数学人教版八年级下册ppt

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

勾股定理课件(共19张PPT)人教版初中数学八年级下册

勾股定理课件(共19张PPT)人教版初中数学八年级下册

1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2






归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前

最新人教版八年级数学下册全册完整课件

最新人教版八年级数学下册全册完整课件
初中数学
全册精品PPT课件 (2套)
每一课都有两套课件!
第十六章 二次根式
17.1.2利用勾股定理解 决简单的实际问题
16.1 二次根式
17.1.2 数轴表示根号13
16.2.1 二次根式的乘法 16.2.2 二次根式的除法 16.3.1 二次根式的加减运算 16.3.2 二次根式的混合运算
17.2.1 勾股定理的逆定 理
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《二次根式(1)》随堂检测”
回忆
活动一:定向导学
⑴什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则
这个数就叫做a的平方根。
a的平方根是 aa
⑵什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就 叫做a的算术平方根。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=___5____
20.1.1平均数
20.1.2中位数与众数
20.2 数据的波动程度
20.3 课题学习 体质健康 测试中的数据分析 小结、构建知识体系、复 习题20
《二次根式》第一课时
知识回顾 问题探究 课堂小结 随堂检测
(1)平方根:25的平方根是±5,3的平方根是 3 , 0的平方根是0,-5没有平方根.
二次根式具备哪些特点?
(1)有二次根号;
(2)被开方数不能小于0.
知识回顾 问题探究 课堂小结 随堂检测
探究一:什么样的式子是二次根式?
重点知识★
活动3 牛刀小试,初步运用
1
例1.式子:
2,

x

19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

19.1.1 变量与函数  课件(共16张PPT)  人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.

新人教版八年级数学下册全册ppt课件

新人教版八年级数学下册全册ppt课件
2021/3/9
初步应用 巩固知识
例1 当x 是怎样的实数时, x+2在实数范围内有 意义?
解:要使 x+2 在实数范围有意义, 必须 x+2≥0, ∴ x≥-2.
∴ 当x≥-2时, x+2 在实数范围内有意义.
2021/3/9
初步应用 巩固知识
例2 当x 是怎样的实数时, x2 在实数范围内有意 义? x3 呢?
课后作业
作业:教科书第5页第1,3,5,6,7,10题.
2021/3/9
八年级 下册
16.1 二次根式(2)
2在学习二次根式概念的基础上,结合二次根式 的概念和算术平方根的概念,通过观察、归纳和思 考得到二次根式的两个基本性质.
2021/3/9
课件说明
• 学习目标 1.经历探索性质( a )2 = a(a≥0)和 a2 = a (a≥0)的过程,并理解其意义; 2.会运用性质( a )2 = a(a≥0)和 a2 = a(a ≥0)进行二次根式的化简; 3.了解代数式的概念.
• 学习重点: 从算术平方根的意义出发理解二次根式的概念.
2021/3/9
创设情境 提出问题
电视塔越高,从塔顶发射的电磁波传得越远,从 而能收看到电视节目的区域越广,电视塔高h(单位: km)与电视节目信号的传播半径 r(单位:km)之间 存在近似关系 r= 2Rh,其中地球半径R≈6 400 km. 如果两个电视塔的高分别是h1 km、h2 km,那么它们
2021/3/9
创设情境 提出问题
问题: (2)一个长方形围栏,长是宽的2 倍,面积为130
m2,则它的宽为___6_5__m.
(2)中得到的式子有什么意义?
2021/3/9

