Matlab例程精讲
MATLAB程序设计及应用实例
c=input('请输入一个字符','s'); if c>='A' & c<='Z'
disp(setstr(abs(c)+1)); elseif c>='a'& c<='z'
disp(setstr(abs(c)-1)); elseif c>='0'& c<='9'
disp(abs(c)-abs('0')); else
disp(c); end
5.1.4 选择结构- switch语句
switch语句
其语句格式为: switch 表达式 case 值1 语句组1 case 值2 语句组2 …… case 值m 语句组m otherwise 语句组m+1 end
5.1.4 选择结构- switch语句
例 某商场对顾客所购买的商品实行打折销售,已知打折标 准,求所售商品的实际销售价格
例 矩阵乘法运算要求两矩阵的维数相容,否则会出错。 先求两矩阵的乘积,若出错,则自动转去求两矩阵的点乘
2024版matlab教程(全)资料ppt课件
进行通信系统的建模、仿真和分析。
谢谢聆听
B
C
变量与赋值
在MATLAB中,变量不需要事先声明,可以 直接赋值。变量名以字母开头,可以包含字 母、数字和下划线。
常用函数
MATLAB提供了丰富的内置函数,如sin、 cos、tan等三角函数,以及abs、sqrt等数 学函数。用户可以通过help命令查看函数的
D
使用方法。
02 矩阵运算与数组操作
错误处理
阐述try-catch错误处理机制的语法、 执行流程及应用实例。
04
函数定义与调用
函数概述
阐述函数的概念、作用及分类,包括内置函数和 自定义函数。
函数调用
深入剖析函数的调用方法,包括直接调用、间接 调用及参数传递等技巧。
ABCD
函数定义
详细讲解自定义函数的定义方法,包括函数名、 输入参数、输出参数及函数体等要素。
拟合方法
利用已知数据点构造近似函数,如最小二乘法、多项 式拟合、非线性拟合等。
插值与拟合的比较
插值函数经过所有数据点,而拟合函数则追求整体上 的近似。
数值积分与微分
01
数值积分方法
利用数值技术计算定积分的近似 值,如矩形法、梯形法、辛普森 法等。
02
数值微分方法
通过数值技术求解函数的导数或 微分,如差分法、中心差分法、 五点差分法等。
02
01
矩阵运算
加法与减法
对应元素相加或相减,要求矩阵 大小相同
乘法
使用`*`或`mtimes`函数进行矩阵 乘法,要求内维数相同
点乘与点除
使用`.*`、`./`进行对应元素相乘或 相除,要求矩阵大小相同
特征值与特征向量
matlab_简明实例教程
matlab_简明实例教程MATLAB是一种强大的科学计算工具,广泛应用于科学研究、数据分析和工程计算等领域。
它具有简单易用的语法和丰富的函数库,可以快速实现复杂的计算任务。
本教程将为你提供一些简单实例,帮助你入门MATLAB。
1.计算圆的面积和周长```matlabradius = input('请输入圆的半径:');area = pi * radius^2;circumference = 2 * pi * radius;disp(['圆的面积为:', num2str(area)]);disp(['圆的周长为:', num2str(circumference)]);```2.计算两个向量的点积```matlabv1 = input('请输入向量1(用逗号分隔元素):');v2 = input('请输入向量2(用逗号分隔元素):');dot_product = dot(v1, v2);disp(['两个向量的点积为:', num2str(dot_product)]);```3.绘制正弦曲线```matlabx = 0:0.1:2*pi;y = sin(x);plot(x, y);xlabel('x');ylabel('sin(x)');title('正弦曲线');```4.求解方程```matlabsyms x;eqn = x^2 - 4 == 0;sol = solve(eqn, x);disp(['方程的解为:', char(sol)]); ```5.读取和写入文件```matlabfilename = 'data.txt';data = importdata(filename);disp('文件中的数据:');disp(data);output = [1 2 3; 4 5 6; 7 8 9];dlmwrite('result.txt', output, 'delimiter', '\t', 'precision', 4);disp('结果已保存到result.txt文件中。
matlab教程ppt(完整版)
可以使用`'`运算符对矩阵进行 转置。
矩阵高级运算
01
逆矩阵
可以使用`inv`函数求矩阵的逆矩阵 。
行列式
可以使用`det`函数求矩阵的行列式 。
03
02
特征值和特征向量
可以使用`eig`函数求矩阵的特征值 和特征向量。
秩
可以使用`rank`函数求矩阵的秩。
04
04
matlab绘图功能
绘图基本命令
控制设计
MATLAB提供了控制系统设计和分析 工具箱,可以方便地进行控制系统的 建模、分析和优化。
03
信号处理
MATLAB提供了丰富的信号处理工具 箱,可以进行信号的时域和频域分析 、滤波器设计等操作。
05
04
图像处理
MATLAB提供了图像处理工具箱,可 以进行图像的增强、分割、特征提取 等操作。
02
matlab程序调试技巧分享
01
调试模式
MATLAB提供了调试模式,可以 逐行执行代码,查看变量值,设 置断点等。
日志输出
02
03
错误处理
通过使用fprintf函数,可以在程 序运行过程中输出日志信息,帮 助定位问题。
MATLAB中的错误处理机制可以 帮助我们捕获和处理运行时错误 。
matlab程序优化方法探讨
显示结果
命令执行后,结果将在命令窗口中显示。
保存结果
可以使用`save`命令将结果保存到文件中。
matlab变量定义与赋值
定义变量
使用`varname = value`格式定义变 量,其中`varname`是变量名, `value`是变量的值。
赋值操作
使用`=`运算符将值赋给变量。例如 ,`a = 10`将值10赋给变量a。
(整理)matlab实例教程-比较实用.
