高中数学必修3第三章第二节《几何概型》全套教案
高中数学第3章概率3.3几何概型(2)教案苏教版必修3
3.3 几何概型第2课时导入新课设计思路一:〔问题导入〕以下图是卧室与书房地砖示意图,图中每一块地砖除颜色外完全一样,小猫分别在卧室与书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上概率大?卧室〔书房〕设计思路二:〔情境导入〕在概率论开展早期,人们就已经注意到只考虑那种仅有有限个等可能结果随机试验是不够,还必须考虑有无限多个试验结果情况.例如一个人到单位时间可能是8:00 至9:00之间任何一个时刻;往一个方格中投一个石子,石子可能落在方格中任何一点……这些试验可能出现结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全一样,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留可能性一样,对于这样一个随机事件概率,有如下结论:对于一个随机试验,如果我们将每个根本领件理解为从某特定几何区域内随机地抽取一点,而该区域内每一点被取到时机都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件概率模型,它特点是:〔1〕试验中所有可能出现结果,也就是根本领件有无限多个. 〔2〕根本领件出现可能性相等.实际上几何概型是将古典概型中有限性推广到无限性,而保存等可能性,这就是几何概型.几何概型概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内〞为事件A ,那么事件A 发生概率为P(A)= .这里要求D 测度不为0,其中“测度〞意义依D 确定,当D 分别是线段、平面图形与立体图形时,相应“测度〞分别是长度、面积与体积等.对于导入思路二:〔1〕几何概率模型:如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型.〔2〕几何概型概率公式:P 〔A 〕=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . 〔3〕几何概型特点:1°试验中所有可能出现结果〔根本领件〕有无限多个.2°每个根本领件出现可能性相等.应用例如思路1例1 取一个边长为2a 正方形及其内切圆〔如下图〕,随机向正方形内丢一粒豆子,求豆子落入圆内概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,豆子落入圆中概率应该等于圆面积与正方形面积比.解:记“豆子落入圆内〞为事件A ,那么 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内概率为4π.点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件概率类型虽然每一个事件发生都是等可能,但是几何概型是有无数个根本领件情形,古典概型是有有限个根本领件情形.此外,本例可以利用计算机模拟,过程如下:〔1〕在Excel 软件中,选定A1,键入“=〔rand 〔〕-0.5〕*2”. 〔2〕选定A1,按“ctrl+C〞.选定A2~A1 000,B1~B1 000,按“ctrl+V〞.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上均匀随机数.〔3〕选定D1,键入“=power 〔A1,2〕+ power 〔B1,2〕〞;再选定D1,按“ctrl+C〞;选定D2~D1 000,按“ctrl+V〞,那么D列表示A2+B2.〔4〕选定F1,键入“=IF〔D1>1,1,0〕〞;再选定F1,按“ctrl+C〞;选定F2~F1 000,按“ctrl+V〞,那么如果D列中A2+B2>1,F列中值为1,否那么F列中值为0.〔5〕选定H1,键入“FREQUENCY〔F1:F10,0.5〕〞,表示F1~F10中小于或等于0.5个数,即前10次试验中落到圆内豆子数;类似,选定H2,键入“FREQUENCY〔F1:F20,0.5〕〞,表示前20次试验中落到圆内豆子数;选定H3,键入“FREQUENCY 〔F1:F50,0.5〕〞,表示前50次试验中落到圆内豆子数;选定H4,键入“FREQUENCY〔F1:F100,0.5〕〞,表示前100次试验中落到圆内豆子数;选定H5,键入“FREQUENCY〔F1:F500,0.5〕〞,表示前500次试验中落到圆内豆子数;选定H6,键入“FREQUENCY〔F1:F1 000,0.5〕〞,表示前1 000次试验中落到圆内豆子数.〔6〕选定I1,键入“H1*4/10〞,表示根据前10次试验得到圆周率π估计值;选定I2,键入“H2*4/10〞,那么I2为根据前20次试验得到圆周率π估计值;类似操作,可得I3为根据前50次试验得到圆周率π估计值,I4为根据前100次试验得到圆周率π估计值,I5为根据前500次试验得到圆周率π估计值,I6为根据前1 000次试验得到圆周率π估计值.如图:例2 如图,在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC概率.分析:在线段AB上取一点C′,使得线段AC′长度等于线段AC长度.那么原问题就转化为求AM小于AC′概率.所以,当点M 位于以下图中线段AC′上时,AM<AC,故线段AC′即为区域d.区域d测度就是线段AC′长度,区域D测度就是线段AB长度.解:在AB上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=.2.答:AM小于AC′概率为2变式训练:假设将例2改为:如以下图,在等腰直角三角形ABC 中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC概率.解:此时,应该看作射线CM落在∠ACB内部是等可能.公式中区域D是∠ACB〔内部〕,而区域d求法应该与原题是一样,即在线段AB上取一点C′,使得线段AC′长度等于线段AC长度〔如图〕,那么区域d就是∠ACC′〔内部〕.从而区域d测度就是∠ACC′度数,区域D测度就是∠ACB度数.