人教版数学八年级下册《二次根式的除法》ppt课件

人教版数学八年级下册《二次根式的除法》ppt课件

不是“ a ”,而是“
a 3
a a”3刘敏说:哎呀,真抄错了,好在
不影响结果,反正a和a-3都在根号内.试问:刘敏说得对吗?
解:刘敏说得不对,结果不一样.理由如下:

a
a
3计算,则a≥0,a-3>0或a≤0,a-3<0,解得a>3或a≤0;
而按 a 计算,则a≥0,a-3>0,解得a>3.
a 3
课堂小结
观察三组式子的结果,我们得到下面三个等式:
(1) 4 = 4 ; 99
(2) 16 = 16 ; 25 25
(3)
36 36 . 49 49
猜测 你发现了什么规律?能用字母表示你所发
现的规律吗? 猜测: a a bb
从上面的猜测的规律中,a,b 的取值范 围有没有限制呢?
回顾上节课所讲的二次根式的乘法,我们知道
h 5
40时,此时
他看到的水平线的距离d2是多少?
解:d2 8 40 16 10.
问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到 的水平线的距离是原来的多少倍?
解:
d2 16 10 . d1 16 5
【思考】乘法法则是如何得出的?二次根式的除法该怎样算呢?
除法有没有类似的法则?
(3)若被开方数中含有小数,应先将小数化成分数后再进
行化简,如 0.3 3 30 30 .
10 100 10
巩固练习
在下列各式中,哪些是最简二次根式?哪些不是?对不是
最简二次根式的进行化简.
(1)
45
;
(2) 1 ;
3
(3) 5 ;
2
(4)
0.5
;(5) 1 4
5
.

数学活动 课件(共17张PPT)2024-2025学年人教版八年级数学下册

数学活动 课件(共17张PPT)2024-2025学年人教版八年级数学下册

2
,
又∵S1+S2=3π+4π=7π=S3, ∴AC2+BC2=AB2,
∴△ABC是直角三角形.
随堂练习
1.下列四组数中,不是勾股数的一组是( D ).
A.5,12,13
B.3,4,5
C.6,8,10
D.6,7,8
2.若直角三角形三边长分别为3,4,x,则x的可能值有( B .
A.1个
B.2个
拓展延伸
意大利著名画家达芬奇验证勾股定理的方法如下:
A
B
b
c O a
C
F E
D
D
b aE
B
c
F C
A
你能完成他的证明过程吗?
课堂小结
A
x+a x
b
B
C
构建直角三角形,求旗杆长度.
b
a
a
c
cb
c
b
c
a
a
b
构建正方形,证明勾 股定理.
思考:
1.虽然这条绳子的长度未知,但是绳子与旗杆高 度的关系知道吗? 2.旗杆与地面的位置关系是怎样的? 3.如何用绳子、旗杆与第三边构成直角三角形?
A
x+a
把绳子拉直,使其下端刚好接触地面.
x
使旗杆、绳子与地面构成Rt△ABC.
b
B
C
1.设旗杆的高度为x,测量绳子垂到地面多出的部分,记为a;
2.测量绳子底端到旗杆底端的距离,记为b;
b a
a
S大正方形=c2
=(a+b)2-4×1
2
ab
c
cb
化简结果,你发现了什么?
c
b

人教版八年级数学下册20.2.1-方差-课件PPT

人教版八年级数学下册20.2.1-方差-课件PPT

5.小凯同学参加数学竞赛训练,近期的五次测试 成绩得分情况如图所示,则他这五次成绩的方差 为 100 .
6.在样本方差的计算公式
s
2
1 10
(
x1
20)2
(
x2
20)2...
(
xn
20)2
中,数字10表示__样__本__容__量___,数字20表示 _平__均__数__.
5.五个数1,3,a,5,8的平均数是4,则a=___3__,这
这与我们从产量分布图看到的结果一致.
据样本估计总体的统计思想,种乙种甜玉米产量
较稳定.
练一练
1.用条形图表示下列各组数据,计算并比较它们的平 均数和方差,体会方差是怎样刻画数据的波动程度的.
(1)6 6 6 6 6 6;
(2)5 5 6 6 6 7 7;
(3)3 3 4 6 8 9 9;
(4)3 3 3 6 9 9 9.
1.样本方差的作用是( D ) A.表示总体的平均水平 B.表示样本的平均水平 C.准确表示总体的波动大小 D.表示样本的波动大小,从而估计总体的波动大小
2.【中考·自贡】对于一组统计数据3,3,6,5,3. 下列说法错误的是( D ) A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是6
根据这些数据估计,农科院应该选择哪种甜玉米种子呢?
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
(1)甜玉米的产量可用什么量来描述?请计算后说明. x甲 7.54,x乙 7.52
7 4
s三 班2 2