实验一特殊函数与图形一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景与实验目的著名的Riemann函数大家都很熟悉了,但是关于它的图像你是否清楚呢除了最上面那几点,其他都很难画吧你想不想看看下面那些“挤在一起”的点是怎样分布的呢还有几何中的马鞍面、单叶双曲面等是怎样由直线生成的,是不是也想目睹一下呢这些,都离不开绘图.实际上绘图一直是数学中的一种重要手段,借助图形,往往可以化繁为简,使抽象的对象得到明白直观的体现.比如函数的基本性质,一个图形常可以使之一目了然,非常有效.它虽不能代替严格的分析与证明,但在问题的研究过程中,可以帮助研究人员节约相当一部分精力.此外,它还可以使计算、证明、建模等的结果得到更明白易懂的表现,有时,这比科学论证更有说服力.同时,数学的教学与学习过程也离不开绘图.借助直观的图形,常可以使初学者更容易接受新知识.如数学分析中有不少函数,其解析式着实让人望而生畏,即使对其性质作了详尽的分析,还是感到难明就里;但如果能看到它的图形,再配合理论分析,则问题可以迎刃而解.又如在几何的学习中,会遇到大量的曲线与曲面,也离不开图形的配合.传统的手工作图,往往费力耗时,效果也不尽理想.计算机恰恰弥补了这个不足,使你可以方便地指定各种视角、比例、明暗,从各个角度进行观察.本实验通过对函数的图形表示和几个曲面(线)图形的介绍,一方面展示它们的特点,另一方面,也将就Matlab软件的作图功能作一个简单介绍.大家将会看到,Matlab 的作图功能非常强大.二、相关函数(命令)及简介1.平面作图函数:plot,其基本调用形式:plot(x,y,s)以x作为横坐标,y作为纵坐标.s是图形显示属性的设置选项.例如:x=-pi:pi/10:pi;y=sin(x);plot(x,y,'--rh','linewidth',2,'markeredgecolor','b','markerfacecolor','g')图1在使用函数plot时,应当注意到当两个输入量同为向量时,向量x与y必须维数相同,而且必须同是行向量或者同是列向量.绘图时,可以制定标记的颜色和大小,也可以用图形属性制定其他线条特征,这些属性包括:linewidth 指定线条的粗细.markeredgecolor 指定标记的边缘色markerfacecolor 指定标记表面的颜色.markersize 指定标记的大小.若在一个坐标系中画几个函数,则plot的调用格式如下:plot(x1,y1,s1,x2,y2,s2,……)2.空间曲线作图函数:plot3,它与plot相比,只是多了一个维数而已.其调用格式如下:plot3(x,y,z,s).例如:x=0:pi/30:20*pi;y=sin(x);z=cos(x);plot3(x,y,z)得到三维螺旋线:图23.空间曲面作图函数:(1)mesh函数.绘制彩色网格面图形.调用格式:mesh(z),mesh(x,y,z)和mesh(x,y,z,c).其中,mesh(x,y,z,c)画出颜色由c指定的三维网格图.若x、y均为向量,则length(x)=n,length(y)=m,[m,n]=size(z).(2)surf在矩形区域内显示三维带阴影曲面图.调用格式与mesh类似.(3)ezmesh用符号函数作三维曲面网格图.调用格式:ezmesh(x,y,z)其中x = x(s,t), y = y(s,t),z = z(s,t).画图区域默认为: -2*pi < s < 2*pi 且-2*pi < t < 2*pi.或者用格式:ezmesh(x,y,z,[smin,smax,tmin,tmax])(4)ezsurf用符号函数作三维曲面图.调用格式与ezmesh类似.(5)sphere画球体命令.4.meshgrid,调用格式:[x,y]=meshgrid(m,n),这里的m,n为给定的向量,可以定义网格划分区域和划分方法.矩阵x和矩阵y是网格划分后的数据矩阵.5.图像的修饰与其他函数:(1)axis equal 控制各个坐标轴的分度,使其相等;(2)colormap设置绘图颜色.调用格式:colormap([r g b])其中r,g,b都是0-1之间的数.或者用格式:colormap(s)s颜色映像相应的颜色系颜色映像相应的颜色系autumn红黄色系hsv色调饱和色系gray线性灰色系hot黑红黄白色系cool青和洋红色系pink柔和色系(3(4)find找出符合条件的元素在数组中的位置.调用格式:y=find(条件)例如:输入:a=[4 5 78 121 4 665 225 4 1];b=find(a>7)输出: b =3 4 6 7三、实验内容数学分析中,特别是积分部分,我们接触了不少有趣的函数,由于其中有的不是一一对应的,用上面的方法无法画出它们的图像,这时就只能用参数了.此外还有些图形只能用参数来画,比如空间曲线,在计算机上不接受“两个曲面的交线”这种表示,所以也只能用参数来实现.用参数方式作图的关键在于找出合适的参数表示,尤其是不能有奇点,最好也不要用到开方.所以要找的参数最好是有几何意义的.当然这也不可一概而论,需要多积累经验.1.利用函数plot在一个坐标系中画以下几个函数图像,要求采用不同颜色、不同线形、不同的符号标记.函数为:.程序如下:t=0:pi/20:2*pi;x=sin(t);y=cos(t);z=sin(2*t);plot(t, x, '--k*', t, y, '-rs', t, z, ':bo')图像如下:图32.绘制类似田螺线的一条三维螺线(方程自己设计).程序如下:t=0:.1:30;x=2*(cos(t)+t.*sin(t));y=2*(sin(t)-t.*cos(t));z=*t;plot3(x,y,-z) %取–z 主要是为了画图看起来更清楚axis equal图像如下:图43.利用函数,绘制一个墨西哥帽子的图形.程序如下:[a,b]=meshgrid(-8:.5:8); %先生成一个网格c=sqrt(a.^2+b.^2)+eps;z=sin(c)./c;mesh(a,b,z)axis square图像如下:图5思考:这里的 eps 是什么其作用是什么4.利用surf绘制马鞍面图形(函数为:).程序如下:[x,y]=meshgrid(-25:1:25,-25:1:25);z=x.^2/9-y.^2/4;surf(x,y,z)title('马鞍面')grid off图像如下:图65.分别用ezmesh和ezsurf各绘制一个圆环面,尝试将两个圆环面放在一个图形界面内,观察它们有什么不同之处.提示:圆环面的方程为:,而圆环面的参数方程为:程序参见附录1.图像如下:图76.绘制黎曼函数图形,加深对黎曼函数的理解.说明:黎曼函数的定义为程序参见附录2.图像如下:图8四、自己动手1.作出下图所示的三维图形:图9提示:图形为圆环面和球面的组合.2.作出下图所示的墨西哥帽子及其剪裁图形:图103.画出球面、椭球面、双叶双曲面、单叶双曲面.4.若要求田螺线的一条轴截面的曲边是一条抛物线:时.试重新设计田螺线的参数方程,并画出该田螺线.5.