∠ACC′==67.5°,所以所求事件概率为.点评:由此可见,背景相似问题,当等可能角度不同时,其概率是不一样.此题可参考习题3.3第6题.例3 (会面问题)甲、乙二人约定在12 点到下午5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内各时刻到达是等可能,且二人互不影响.求二人能会面概率.分析:两人相约时间都是5小时,设X ,Y 分别表示甲、乙二人到达时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示是一个带状,位于正方形内图形,由于两人到达时刻是随机,而且,在每一个时刻到达可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中阴影局部.所有点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能,所以落在正方形内各点是等可能,符合几何概型条件.二人会面条件是:|X -Y|≤1,故正方形面积为5×5=25,阴影局部面积为5-2×21×42259. 点评: 建立适当数学模型,是解决几何概型问题关键.对于“碰面问题〞可以模仿此题建立数学模型.例4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在以下区域概率:(1)编号为25区域;(2)编号在6到9之间区域;(3)编号为奇数区域.〔每一个小区域面积一样〕分析:由于飞镖是随机投掷到靶子上,并且落在靶子每一个位置可能性一样,因此,符合几何概型特点.解: 假设靶子每一个区域面积为1个单位,那么靶子所在圆面积为28个单位.〔1〕记事件A 为“飞镖扎在编号为25区域〞,那么P(A)= 281. 〔2〕记事件B 为“飞镖扎在编号为6到9之间区域〞,那么P(B)= .〔3〕记事件C 为“飞镖扎在编号为奇数区域〞,那么P(C)=.答:〔1〕飞镖扎在编号为25区域概率为281;(2)飞镖扎在编号在6到9之间区域概率为71;(3)飞镖扎在编号为奇数区域概率为21. 点评:仔细研读题目,从题目提供信息进展分析,寻找适当解题方法,是解决此题要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10 mL ,含有麦诱病种子概率是多少分析:病种子在这1 L 种子中分布可以看作是随机,取得10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子〞这一事件记为A ,那么 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器任何一个位置,而且在每一个位置可能性一样,符合几何概型特点,所以运用几何概型概率计算方法来解决此题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)概率是多少?分析:由于两人到达与离开时刻是随机,而且,在每一个时刻到达或离开可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:如图,以横坐标x表示报纸送到时间,纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能,所以符合几何概型条件.根据题意,只要点落到阴影局部,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==87.5%.点评:建立适当数学模型,该模型符合几何概型特点,这是解答此题关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X是0到1之间均匀随机数,Y也是0到1之间均匀随机数.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.计算机模拟方法:〔1〕选定A1,键入函数“=rand〔〕〞;〔2〕选定A1,按“ctrl+C〞,选定A2~A50,B1~B50,按“ctrl+V〞.此时,A1~A50,B1~B50均为[0,1]区间上均匀随机数.用A列数加7表示父亲离开家时间,B列数加6.5表示送报人送到报纸时间.如果A+7>B+6.5,即A-B>-0.5,那么表示父亲在离开家前能得到报纸.〔3〕选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C〞,选定D2D50,按“ctrl+V〞.〔4〕选定E1,键入函数“=FREQUENCY〔D1:D50,-0.5〕〞,E1表示统计D列中小于或等于-0.5数个数,即父亲在离开家前不能得到报纸频数.〔5〕选定F1,键入“=〔50-E1〕/50.F1表示统计50次试验中,父亲在离开家前能得到报纸频率.下面是我们在计算机上做50次试验,得到结果是P(A)=0.88,如图:例3 假设一个直角三角形两直角边长都是0到1之间随机数,试求斜边长小于34事件概率.分析:由于直角边长是0到1之间随机数,因此设两直角边长分别为x,y,而x,y满足0≤x≤1,0≤y≤1,斜边长=,x,y可以落在0≤x≤1,0≤y≤1所表示图形任何一个位置,而且在每个位置可能性一样,满足几何概型特点.解:设两直角边长分别为x,y,那么0≤x≤1,0≤y≤1,斜边长=,如右图,样本空间为边长是1正方形区域,而满足条件事件所在区域面积为.因此,所求事件概率为P=.点评:根据条件,构造满足题目条件数学模型,再运用几何概型概率计算方法来计算某个事件发生概率,是一种常用求解概率问题方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面概率.分析:当两人到达碰面地点时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点时间.解: 运用转盘模拟方法.具体步骤如下:〔1〕做两个带指针〔分针〕转盘,标上刻度在0到60来表示时间,如右图;〔2〕每个转盘各转m 次,并记录转动得到结果,以第一个转盘结果x 表示甲到达碰面地点时间,以第二个转盘结果y 表示乙到达碰面地点时间;〔3〕统计两人能碰面〔满足|x -y|<20〕次数n ;〔4〕计算m n 值,即为两人能碰面概率近似值〔理论值为95〕. 