人教版数学八年级下册《 平行四边形的判定一》ppt课件

人教版数学八年级下册《 平行四边形的判定一》ppt课件
证明:在平行四边形ABCD中,∠A=∠C,AD=BC, 又∵BF=DH,∴AH=CF. 又∵AE=CG, ∴△AEH≌△CGF(SAS). ∴EH=GF.同理得△BEF≌△DGH(SAS). ∴GH=EF. ∴四边形EFGH是平行四边形.
课堂检测
能力提升题
如图,五边形ABCDE是正五边形,连接BD , CE,交于点P.
D
110°
70° B
110°C
A

B 120°
C 60°
D
不是
能判定四边形ABCD是平行四边形的条件: ∠A:∠B:∠C:∠D的值为 ( )D
A. 1:2:3:4
B. 1:4:2:3
C. 1:2:2:1
D. 3:2:3:2
探究新知
知识点 3 平行四边形的判定定理3
如图,将两根木条AC,BD的中点重叠,用小钉绞合在一
人教版 数学 八年级 下册
18.1 平行四边形 18.1.2 平行四边形的判定
(第1课时)
导入新知
一天,八年级的李明同学在生物实验室做实验时,不小心碰碎 了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示 部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安 全,于是他想把原来的平行四边形重新在纸上画出来,然后带 上图纸去就行了,可原来的平行四边形怎么画出来呢?
E
OF
B
C
∴ A∵BO=DO,
∴四边形BFDE是平行四边形.
巩固练习
根据下列条件,不能判定四边形为平行四边形的是( C )
A.两组对边分别相等 B.两条对角线互相平分
C.两条对角线相等
D.两组对边分别平行
如图,在四边形ABCD中,AC与BD交于点O.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校买了四棵树,准备栽在花园里,已经栽 了三棵(如图),现在学校希望这四棵树能 组成一个平行四边形,你觉得第四棵树应该 栽在哪里?
A1
A C
A3
A2
B
在 ABCD 中, 已知一个内角的 度数是60°,则其余三个内角的 60°、120° 度数分别为:120°、
如图,小明用一根36m长的绳子围成了一个平行 四边形的场地,其中一条边AB长为8m,其他三 条边各长多少?
转化
三角形 问题
性质1:平行四边形的对边平行
E
H
且相等。 性质2:平行四边形的对角相等。
邻角互补。
F
G
平行四边形是中心对称图形
思考:平行四边形中相邻的两角有什么关系呢
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
在平行四边形ABCD中,若AE平分
∠DAB,AB=5cm,AD=9cm,则EC= 4cm .
B
5cm
3
E
C
A
1 9cm 2
9cm
D
A
B
有两组对边分别平行的四边形是平行四边形。
D
C
平行四边形的对边平行且相等; 平行四边形的对角相等;邻角互补。
平行四边形是中心对称图形
1、
∠C=
ABCD中, ∠A=50°,则∠B=____ ,若AD+BC=30cm, ,BC= _____ . ABCD的周长是
平行四边形及其性质(一)
学习目标

1.理解平行四边形的概念。 2.掌握平行四边形的边角性质。

3.让学生经历从实际问题中抽象出平行四边形,体会对几何图形研究的 步骤,定义---性质---判定。
4.能运用平行四边形的性质,推理证明有关几何图形中线段相等和角相等 的问题。