作出下图所示的马鞍面(颜色为灰色,并有一个标题:“马鞍面”):图116.绘制图8所示的黎曼函数图形,要求分母的最大值的数值由键盘输入(提示:使用input语句).回目录下一页实验二定积分的近似计算一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容1.矩形法2.梯形法3.抛物线法4. 直接应用Matlab命令计算结果四、自己动手一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件:function z = integrnd(x, y)z = y*sin(x);7.fprintf(文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1;y = [x; exp(x)];fid = fopen('','w'); %打开文件fprintf(fid,'% %\n',y); %写入fclose(fid) %关闭文件8.syms 变量1 变量2 …:定义变量为符号.9.sym('表达式'):将表达式定义为符号.解释:Matlab中的符号运算事实上是借用了Maple的软件包,所以当在Matlab中要对符号进行运算时,必须先把要用到的变量定义为符号.10.int(f,v,a,b):求f关于v积分,积分区间由a到b.11.subs(f,'x',a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.若简单地使用subs(f),则将f的所有符号变量用可能的数值代入,并计算出值.三、实验内容1.矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同的取法,计算结果会有不同,我们以为例(取),(1)左点法:对等分区间,在区间上取左端点,即取,,理论值,此时计算的相对误差(2)右点法:同(1)中划分区间,在区间上取右端点,即取,,理论值,此时计算的相对误差(3)中点法:同(1)中划分区间,在区间上取中点,即取,,理论值,此时计算的相对误差如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2.梯形法等分区间,相应函数值为().曲线上相应的点为()将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个上的曲边梯形成为真正的梯形,其面积为,.于是各个小梯形面积之和就是曲边梯形面积的近似值,,即,称此式为梯形公式.仍用的近似计算为例,取,,理论值,此时计算的相对误差很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3.抛物线法由梯形法求近似值,当为凹曲线时,它就偏小;当为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间作等分,分点依次为,,对应函数值为(),曲线上相应点为().现把区间上的曲线段用通过三点,,的抛物线来近似代替,然后求函数从到的定积分:由于,代入上式整理后得同样也有……将这个积分相加即得原来所要计算的定积分的近似值:,即这就是抛物线法公式,也称为辛卜生(Simpson)公式.仍用的近似计算为例,取,=,理论值,此时计算的相对误差4. 直接应用Matlab命令计算结果(1)数值计算方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0::1;y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分)(2)数值计算方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1.实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算,取,并比较三种方法的精确程度.2.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗为什么)4.将的近似计算结果与Matlab中各命令的计算结果相比较,试猜测Matlab中的数值积分命令最可能采用了哪一种近似计算方法并找出其他例子支持你的观点.5.通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值6.学习的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.上一页回目录下一页实验三求代数方程的近似根(解)一、问题背景和实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景和实验目的求代数方程的根是最常见的数学问题之一(这里称为代数方程,主要是想和后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当是一次多项式时,称为线性方程,否则称之为非线性方程.当是非线性方程时,由于的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间,或给出某根的近似值.在实际问题抽象出的数学模型中,可以根据物理背景确定;也可根据的草图等方法确定,还可用对分法、迭代法以及牛顿切线法大致确定根的分布情况.通过本实验希望你能:1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程;2. 求代数方程(组)的解.二、相关函数(命令)及简介1.abs( ):求绝对值函数.2.diff(f):对独立变量求微分,f 为符号表达式.diff(f, 'a'):对变量a求微分,f 为符号表达式.diff(f, 'a', n):对变量 a 求 n 次微分,f 为符号表达式.例如:syms x tdiff(sin(x^2)*t^6, 't', 6)ans=720*sin(x^2)3.roots([c(1), c(2), …, c(n+1)]):求解多项式的所有根.例如:求解:.p = [1 -6 -72 -27];r = roots(p)r =4.solve('表达式'):求表达式的解.solve('2*sin(x)=1')ans =1/6*pi5.linsolve(A, b):求线性方程组 A*x=b 的解.例如:A= [9 0; -1 8]; b=[1; 2];linsolve(A, b)ans=[ 1/9][19/72]6.fzero(fun, x0):在x0附近求fun 的解.其中fun为一个定义的函数,用“@函数名”方式进行调用.例如:fzero(@sin, 3)ans=7.subs(f, 'x ', a):将 a 的值赋给符号表达式 f 中的 x,并计算出值.例如:subs('x^2 ', 'x ', 2)ans = 4三、实验内容首先,我们介绍几种与求根有关的方法:1.对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设在上连续,,即,或,.