点评:实施模拟方法除了转盘模拟方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:〔1〕新建一个电子表格文件,在A1位置输入:=RAND( )60,产生一个0到60随机数x ;〔2〕将A1位置处表达式复制到B1处,这样又产生一个0到60随机数y ;〔3〕在C1位置处输入:=IF 〔A1-B1<=-20,0,IF 〔A1-B1<20,1,0〕,判断两人能否碰面〔即是否满足|x -y|<20〕,如果是,就返回数值1,否那么返回数值0;〔4〕将第一行三个表达式复制100行,产生100组这样数据,也就是模拟了100次这样试验,并统计每次结果;〔5〕在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面频率,即事件“两人能碰面〞发生概率近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA落在∠xOT内}.因为射线OA落在∠xOT内是随机,也就是射线OA可以落在∠xOT内任意一个位置,这符合几何概型条件,区域d测度是60,区域D测度是360,根据几何概型概率计算公式,得P(A)=.5.运用计算机模拟结果大约为2.7左右.点评:根据实际问题背景,判断是否符合几何概型特点,如是那么选择符合题意“测度〞,运用求几何概型概率方法来解决问题,此外我们还可以设计符合问题模拟方法来模拟得到问题近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题概率,以及运用模拟方法求某一个事件概率近似值.结合上节课内容可以知道,几何概型概率问题仍然是随机事件概率,与古典概型区别是古典概型所含根本领件个数是有限个,而几何概型所包含根本领件个数是无限.对于几何概型我们着重研究如下几种类型:〔1〕与长度有关几何概型;〔2〕与面积有关几何概型;〔3〕与体积有关几何概型;(4)与角度有关几何概型.其中我们对与面积有关几何概型与与体积有关几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型又一随机事件概率模型,在解决实际问题时首先根据问题背景,判断该事件是属于古典概型还是几何概型,这两者区别在于构成该事件根本领件个数是有限个还是无限个.在使用几何概型概率计算公式时,一定要注意其适用条件:每个事件发生概率只与构成该事件区域长度成比例.随机数在日常生活中,有着广泛应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣量〔如概率值、常数〕有关,然后设计适当试验,并通过这个试验结果来确定这些量.这种方法也是我们研究问题常用方法.习题详解1.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上位置是随机,也就是说灯挂在绳子上位置可以是绳子上任意一点,这符合几何概型条件,根据P=,得P(A)= .答:灯与两端距离都大于2 m概率为13.2.记A={所投点落入小正方形内}.由于是随机投点,故可以认为所投点落入大正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入小正方形内概率应该等于小正方形内面积与大正方形面积比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投点落入小正方形内概率为94.3.记A={所投点落在梯形内部}.由于是随机投点,故可以认为所投点落入矩形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入梯形内部概率应该等于梯形面积与矩形面积比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投点落在梯形内部概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机,也就是该点可以落在正方形内任意一个位置,这符合几何概型条件,根据几何概型求概率计算公式,得P(A)=. 答:乘客到达站台立即乘上车概率为π21. 5.分析:直接求“硬币落下后与格线有公共点〞概率比拟困难,可以考虑先求“硬币落下后与格线无公共点〞概率,再求“硬币落下后与格线有公共点概率〞.解:因为直径等于2 cm 硬币投掷到正方形网格上是随机,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型条件.要求“硬币落下后与格线无公共点〞概率,根据几何概型求概率计算公式:P(A)=,因为每个小正方形边长都等于6 cm ,硬币直径为2 cm ,设有n 个小正方形,那么区域d 测度为n·π·12,区域D 测度n·62,故“硬币落下后与格线无公共点〞概率为,而事件“硬币落下后与格线有公共点〞是“硬币落下后与格线无公共点〞对立面,所以事件“硬币落下后与格线有公共点〞概率为1-36π.答:硬币落下后与格线有公共点概率为1-36π.6.贝特朗算出了三种不同答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗解法如下:解法一:任取一弦AB ,过点A 作圆内接等边三角形〔如图1〕.因为三角形内角A 所对弧,占整个圆周31.显然,只有点B 落在这段弧上时,AB 弦长度才能超过正三角形边长a ,故所求概率是31.解法二:任取一弦AB ,作垂直于AB 直径PQ.过点P 作圆内接等边三角形,交直径于N ,并取OP 中点M 〔如图2〕.容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直弦,如果通过MN 线段,其弦心距均小于QN ,那么该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形内切圆〔如图3〕,这个圆是大圆同心圆,而且它半径是大圆21,它面积是大圆4141. 图1 图2 图3细细推敲一下,三种解法前提条件各不一样:第一种假设了弦端点在四周上均匀分布;第二种假设弦中点在直径上均匀分布;第三种假设弦中点在小圆内均匀分布.由于前提条件不同,就导致三种不同答案.这是因为在那时候概率论一些根本概念〔如事件、概率及可能性等〕还没有明确定义,作为一个数学分支来说,它还缺乏严格理论根底,这样,对同一问题可以有不同看法,以致产生一些奇谈怪论.。
