x ,y)是直线 l 上的任意一点, 其在矩阵 M 的变换下对应的点的坐标为 (x ′ ,y ′ ),则 6 2 x =x ′,即 x = 1 ′ -1 ′ , =-1′ +3′ ,代入直线l 的方程后并化简,4 4 y′4x8yy4x8yy得 x ′ - y ′ + 2=0,即 x -y + 2= 0.。
2014人教A版数学一轮复习指导课件选修4-2第2节逆矩阵、矩阵的特征值与特征向量
![2014人教A版数学一轮复习指导课件选修4-2第2节逆矩阵、矩阵的特征值与特征向量](https://img.taocdn.com/s3/m/5a3f1febb0717fd5370cdc0e.png)
-1a 0c
db=10
01,
∴-2ac -2bd=10 01,
-c=1, -d=0, ∴2a=0, 2b=1,
a=0, ∴b=12,
c=-1, d=0.
∴(AB)-1=
.
解法二:因为矩阵 A 的系数行列式为 1×2-0=2≠0.
)
A.23
1 0
C.31
0 2
B.13
2 0
D.12
0 3
解析:设 A=ac db,由ac db10=23,得ac==32., 由
a c
db11=311=33,得ac++db==33., 所以bd= =10, . 所以 A=
利用矩阵求逆公式得
因此原方程组的解为
∴xy= =1212
,即为方程组的解.
对于二元一次方程组acxx++dbyy==nm, 将 X=yx看成是原 先的向量,而将 B=mn 看成是经过系数矩阵.A=ac db(ad -bc≠0)对应变换作用后得到的向量,则可将其记为矩阵方 程 AX=B,ac dbxy=mn ,在它的两边同时左乘 A-1,得到
二元一次方程组 Axy=bb12有
无穷多个解
.
四、矩阵变换的特征值与特征向量
1.特征值与特征向量 设A是一个二阶矩阵,如果对于实数λ,非存零 在 一个 向量α,使得Aα=λα,那么λ称为A的一 个特征值(eigenvalue of a matrix),而α称为A的属 于特征值λ的一个特征向量.
012,α=01,Mα=λα,则 λ=(
)
1 A.2
B.1
3 C.2
1 解析:∵0
D.2 01201=012=1201,
∴λ=12. 答案:A
3.已知矩阵 A 将点(1,0)变换为(2,3),且属于特征值 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。