则根据连续函数的介值定理,在内至少存在一点,使.下面的方法可以求出该根:(1)令,计算;(2)若,则是的根,停止计算,输出结果.若,则令,,若,则令,;.……,有、以及相应的.(3) 若 (为预先给定的精度要求),退出计算,输出结果;反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列,在中含有方程的根.当区间长很小时,取其中点为根的近似值,显然有以上公式可用于估计对分次数.分析以上过程不难知道,对分法的收敛速度与公比为的等比级数相同.由于,可知大约对分10次,近似根的精度可提高三位小数.对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值.2. 迭代法1)迭代法的基本思想:由方程构造一个等价方程从某个近似根出发,令,可得序列,这种方法称为迭代法.若收敛,即,只要连续,有即可知,的极限是的根,也就是的根.当然,若发散,迭代法就失败.以下给出迭代过程收敛的一些判别方法:定义:如果根的某个邻域中,使对任意的,迭代过程,收敛,则称迭代过程在附近局部收敛.定理1:设,在的某个邻域内连续,并且,,则对任何,由迭代决定的序列收敛于.定理2:条件同定理 1,则定理3:已知方程,且(1) 对任意的,有.(2) 对任意的,有,则对任意的,迭代生成的序列收敛于的根,且.以上给出的收敛定理中的条件要严格验证都较困难,实用时常用以下不严格的标准:当根区间较小,且对某一,明显小于1时,则迭代收敛(参见附录3).2) 迭代法的加速:a) 松弛法:若与同是的近似值,则是两个近似值的加权平均,其中称为权重,现通过确定看能否得到加速.迭代方程是:其中,令,试确定:当时,有,即当,时,可望获得较好的加速效果,于是有松弛法:,松弛法的加速效果是明显的 (见附录4),甚至不收敛的迭代函数经加速后也能获得收敛.b) Altken方法:松弛法要先计算,在使用中有时不方便,为此发展出以下的 Altken 公式:,是它的根,是其近似根.设,,因为,用差商近似代替,有,解出,得由此得出公式;;,这就是Altken 公式,它的加速效果也是十分明显的,它同样可使不收敛的迭代格式获得收敛(见附录5).3. 牛顿(Newton)法(牛顿切线法)1) 牛顿法的基本思想:是非线性方程,一般较难解决,多采用线性化方法.记:是一次多项式,用作为的近似方程.的解为记为,一般地,记即为牛顿法公式.2) 牛顿法的收敛速度:对牛顿法,迭代形式为:注意分子上的,所以当时,,牛顿法至少是二阶收敛的,而在重根附近,牛顿法是线性收敛的.牛顿法的缺点是:(1)对重根收敛很慢;(2)对初值要求较严,要求相当接近真值.因此,常用其他方法确定初值,再用牛顿法提高精度.4. 求方程根(解)的其它方法(1) solve('x^3-3*x+1=0')(2) roots([1 0 -3 1])(3) fzero('x^3-3*x+1', -2)(4) fzero('x^3-3*x+1',(5) fzero('x^3-3*x+1',(6) linsolve([1, 2, 3; 4, 5, 6; 7, 8, 0], [1, 2, 3]')体会一下,(2)(5) 用了上述 1 3 中的哪一种方法以下是本实验中的几个具体的实验,详细的程序清单参见附录.具体实验1:对分法先作图观察方程:的实根的分布区间,再利用对分法在这些区间上分别求出根的近似值.输入以下命令,可得的图象:f='x^3-3*x+1';g='0';ezplot(f, [-4, 4]);hold on;ezplot(g, [-4, 4]); %目的是画出直线 y=0,即 x 轴grid on;axis([-4 4 -5 5]);hold off请填写下表:实根的分布区间该区间上根的近似值在某区间上求根的近似值的对分法程序参见附录1.具体实验2:普通迭代法采用迭代过程:求方程在附近的根,精确到第 4 位小数.构造等价方程:用迭代公式:,用 Matlab 编写的程序参见附录2.请利用上述程序填写下表:分析:将附录2第4行中的分别改为以及,问运行的结果是什么你能分析得到其中的原因吗看看下面的“具体实验3”是想向你表达一个什么意思.用 Matlab 编写的程序参见附录3.具体实验3:收敛/发散判断设方程的三个根近似地取,和,这些近似值可以用上面的对分法求得.迭代形式一:收敛 (很可能收敛,下同)不收敛 (很可能不收敛,下同)不收敛迭代形式二:收敛不收敛不收敛迭代形式三:不收敛收敛收敛具体实验4:迭代法的加速1——松弛迭代法,,迭代公式为程序参见附录4.具体实验5:迭代法的加速2——Altken迭代法迭代公式为:,,程序参见附录5.具体实验6:牛顿法用牛顿法计算方程在-2到2之间的三个根.提示:,迭代公式:程序参见附录6 (牛顿法程序).具体实验7:其他方法求下列代数方程(组)的解:(1)命令:solve('x^5-x+1=0')(2)命令:[x, y]=solve('2*x+3*y=0', '4*x^2+3*y=1')(3) 求线性方程组的解,已知,命令:for i=1:5for j=1:5m(i, j)=i+j-1;endendm(5, 5)=0;b=[1:5]'linsolve(m, b)思考:若,或是类似的但阶数更大的稀疏方阵,则应如何得到四、自己动手1.对分法可以用来求偶重根附近的近似解吗为什么2.对照具体实验2、4、5,你可以得出什么结论3.选择适当的迭代过程,分别使用:(1)普通迭代法;(2)与之相应的松弛迭代法和 Altken 迭代法.求解方程在附近的根,精确到4位小数,请注意迭代次数的变化.4.分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程的正的近似根,.(建议取.时间许可的话,可进一步考虑的情况.)上一页回目录下一页。
matlab教程ppt(完整版)
控制流语句
使用条件语句(如if-else)和 循环语句(如for)来控制程序 流程。
变量定义
使用赋值语句定义变量,例如 `a = 5`。
矩阵运算
使用矩阵进行数学运算,如加 法、减法、乘法和除法等。
函数编写
创建自定义函数来执行特定任 务。
02
MATLAB编程语言基础
变量与数据类型
变量命名规则
数据类型转换
编辑器是一个文本编辑器 ,用于编写和编辑 MATLAB脚本和函数。
工具箱窗口提供了一系列 用于特定任务的工具和功 能,如数据可视化、信号 处理等。
工作空间窗口显示当前工 作区中的变量,可以查看 和修改变量的值。
MATLAB基本操作
数据类型
MATLAB支持多种数据类型, 如数值型、字符型和逻辑型等 。
04
MATLAB数值计算
数值计算基础
01
02
03
数值类型
介绍MATLAB中的数值类 型,包括双精度、单精度 、复数等。
变量赋值
讲解如何给变量赋值,包 括标量、向量和矩阵。
运算符
介绍基本的算术运算符、 关系运算符和逻辑运算符 及其优先级。
数值计算函数
数学函数
列举常用的数学函数,如 三角函数、指数函数、对 数函数等。