高中数学必修三教案-几何概型
教学目标:1.了解随机数的概念和意义;2.了解用模拟方法估计概率的思想;3.了解几何概型的基本概念、特点和意义;4.了解测度的简单含义;5.了解几何概型的概率计算公式.教学方法:谈话、启发式.教学过程:一、问题情境问题1:取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?问题2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在70m 外射.假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?能用古典概型描述该事件的概率吗?为什么?(1)能用古典概型描述事件的概率吗?为什么?(2)试验中的基本事件是什么?(3)每个基本事件的发生是等可能的吗?(4)符合古典概型的特点吗?二、学生活动问题1:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.问题2:射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.122cm三、建构数学几何概型的特点:(1)基本事件有无限多个;(2)基本事件发生是等可能的.一般地,在几何区域D 中随机地取一点,记“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率:.D的测度d的测度P(A)= 四、数学运用1.例题.例1 两根相距8m 的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率.解:记“灯与两端距离都大于3m ”为事件A ,由于绳长8m ,当挂灯位置介于中间2m 时,事件A 发生,于是事件A 发生的概率P (A )= 82=41. 例2 取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率. 事件A,记“豆子落在圆内”为:解 .a a πππ===22圆的面积P(A)正方形面积44答:豆子落入圆内的概率为4数学拓展:模拟撒豆子试验估计圆周率. 如果向正方形内撒n 颗豆子,其中落在圆内的豆子数为m ,那么当n 很大时,比值n m ,即频率应接近于 P (A ),于是有 由此可得 4πm n≈ 2.练习.(1)在数轴上,设点x ∈中按均匀分布出现,记a ∈(-1,2]为事件A ,则P (A )=( )A .1B .0C .12D .13(2)在1L 高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10mL ,含有麦锈病种子的概率是多少?2a ().m P A n ≈(3)在1万平方公里的海域中有40平方公里的大陆贮藏着石油.假如在海域中任意一点钻探,钻到油层面的概率是多少?(4)如右下图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.(5)在正方形ABCD 内随机取一点P ,求∠APB > 90°的概率. 22)2(21)(a a D d A P π==的测度的测度解:.π= 变式:∠APB =90°? .00)(2===a D d B P 的测度的测度 结论:概率为0的事件可能发生! 五、要点归纳与方法小结 本节课学习了以下内容: 1.古典概型与几何概型的对比.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P =)( 3.几何概型问题的概率的求解.(1)古典概型与几何概型的区别在于:几何概型是无限多个等可能事件的情况,而古典概型中的等可能事件只有有限多个;(2)D 的测度不为0,当D 分别是线段、平面图形、立体图形时,相应的 “测度”分别是长度、面积和体积.(3)区域应指“开区域”,不包含边界点;在区域D 内随机取点是指:该点落在D 内任何一处都是等可能的,落在任何部分的可能性只与该部分的测度成正比而与其性状位置无关.B CAD PB C D P。
人教版(A)高中数学必修3《几何概型》教案及教案说明
课题:《几何概型》教案及其说明教材:人教版(A)数学必修3《几何概型》教案说明一、《几何概型》的教学目标:1、教学目标:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。
(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。
2、教学目标的设置意图:几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),尤其是特征(2),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。
同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。
几何概型是对古典概型有益的补充,几何概型将古典概型的研究从有限个基本事件过渡研究无限多个基本事件,几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例。
在强化几何概型概念教学的同时,将几何概型概念形成的教学通过猜想验证思想逐步让学生自主探究,并体会概念形成的合理性。
二、《几何概型》在教材中的地位:1、几何概型是区别于古典概型的又一概率模型,几何概型是对古典概型有益的补充,将研究有限个基本事件过渡到研究无限多个基本事件;2、学习几何概型主要是为了更广泛地满足随机模拟的需要。
三、《几何概型》的重难点分析:1、《几何概型》的重难点:重点:(1)几何概型概率计算公式及应用。
(2)如何利用几何图形,把问题转化为几何概型问题。
难点:无限过渡到有限;实际背景如何转化几何图形;正确判断几何概型并求出概率。
2、几何概型的学习是建立在古典概型的学习基础之上,少数学生受古典概型学习的影响,容易忽视对几何概型的判断和选择,不善于把求未知量的问题转化成几何概型求概率的问题,而常常转化成古典概型进行分析;因此在教学中结合[课前练习]、[问题初探]进行深入讨论,让学生真正体会到判断几何概型的特点以及重要性,利用回顾、猜想、试验、对比等手段来帮助学生解决问题。