矩阵的函数运算
总结词:MATLAB提供了许多内置函 数,可以对矩阵进行各种复杂的运算
。
详细描述
矩阵求逆:使用 `inv` 函数求矩阵的 逆。
特征值和特征向量:使用 `eig` 函数 计算矩阵的特征值和特征向量。
行列式值:使用 `det` 函数计算矩阵 的行列式值。
矩阵分解:使用 `factor` 和 `expm` 等函数对矩阵进行分解和计算指数。
matlab数字信号处理85个实用案例精讲
matlab数字信号处理85个实用案例精讲MATLAB数字信号处理85个实用案例精讲MATLAB是一种强大的数学软件,广泛应用于数字信号处理领域。
本文将介绍85个实用案例,涵盖了数字信号处理的各个方面,包括信号生成、滤波、频谱分析、时频分析、数字滤波器设计等。
1. 信号生成案例:生成正弦信号在MATLAB中,可以使用sin函数生成正弦信号。
例如,生成频率为100Hz,幅度为1的正弦信号,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);2. 滤波案例:低通滤波低通滤波器可以滤除高频信号,保留低频信号。
在MATLAB中,可以使用fir1函数设计低通滤波器。
例如,设计截止频率为100Hz的低通滤波器,代码如下:fs = 1000;fc = 100;N = 100;b = fir1(N, fc/(fs/2), 'low');3. 频谱分析案例:计算功率谱密度功率谱密度是信号在频域上的能量分布。
在MATLAB中,可以使用pwelch函数计算功率谱密度。
例如,计算频率为100Hz的正弦信号的功率谱密度,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);[Pxx, f] = pwelch(x, [], [], [], 1000);4. 时频分析案例:计算短时傅里叶变换短时傅里叶变换可以分析信号在时间和频率上的变化。
在MATLAB中,可以使用spectrogram函数计算短时傅里叶变换。
例如,计算频率为100Hz的正弦信号的短时傅里叶变换,代码如下:t = 0:0.001:1;f = 100;x = sin(2*pi*f*t);spectrogram(x, [], [], [], 1000, 'yaxis');5. 数字滤波器设计案例:设计巴特沃斯滤波器巴特沃斯滤波器是一种常用的数字滤波器,可以实现平滑滤波和带通滤波。
MATLAB经典教程(全)PPT课件
MATLAB的优势
易于学习、使用灵活、高效的数值计 算和可视化功能、强大的工具箱支持。
发展历程
从最初的数值计算工具,逐渐发展成 为一款功能强大的科学计算软件,广 泛应用于工程、科学、经济等领域。
MATLAB工作环境与界面
MATLAB工作环境
包括命令窗口、工作空间、命令历史窗口、当 前文件夹窗口等。
界面介绍
详细讲解MATLAB界面的各个组成部分,如菜 单栏、工具栏、编辑器窗口等。
基本操作
介绍如何在MATLAB环境中创建、保存、运行脚本和函数,以及如何进行基本 的文件操作。
基本数据类型与运算
矩阵大小
使用`size`函数获取矩阵的行数 和列数。
矩阵元素访问
通过下标访问矩阵元素,如 `A(i,j)`表示访问矩阵A的第i行第j 列元素。
矩阵基本操作
包括矩阵的加、减、数乘、转置 等操作。
矩阵运算及性质
矩阵乘法 满足乘法交换律和结合律,但不满足 乘法交换律。
矩阵的逆
对于方阵,若存在一矩阵B,使得 AB=BA=I(I为单位矩阵),则称B 为A的逆矩阵。
Hale Waihona Puke 03 数据分析与可视化数据导入、导出及预处理
数据导入
介绍如何使用MATLAB导入各种格式的数据文件, 如.csv、.txt、.xlsx等。
数据导出
讲解如何将MATLAB中的数据导出为常见的数据文件格式,以 便于数据共享和交换。
数据预处理
阐述数据清洗、数据变换、数据规约等预处理技术,为后续的数 据分析和可视化奠定基础。
01
02
matlab教程ppt(完整版)
汇报人:可编辑
2023-12-24
目录
• MATLAB基础 • MATLAB编程 • MATLAB矩阵运算 • MATLAB数值计算 • MATLAB可视化 • MATLAB应用实例
01
CATALOGUE
MATLAB基础
MATLAB简介
MATLAB定义
MATLAB应用领域
菜单栏
包括文件、编辑、查看、主页 、应用程序等菜单项。
命令窗口
用于输入MATLAB命令并显示 结果。
MATLAB主界面
包括命令窗口、当前目录窗口 、工作空间窗口、历史命令窗 口等。
工具栏
包括常用工具栏和自定义工具 栏。
工作空间窗口
显示当前工作区中的变量。
MATLAB基本操作
变量定义
使用变量名和赋值符号(=)定义变 量。
详细描述
直接输入:在 MATLAB中,可以直 接通过输入矩阵的元 素来创建矩阵。例如 ,`A = [1, 2, 3; 4, 5, 6; 7, 8, 9]`。
使用函数创建: MATLAB提供了多种 函数来创建特殊类型 的矩阵,如`eye(n)`创 建n阶单位矩阵, `diag(v)`创建由向量v 的元素构成的对角矩 阵。
使用bar函数绘制柱状图 ,可以自定义柱子的宽
度、颜色和标签。
使用pie函数绘制饼图, 可以自定义饼块的比例
和颜色。
三维绘图
01
02
03
04
三维线图
使用plot3函数绘制三维线图 ,可以展示三维空间中的数据
点。
三维曲面图
使用surf函数绘制三维曲面图 ,可以展示三维空间中的曲面
。
三维等高线图
MATLAB编程及应用 李辉 PPT课件 第2章 MATLAB基本计算和基础知识
2.2.2 系统预定义变量
MATLAB系统提供了一些用户不能清除的特殊变量,
即系统预定义变量。
MATALB系统预定义变量及其含义
预定义变量名
含义
ans pi eps nan或NAN inf i或j
运算结果默认变量名 圆周率 浮点数的精度,也是系统运算时确定的极小值 非数,如0/0 无穷大,如1/0 虚数标志,i=j=sqrt(-1)
1.0000 + 2.0000i >> b=3+4*j b=
3.0000 + 4.0000i
2.3.2 逻辑类型
MATLAB本身并没有专门提供逻辑类型,而借用整型来描
述逻辑类型数据。MATLAB规定,逻辑数据真(true)为1、
逻辑数据假(false)为0。
>> 2<3 ans =
logical 1 >> 2>3 ans = logical 0
>> sin(pi/3) ans =
0.8660
➢ 复数的计算:MATLAB还具有超越计算器的功能, 它认识复数,能够进行复数的计算。
>> (2+3i)+(4+5i) ans =
6.0000 + 8.0000i
Байду номын сангаас
2.2 变量
变量是指在程序执行过程中其值可以变化的量。
变量
用户自定义变量 系统预定义变量
2.3 数据类型
MATLAB数据类型
数值类型 逻辑类型 字符串类型 单元类型 结构类型
2.3.1 数值类型
数值类型分类方法