《必修三《几何概型》教案
《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。
2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。
二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。
2.难点:-运用几何概型解决实际问题。
三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。
2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。
3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。
4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。
5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。
6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。
四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。
五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。
六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。
2016-2017学年新人教A版必修3高中数学 3.3.1几何概型(2)教案(精品)
高中数学 3.3.1几何概型(2)教案新人教A版必修3课人授课时间课题 3.3.1几何概型(2)课标要求正确理解几何概型的概念;掌握几何概型的概率公式教学目标知识目标(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式;技能目标会求各种几何概型的概率情感态度价值观会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点理解几何概型的定义、特点,会用公式计算几何概率难点如何转化为几何概型求概率教问题与情境及教师活动学生活动学过程及方法一.导入新课(1)几何概型的概念是什么?(2)几何概型的特点是什么?今天我们学习如何求几何概型的概率二.研探新知(典例分析)一、长度型几何概型例1取一根长度为3米的绳子,拉直后在任意位置剪断,求剪得两段的长都不小于1米的概率。
解析:从每一个位置剪断绳子,都是一个基本事件,剪断位置有无穷多个点,因此,基本事件有无穷多个,而且每一个基本事件都是等可能的,所以事件发生的概率只与剪断的绳子的长度有关,符合几何概型的条件。
设事件A=“剪得两段的长都不小于1米”,把绳子三等分,当剪断位置处在中间一段上时,事件A发生,而中间一段长度1Aμ=,又3μΩ=,所以1()3AP AμμΩ==60xOT∠1河北武邑中学教师课时教案教问题与情境及教师活动学生活动学过程及方法解析:以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在xOT∠内的概率只与xOT∠的大小有关,符合几何概型的条件。
设事件A=“射线OA落在xOT∠内。
事件A的几何度量是060,区域Ω的几何度量是0360,所以,由几何概率公式得601()3606AP AμμΩ===点评:角度型几何概型实质上仍然是长度型几何概型。
变式练习在圆心角为090的扇形中,以圆心O为起点作射线OC,则使得AOC∠和BOC∠都不小于030的概率为多少?(答案:13)三、面积型几何概型例3 如图在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m远向此投镖。
高中人教A版数学(必修3)3.3.1《几何概型》教案
高中人教A版数学(必修3)3.3.1《几何概型》教案一、教学目标知识与技能1.初步体会几何概型的概念;2.会区别古典概型与几何概型;3.会使用几何概型的概率公式计算简单的几何概率.过程与方法1.运用启发式和发现法教学,通过一系列的试验和问题,师生共同探究,让学生体会探索新知的过程,培养其逻辑推理能力;通过实际例子,让学生学会应用数学知识来解决问题,体会数学知识与现实世界的联系.2.通过游戏转盘的制作和两次模拟试验,让学生自己动手,培养学生自主学习的能力和创新能力.情感态度与价值观1.通过源于生活的丰富实例和多媒体教学培养学生的学习兴趣;2.通过类题对比与变式练习培养学生严密的逻辑思维习惯.二、教学重点、难点教学重点几何概型的概念教学难点简单的几何概率的计算三、教具与学具准备教具准备用来做游戏的两个转盘、多媒体学具准备两人一枚用来做游戏的同规格的钢针和一张画了一些等距平行线的大纸(钢针的长度等于两平行线间距离的一半)、两人一个用来做游戏的转盘(提前布置,让学生自己制作,为培养学生的创新能力转盘可随意制作)四、教学过程(一)课程引入(通过学生做“布丰投针试验”引入课题)让学生动手把钢针投到纸上,并记录投针的总次数N和针落到纸上与平行线中的某一条相交的次数n,计算针落到纸上与平行线中的某一条相交的频率及频率的倒数,师生共同(把学生分成8组,每做1分钟,每一小组先对实验总次数和针落到纸上与平行线中的某一条相交的总次数n作以汇总并把数据上报给老师,由老师利用多媒体现场完成全班数据的汇总)引导学生去发现问题—针落到纸上与平行线中的某一条相交的频率的倒数越来越接近于圆周率π.告诉学生,这就是简单化了的著名的“布丰投针试验”.向学生简单介绍一下“布丰投针试验”以及历史上几次有名的“布丰投针试验”(见下表),利用学生的好奇心激“布丰投针实验”是第一个用几何形式表达概率问题的例子,它所反映的一种概率模型我们称之为几何概型.“布丰投针试验”为什么能算出圆周率π的近似值呢?它的原理是什么?为了弄清这一问题,我们就来研究一下几何概型,请同学们阅读教材第129页和130页的内容,并拿出转盘,实际操作一下,验证你所得的频率与通过计算得到的概率是否相差不大. (二)新知讲解1.几何概型的概念对于一个随机试验,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.例如:模型1. 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,求取出的种子中含有麦诱病的种子的概率.模型2.取一根长度为3m的绳子,拉直后在任意位置剪断.求剪得两段的长都不小于1m 的概率.上面这两个模型都属于几何概型.2.几何概型的基本特点(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等(实验结果在一个区域内均匀分布).3.几何概型与古典概型的联系与区别(1)联系:几何概型与古典概型中基本事件发生的可能性都是相等的,即满足等可能性.(2)区别:①古典概型中的基本事件有有限个,而几何概型则要求基本事件有无限个;②判断一个试验是否是古典概型即看它是否满足古典概型的两个特征,而对于几何概型,关键是看它是否具有几何概型的本质特征—能进行几何度量.思考1.随机事件A“从正整数中任取两个数,其和是偶数”是否是几何概型?(尽管这里事件A满足几何概型的两个特点:有无限多个基本事件且每个基本事件的出现是等可能的,但它不满足几何概型的本质特征—能进行几何度量.故事件A不是几何概型.)4.几何概型的概率公式在几何概型中,事件A的概率的计算公式如下:()AP A构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).思考2.通过对几何概型的学习,不难发现:概率为0的事件不一定是不可能事件;概率为1的事件也不一定是必然事件.试举例说明.(在几何概型中,如果随机事件所在区域的是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.)(三)例与练例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待时间不多于10分钟的概率.(分析及解答见教材第130~131页)练习1 在Rt △ABC 中,∠A =30°,在斜边AB 上等可能地取点M ,则AM AC <的概率为( )A.2 B .56 C .34 D .16解析:如图,在斜边AB 上取一点D 使得AD AC =.当点M 落在线段AD 上时,有AM AC <.故所求概率为cos302AD AC P AB AB ===︒=故选A. 点评:此处基本事件所“占据”的区域为线段,所求概率即为对应线段的长度之比.值得注意的是若将原题换一种说法则结论迥异.变式1 在Rt △ABC 中,∠A =30°,若过直角顶点C 作射线CM ,交线段AB 于M ,则AM AC <的概率为多少?解析:此时的概率应转化为ACD ∠与ACB ∠的度数之比,即为56.其原因是问题变为射线CM 在内等可能地选取.变式2 在长为10 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25与49之间的概率是多少?解析:此题有一个典型错解,即把把所求概率转化成面积比,得出错解4925610025-=. 实则不然,此变式实质应为“长度型”几何概型.在线段AB 上取两点12,P P ,使得125,7.AP AP ==所以122PP =.由于点P 等可能地在线段AB 上取得,当点P 落在线段12PP 上时,所作正方形的面积即介于25与49之间.故所求概率为21105=. (四)作业教材第137页 习题3.3 A 组 1,2,3MAB CD思考题:“布丰投针试验”为什么能算出圆周率π的近似值?拓展题:什么是“贝特朗奇论”(可利用工具书以及电脑等多种手段查找)?通过思考题和拓展题培养学生自己动手解决问题的能力.五、课后反思总体效果不错,基本完成了教学目标.需要注意的是引入时应更简洁些,时间占用的稍多了点.。
高中数学必修三《几何概型》优秀教案
课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识。
教学重点:理解几何概型的定义、特点,会用公式计算几何概率。
教学难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
教学方法:讲授法课时安排:2课时,本节第1课时教学过程:一、导入新课:复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?二、新课讲授:创设情境:问题1:某人在7:00-8:00任一时刻随机到达单位,此人在7:00-7:10到达单位的概率? 问题2:比赛靶面直径为10cm,靶心直径为1cm ,随机射箭,假设每箭都能中靶,射中黄心的概率是多少?问题3:500ml 水样中有一只草履虫,从中随机取出2ml 水样放在显微镜下观察,问发现草履虫的概率?[师生互动]1.教师引导学生从以下几个方面思考:1)本题中基本事件是指什么?2)基本事件的个数?3)满足条件的基本事件个数?2.学生交流回答;教师板书课题什么是几何概型?它有什么特点?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括。
几何概型:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型。
高二数学必修3:3.3.1 几何概型 教案2
3.3.1 几何概型一、教材分析本节内容是新教材必修3中第三章第二节的第一课时,是新增加的知识模块,对于概率部分来说,这是一个教学难点,如何循序渐进地引入新课,由易到难地提出问题,进而顺利地解决问题,是本节课的关键。
二、学生分析高二的学生已经具备了初步的数学建模的意识,而前一节的学习使学生能够把一些实际问题转化为古典概型,并对概率的意义有了较深刻的理解,在此基础上,通过类比,观察,推断,归纳等合情推理过渡到几何概型应该是水到渠成,顺理成章的,能够有效地提高学生的直觉思维能力,分析问题,解决问题的能力。
三 教学目标1、 知识与技能(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A =A μμΩ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)能将实际问题通过数学建模后转化为几何概型,进而解决问题。