根据数据存 储空间和方 式分类
根据数据结 构分类
Matlab详细学习讲义
Matlab详细学习讲义《MA TLAB软件应⽤》讲义[第2 / 16次课]第1章基础准备及⼊门⼀点名⼆作业讲评三复习提问MATLAB界⾯由⼏⼤组件组成?MATLAB的搜索路径主要有什么应⽤途径?四上机练习内容启动MATLAB。
在D盘根⽬录下,以“学号_姓名”的格式创建⽂件夹,并在Matlab中将该⽬录设置为Current Folder。
(利⽤MA TLAB Toolbar 中Current Folder组合框后的按钮)。
以下为本章教学必须掌握的知识点。
在MA TLAB的Command Window中练习以下代码,并观察系统输出,并逐⾏进⾏注释。
本次课结束后将代码⽂件上传。
在MA TLAB程序界⾯中进⾏以下操作:1 上机实习内容提⽰及要求启动MATLAB后,依次练习MA TLAB的菜单项、⼯具栏和Command Window、Current Folder、Command History、Workspace等主要组件的基本功能,按指定内容在MA TLAB程序界⾯下进⾏操作练习。
2 上机实习内容在MATLAB程序界⾯中进⾏以下操作:1) Command Window指令窗⼝在集成窗体和独⽴窗体之间切换(Undock/Dock按钮)2) 在Command Window中运⾏以下指令,掌握换⾏符(...)的使⽤>> (12+2*(7-4))/3^2>> S=1-1/2+1/3-1/4+1/5-1/6+1/7-1/8>> S=1-1/2+1/3-1/4+…+1/5-1/6+1/7-1/83)在Command Window中分别输⼊以下数值,并按回车,观察MA TLAB的输出(数值如3, -99, 0.001, 9.456, 1.3e-3, 4.5e33, eps, 等)4)以下实例涉及变量的定义规则,在Command Window中分别输⼊并按回车,观察MA TLAB的输出结果.输出结果为错误提⽰时,分析出现错误的原因.>> xyz_4=32.75>> var1=3.09e-5*1028>> 4xyz=32.75>> 4*xyz=198.28>>4,xyz=198.285) 在Command Window中输⼊下列数学常数,并按回车:eps, i, j, Inf, inf, intmax, NaN, nan, pi, realmax, realmin,观察并分析系统的输出。
精讲多练matlab习题
第一章2.设A =1.2,B =-4.6,C =8.0,D =3.5,E =-4.0计算: >> A=1.2; B=-4.6;C=8.0;D=3.5;E=-4.0; >> T=atan(2*pi*A+E/(2*pi*B*C))/D T = 0.4112>> x=pi/180*45;>> (sin(x)+sqrt(35))/72^(1/5) ans = 2.81583.设45x ︒=,计算 >> x=pi/180*45;>> (sin(x)+sqrt(35))/72^(1/5) ans = 2.81584.设5.67,7.811,a b ==计算: >> a=5.67;b=7.811; >> exp(a+b)/log10(a+b) ans =6.3351e+0055.计算2316()( 3.2)/(7.7)y x x x x=++-+在3x =时的值。
>> x=3;>> y=sqrt(x)-6*(x+1/x)+(x-3.2)^2/(x+7.7)^3 y = -18.26796.已知圆的半径为15,求其直径,周长及面积。
>> r=15;d=2*r; >> c=pi*2*r c = 94.2478 >> s=pi*r*r s = 706.85837已知某三角形的三个边的边长为8.5,14.6和18.4,求该三角形的面积。
提示:其中:()/2,s a b c =++a 、b 、c 分别为三角形三边边长。
>>a=8.5;b=14.6;c=18.4; >> s=(a+b+c)/2;>> area=sqrt(s*(s-a)*(s-b)*(s-c)) area = 60.6106第二章1.设矩阵求:>> A=[3 1 1;2 1 2;1 2 3];B=[1 1 -1;2 -1 0;1 -1 1]; (1)>> 2*A+Bans =7 3 16 1 43 3 7(2)>> 4*A*A-3*B*Bans =42 21 3840 19 4640 33 56(3)>> A*Bans =6 1 -26 -1 08 -4 2(4)>> B*Aans =4 0 04 1 02 2 2(5)>> A*B-B*A ans =2 1 -2 2 -2 0 6 -6 02.设三阶矩阵A B 、,满足16,A BA A BA -=+ 其中 求矩阵B 。
matlab程序设计实例解析
matlab程序设计实例解析MATLAB程序设计实例解析1.引言在本文档中,我们将详细分析几个MATLAB程序设计的实例,以帮助读者理解并掌握MATLAB的基本概念和应用。
每个实例都将包括程序代码、运行结果和解析过程。
2.实例一:________计算圆的面积2.1 实例描述本实例将演示如何使用MATLAB计算圆的面积。
给定圆的半径,程序将计算并输出圆的面积。
2.2 程序代码```% 计算圆的面积radius = input('请输入圆的半径:________')area = pi radius^2。
disp('圆的面积为:________', num2str(area))```2.3 运行结果及解析输入圆的半径为3,运行程序后,输出结果为:________```圆的面积为:________28.2743```程序中使用了`input`函数获取用户输入的半径值,并将其存储在变量`radius`中。
接着,通过`pi radius^2`计算圆的面积,并以字符串形式输出。
3.实例二:________矩阵相加3.1 实例描述本实例将演示如何使用MATLAB进行矩阵相加的运算。
给定两个矩阵,程序将计算并输出它们的和。
3.2 程序代码```% 矩阵相加matrix1 = 1, 2, 3。
4, 5, 6。
7, 8, 9。
matrix2 = 9, 8, 7。
6, 5, 4。
3, 2, 1。
sum_matrix = matrix1 + matrix2。
disp('两个矩阵的和为:________')disp(sum_matrix)```3.3 运行结果及解析运行程序后,输出结果为:________```两个矩阵的和为:________10 10 1010 10 1010 10 10```程序中,我们事先定义了两个矩阵`matrix1`和`matrix2`。
通过`matrix1 + matrix2`进行矩阵相加运算,并将结果存储在变量`sum_matrix`中。
matlab习题精讲66666
4、试用不同的方法建立数组A=[1 1.5 2.0 2.5 3.0],了解怎样访问数组A的第二个
元素,然后将其更换为4.0。
建立数组的几种方法
(1)直接输入法
(2)定数线性采样法:x=linspace(a,b,n),a和b代表数组的第一个和最后一个元素,n代表采样的点数
(3)步长生成法:a:inc:b,inc表示数组之间的间隔
访问数组A的第二个元素,并将其替换为4.0
17、已知矩阵A =
9 1 4 3 5 8
-8 9 1 4 3 5
-5 -8 -9 1 4 3
-3 -5 -8 9 1 4
-4 -3 -5 -8 9 1
-1 -4 -3 -5 -8 9
求
(1)此矩阵的秩
(2)此矩阵的行列式的值
(3)此矩阵的迹
(4)此矩阵的特征多项式的系数及多项式的根;此矩阵的特征多项式的系数及多项式的根
(5)此矩阵的逆阵
(6)此矩阵的特征值与特征向量
19、试编一个 m程序,将一维数组x中的N个数按颠倒的次序重新存储。
如N=5,
原来x为:x=[ 1 3 5 7 9 ]而经过颠倒处理后x中数据的次序应该为:x=[ 9 7 5 3 1 ]。
matlab7.0操作课件精讲
Matlab 绘图
Matlab 作图
给出离散点列: x=[0:pi/10:2*pi] 计算函数值: y=sin(x)
画图:matlab 二维绘图命令 plot 作出函数图形 plot(x,y)
例:>> x=[0:pi/10:2*pi];
>> y=sin(x); >> plot(x,y);
在MATLAB中用图形函数绘图的一般操作步骤分 为7步,如表所示,下面以绘制一个简单三角函数 的图形为例,详细介绍各个步骤。
>>x=rand(100,1); >>z=x+y.*i; >>plot(z)
以下标为横坐标,元素值为纵坐标,等价于: x=[1:length(y)];plot(x,y);
例:>> y=[0,0.48,0.84,1,0.91,6.14];
>> plot(y); >> figure(2); plot([1:length(y)], y)
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
0.5
1
1.5
2
2.5
3
3.5
图形的其他属性
图形标注与坐标控制 有关图形标注函数的调用格式为: title(图形名称) xlabel(x轴说明) ylabel(y轴说明) text(x,y,图形说明) legend(图例1,图例2,…)
其中x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐 标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据 对,右纵坐标用于x2,y2数据对。
MATLAB第二章
function [egg1,egg2,chicken1]=myegg(n)
% egg1 隔1天的蛋个数 % egg2 隔2天的蛋个数 % chicken1 过n天后母鸡个数 if n==1
egg1=1; egg2=0; chicken1=1; elseif n==2 egg1=1; egg2=1; chicken1=1;
27
>> x=0:0.1:2*pi; >> y=sin(x); >> plot(x,y) >> plot(x,y,‘ro’) %默认是蓝色曲线 >> x=[0 1 2 5];y=[4 -2 1 2]; >> plot(x,y) >> fplot(‘x^2+4*x+1’,[-15 15]) %函数用字符串表示
1 -8 4 9 -4 5 7 -9 >> fun=@myfun5 %例28中的函数 fun =
@myfun5 >> y=fun(A) %直接调用 y=
1 -13 16 81 -5 25 49 -15 >> y=feval(fun,A) %利用feval y=
1 -13 16 81 -5 25 49 -15
1 4 9 16 5 10 15 20
2024/7/5
第二章 MATLAB编程与作图
24
>> k=5;
>> ff=@(x)x^2+2*x+k %可以使用空间中的变量k
ff =
@(x)x^2+2*x+k
>> ff(5)
ans =
40
>> A=[1 2 ;3 4]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 8 章 图形用户界面GUI假如读者所从事的数据分析、解方程、计算结果可视工作比较单一,那么一般不会考虑图形用户界面(Graphical User Interfaces ,GUI )的制作。
但是如果读者想向别人提供某种新的设计分析工具,想体现某种新的设计分析理念,想进行某种技术、方法的演示,那么图形用户界面也许是最好的选择之一。
MATLAB 本身提供了很多的图形用户界面,如sisotool “单输入单输出控制系统设计工具”、fdatool “滤波器设计和分析工具”等。
这些工具的出现不仅提高了设计和分析效率,而且改变原先的设计模式,引出了新的设计思想,改变了和正在改变着人们的设计、分析理念。
正是出于这种观察,作者将图形用户界面内容列入本教程。
本章由四个精心设计的算例组成。
这四个算例,一方面尽可能多地向读者展现构成GUI 的各种控件或组件,另方面借助算例中回调函数的编写较快地将读者引向GUI 制作的纵深。
本书作者相信:读者只要耐心地按照示例进行操作,便能在愉快感受GUI 成功制作的同时,事半功倍地掌握GUI 的制作技巧。
8.1 图形用户界面入门示例 【例】为演示归一化二阶系统121)(2++=s s s G ζ中阻尼比ζ对单位阶跃响应的影响,需要制作如图所示的用户界面。
要求:在界面右侧的编辑框中输入阻尼比ζ的具体“大于0的数值标量”,就能在坐标轴上画出相应曲线。
图 待制作的二阶系统单位阶跃响应演示界面(1)GUIDE 开发环境的引入图 进入GUIDE 开发环境的默认引导对话窗图 默认的空白用户界面开发环境GUIDE(2)根据要求选配界面组件●●●图 选配界面组件后的版面编辑器(3)界面组件的参数设置图 窗属性编辑器和设置的属性值图 经属性设置后的设计版面 (5)初步设计界面的保存图 仅在外形上与题给要求一致的GUI图 版面编辑器自动生成的设计界面M 文件(6)回调程序的编写图 GUIDE 生成的“空白回调函数体”示图图 填写工作指令后的回调子函数(7)所建界面的使用8.2 控件创建及应用示例【例】为归一化二阶系统121)(2++=s s s G ζ单位阶跃响应制作如图所示的用户界面。
要求:(1)通过编辑框和滑键都能输入阻尼比。
(2)刚启动的界面初始形态如图所示。
(3)在刚启动的初始界面上,响应曲线用红线绘制;而一旦界面被操作,则响应曲线将用蓝线绘制。
(4)在列表框中的三个选项可以任意组合。
图用户界面的初始状态(1)GUI版面编辑器的开启(2)对未来界面窗属性设置(3)为版面设计区引入坐标参照系图“格尺”对话框(默认状态)图一般坐标参照工具示意图设计本例用户界面的版面编辑器(4)根据题目要求进行界面构建<。
⏹<。
⏹。
⏹。