2、 过程与方法(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)类比法教学,通过与古典概型的类比与对比,让学生感触到知识的层进与推陈出新,提高学生发现问题,分析问题的能力,并达到温故而知新的目的。
3、 情感态度与价值观:本节课的主要特点是生活案例多,学习时要积极探求如何构建数学模型,体会数学不是远离生活高不可攀的,更体会学习数学的重要与快乐。
四 重点与难点1、重点:几何概型的概念、公式及应用;2、难点:几何概型的应用五、学法与教学用具1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:幻灯片,计算机及多媒体教学.六、教学程序与设计环节1、 创设情境:在古典概型中利用等可能性的概念,成功地解决了某一类问题的概率,不过,在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
人教版高中数学必修三 第三章 概率几何概型教案
几何概型教案一、教学目标:(1)知识与技能目标 :通过具体实例正确理解几何概型定义及与古典概型的区别;掌握几何概型的概率计算公式并能解决简单实际问题 。
(2)过程与方法目标 :通过解决引例问题及归纳定义、公式,体验从特殊到一般的思想方法;通过实际问题,培养学生数学建模能力;通过对问题的观察、对比和交流讨论,领悟类比思想与转化思想.(3)情感、态度与价值观目标 :通过对几何概型的教学,培养学生独立思考探索的能力,增强学生合作交流的机会,帮助学生树立科学的世界观和辩证的思想.二、教学重点、难点:重点:几何概型的判断及几何概型中概率的计算公式难点:选择正确的几何度量,通过数学建模解决实际问题三、教学方法:引导发现式四、教学手段:多媒体辅助式教学五、教学过程;(一) 复习提问上节课我们学习了古典概型,大家还记得它的特点和求概率公式吗?1、古典概型的两个特点:(1)有限性:试验中所有可能出现的基本事件只有有限个.(2)等可能性:每个基本事件出现的可能性相等.2、计算古典概型的公式:(二)问题情境我们来看一个很简单的古典概型问题 1、从区间[0,10]内任取一个整数 ,求取到(1,3)x ∈的概率。
2、从区间[0,10]内任取一个实数 ,求取到(1,3)x ∈的概率。
(三)归纳特点从刚才问题中,你能发现上述概型有什么特点吗?(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等.如果满足这两个特点的概型我们把他叫做几何概型。
(四)得出定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
概率计算公式:x xP(A)= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)(五)例题分析【例1】某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:假如他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。
人教版高中数学必修3《几何概型》教案.doc
古典概型1、古典概型的特2、事件的概率公(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件岀现的可能性相等。
A包含基本事件的个数(基本事件的总数几何概型人教版必修3一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。
教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
四、教学过程一、创设情境引入新课【知识回顾】【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(2)(3) 取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都 不小于lm 的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个 的,因而无法利用古典概型;(4) 下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时, 甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个 的,因而无法利用古典概型; (5) 有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0. 1升, 求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置 却是无限多个的,因而不能利用古典概型。
最新人教版高中数学必修3第三章《几何概型》教案
最新人教版高中数学必修3第三章《几何概型》教案《几何概型》教案教学目标:1.正确理解几何概型的概念;可以辨别某种概型就是古典概型还是几何概型;掌控几何概型的概率公式;2.发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;3.通过自学与探究活动,体会理论源于课堂教学并应用于课堂教学的辩证唯物主义观点.教学重点难点:1.重点:几何概型的概念、公式及应用领域;2.难点:几何概型与古典概型各自的适用范围.教法与学法:1.教法挑选:使用鼓励辨认出和概括归纳结合的教学方法,通过明确提出问题、分析问题、解决问题等教学过程,观测对照、归纳概括几何概型的概念及其概率公式;2.学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性.结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型.教学过程:一、设置情境,引出概念教学教学过程环节问题开篇以一个游如图,存有两个旋钮.甲、乙两人玩玩旋钮游戏,戏开篇,唤起学规定当指针指向b区域时,甲获得胜利,否则乙获得胜利.