⏹图执行文件尚未填写时的生成界面(5)由版面编辑器自动产生的文件的结构(6)编写初始化程序function exm080201_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to exm080201 (see VARARGIN)%U_Start ---“%U_Stat”和“%U_End”之间的 M 码均由作者编写-----U Start zeta=;set,'String',num2str(zeta))set,'Value',zeta)set,'Value',0)set,'Value',1)set,'Value',1)=0::15;='Red';=zeta;=0;handles=surfplot(handles);=1;='Blue';%U_End -----------------------------------------------------------------------------------U End = hObject;guidata(hObject, handles);(7)可编辑框的回调子函数function edit1_Callback(hObject, eventdata, handles)% hObject% eventdata reserved - to be defined in a future version of MATLAB% handles%U_Start-----------------------------------------------------U_Startsz=get(hObject,'String');zeta=str2double(sz);set,'Value',zeta)=zeta;handles=surfplot(handles);guidata(hObject, handles);%U_End-------------------------------------------------------U_End (8)滑键回调子函数function slider1_Callback(hObject, eventdata, handles)%U_Start-----------------------------------------------------U_Start zeta=get(hObject,'Value');set,'String',num2str(zeta))=zeta;handles=surfplot(handles);guidata(hObject, handles);%U_End-------------------------------------------------------U_End (9)无线电按键回调子函数function gridon_Callback(hObject, eventdata, handles)%U_Start-----------------------------------------------------U_Start set,'Value',0)grid on%U_End-------------------------------------------------------U_End function gridoff_Callback(hObject, eventdata, handles)%U_Start------------------------------------------------------U_Start set,'Value',0)grid off%U_End-------------------------------------------------------U_End (10)列表框回调子函数function listbox1_Callback(hObject, eventdata, handles)%U_Start-----------------------------------------------------U_Start listindex=get(hObject,'Value');if any(listindex==1)set,'Value',1)end=0;handles=surfplot(handles);=1;guidata(hObject, handles);%U_End-------------------------------------------------------U_End (11)绘图子函数function handles=surfplot(handles)% handles=surfplot(handles)% handles%zeta=;t=;listindex=get,'Value');Nt=length(t);if ==0clazmin=get,'Min');zmax=get,'Max');zt=zmin::zmax;Nz=length(zt);[ZT,T]=meshgrid(zt,t);Y=zeros(Nt,Nz);for k=1:NzY(:,k)=step(tf(1,[1,2*zt(k),1]),t);endsurface(ZT,T,Y)shading flatelsedeletedeleteendxz=ones(1,Nt)*zeta;y1=ones(1,Nt)*1;y=step(tf(1,[1,2*zeta,1]),t);gz=[zeta,zeta,xz,zeta,zeta,xz];gt=[t(1),t(1),t,t(end),t(end),fliplr(t)];gy=[0,1,y1,1,0,0*y1];=line(gz,gt,gy,'Color','g','LineWidth',1);=line(xz,t,y,'Color',,'LineWidth',2);K=length(get,'Value'));for jj=1:Kswitch listindex(jj)case 1case 2k95=min(find(y>);k952=[(k95-1),k95];t95=interp1(y(k952),t(k952),;line(zeta,t95,,'marker','+','markeredgecolor','k','markersize',6);case 3[ym,km]=max(y);if km<Nt & (ym-1)>0line(zeta,t(km),ym,'marker','.','markeredgecolor','k','markersize',5);endcase 4ii=max(find(abs(y-1)>);if ii<Ntline(zeta,t(ii+1),y(ii+1),'Color','r','Marker','o','MarkerSize',5) endendendxlabel('{\zeta}')ylabel('t')zlabel('y')alphaview(75,44)(12)用户界面的运行图显示列表框全部选项的界面示例〖说明〗8.3菜单及工具图标的设计示例8.3.1为界面配置标准菜单条和工具条【例】在例产生的界面上,配置MATLAB标准图形窗菜单。