生自学兴趣,引发学生的主动教师以游戏开篇,在充分调动学生兴趣的情形下,明确提出问题.设计意图师生活动引人深思问题:在以下两种情况下分别谋甲获得胜利的概率.题中甲获得胜利的概率只与图中几何因素有关,我概念介们就说道它就是几何概型.特别注意:(1)这里“只”非常关键,如果没“只”字,那么就意味著几何概型的概率可能将还与思索.得出概念,学生在认知概教师得出概念的基础上,举念,使学生互相出来适当例子,浅探讨,并派遣代表化认知概念.列举适当例子.绍其他因素有关,这就是错误的.为时程难点并作铺垫(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积)如果每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例,则表示这样的概率模型为几何概率模型,缩写为几何概型.在几何概型中,事件a的概率的计算公式如下:二、例题揭秘,深化概念教学教学过程环节趁热打例1:假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸通过例题的讲解,深化对事直接点学生回答,教师予以点设计意图师生活动铁深化概念(称为事件a)的概率是多少.件的分类的理解.评.分析:利用几何概型的公式计算事件的概率.解:如图,正方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件a发生,所以三、归纳小结,课堂延展教学教学过程环节设计意图师生活动1.几何概型就是区别于古典概型的又一概率模概括小结作业稳固作业布置:课本练型,采用几何概型的概率计算公式时,一定必须特别注意其适用于条件:每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例.2.几何概型的特点:(1)试验中所有可能将发生稳固新知,由学生谈论体会,师生共同概括总结.础.学打下一定基的结果(基本事件)存有无穷个(2)每个基本事件发生为学生的时程研习的可能性成正比.3.在几何概型中,事件a的概率的计算公式如下:教学设计说明1.教材地位分析:“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸.此节内容是为更广泛地满足随机模拟的需要而在新课标中增加的,这是与以往教材安排上的最大的不同之处.充分体现了数学与实际生活的紧密关系:来源生活,而又高于生活.同时也暗示了它在概率论中的重要作用,在高考中的题型的转变.2.学生现实分析:由于大部分学生对于数学缺少兴趣,自学数学缺乏主动性,太少动手解题.因此,教学过程中要不断进一步增强学生自学的兴趣,使学生主动自学数学.3.本节课中,从概念的形成到应用建模,再到知识的巩固拓展都是学生在这些活动中完成,教师启发引导下,学生思考、讨论、探究,从而解决问题,充分体现学生的主体地位,而且这种学习方式除了贯穿课堂,也延伸至课外.教师不要一气呵成,而应设计有梯度的问题带动学生学习的积极性,只有学生真正参与课堂,教学效果才是好的,才能教育出真正的人才.。
人教版高中数学必修三 第三章 概率 《几何概型》教案
《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。
本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。
人教版高中数学必修三 第三章 概率 《几何概型》教案(共2课时)
《几何概型》教案(共2课时)第一课时 3.3.1 几何概型一、教学目标1、知识与技能:通过这节内容学习,让学生理解几何概型,掌握其基本计算方法并会运用.2、过程与方法:通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3、情感态度与价值观:通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.二、教学重点:几何概型的概念,特点及概率的求法教学难点:把实际问题转化为几何概型求概率的问题。
三、教学程序(一)检查预习,导入新课1.我们已经学习了哪两种方法计算随机事件发生的概率?2.古典概型应满足哪些条件?如何计算古典概型的概率?引入:试验的所有可能结果是有限的,并且每个结果发生的可能性相等,这样的随机事件的概率可用古典概型公式求概率。
在现实生活中,常常会遇到所有可能结果是无限个,又如何求概率呢?这就要用到我没们今天学习的几何概型。
(二)引导自学,合作讨论1.问题情境:如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在下列两种情况下分别求甲获胜的概率.2.合作讨论:(1)几何图形和甲获胜是否有关系,若有关系,和几何体图形的哪些表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.(2)变换图中B与N的顺序,结果是否发生变化?3 引导学生讨论归纳几何概型定义,教师明晰———抽象概括(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等4. 自学检测:判下列试验中事件A 发生的概率是古典概型,还是几何概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率
随机事件的概率【教学目标】
1.了解几何概型的概念及基本特点;
2.掌握几何概型中概率的计算公式;
3.会进行简单的几何概率计算。
【教学重点难点】
1.区分古典概型与几何概型。
2.初步学会使用几何概型概率计算公式。
【学前准备】:多媒体,预习例题
试验的全部结果所构成的区域长度(
几何概型
【教学目标】
(1)知识与技能:理解随机模拟方法,其基本思想是用频率近似求概率;使学生掌握用随机模拟方法估计未知量。
(2)过程与方法:使学生通过阅读、操作学会利用计算器产生均匀随机数,提高自学能力;
(3)情感态度与价值观:通过模拟试验的设计培养学生的创造能力和解决问题的能力。
【教学重难点】
【教学重点】:均匀随机数的产生,设计模型并运用随机模拟方法估计未知量。
【教学难点】:如何把未知量的估计问题转化为随机模型问题。
【学前准备】:多媒体,预习例题。