观察图形,说出下列图形边的位置有什么特征?
解:
∵四边形ABCD是平行四边形 且∠A+∠C=200° ∴∠A=∠C=100 ° (平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行) ∴∠B= 180 °-∠A= 180º - 100°=80°
例题 教学
如图,已知 ABCD 中,AD=3,BD⊥AD, 且BD=4, 你能求出平行四边形的周长吗?
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º - 52°=128 °
已知 : 如图, 求:
ABCD , AB=8cm,BC=10cm,∠B=30°. A D
ABCD 的面积.
旋转180°后 与自身重合
B D
O
A
C
∵四边形ABCD是平行四边形 ∴∠A=∠C,∠B=∠D.
验证
平行四边形的对边相等,对角相等。
已知:四边形ABCD是平行四边形。
求证:AC=BD,AB=CD
∠A= ∠D, ∠B= ∠D.
A
B
C D 提示:可连接BC,试证⊿______≌ ⊿______
转化思想: 四边形 问题
D
3
解: ∵BD ⊥AD ∴ ∠ADB=90 ° 在Rt △ADB中,AD=3,BD=4 ∴AB= 5(勾股定理) 42= 32 又∵四边形ABCD为平行四边形(已知) ∴ AD=BC=3 (平行四边形对边相等) AB=DC=5 ∴ ABCD的周长=2(AD+AB) =2(3+5) =16
4
C
A
B
解: 四边形ABCD是平行四边形
AB CD; AD BC
AB 8, CD 8(m) 又 AB BC CD AD 36
AD BC 10(m)
小试牛刀
在 ABCD 中, ∠A与∠B 的度数之 比为4:5,∠A= 80°, ∠B= 100° , ∠C= 80° ∠D= 100° 。
解: 过A作AE⊥BC于点E B 在Rt△ABE中, ∠B= 30°, AB=8 . 1 ×8 =4 ∴ AE= 1 AB= 2 2 ∴ ABCE的面积 E C
S
ABCD
=BC· AE =10×4 =40.
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B
探究
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
BБайду номын сангаас
C
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
探究
旋转平行四边形,探究角的关系
平行四边形是中心对称图形
C A B D
绕它的中心O 平行四边形的对角相等 .
96cm,则AB=
2、 ABCD,若∠A:∠B=5:4,则∠C= ___,∠D=
3、 ABCD中, AB- CB=4cm,周长为32cm AB= 4、 。 则

ABCD的周长为40cm,⊿ABC的周长为25cm, 则对角 线AC长为( A ) A、5cm B、15cm C、6cm D、 16cm
两组对边都不平行
一组对边平行, 一组对边不平行
两组对边 分别平行
平行四边形
四边形
有两组对边分别平行的四边形叫做平行四边形。
你能从以下图形中找出平行四边形吗?
1
2
3
4
5
两组对边分别平行,是平行四边形的一 个主要特征。
1.两组对边分别平行的四边形叫做平行四边形. 如图:四边形ABCD是平行四边形 记作: ABCD A D
读作:平行四边形ABCD
平行四边形相对的边称为 对边 ∵ AB ∥ CD,BC ∥ AD, 相对的角称为 对角 ∴四边形ABCD是平行四边形。 B 平行四边形不相邻的两个顶点连成 的线段叫平行四边形的对角线.
如图:线段AC、BD就是 ABCD的对角线
C
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB, AHOE 图中的平行四边形有__个,它们是_____ 9 CFOG ABFE BHOF DEOG _____________________ BHGC ABCD _____________________ CDEF AHGD
D C
A
B
D
C
已知: ABCD的周长等于20 cm, AC=7 cm,求△ABC的周长。 解: A ∵四边形ABCD是平行四边形(已知)
B
∴ AB=CD,BC=AD(平行四边形的对边相等)
1 即AB+BC= 2
C
ABCD =10cm
又∵ AC=7 cm(已知)
∴ C△ ABC=AB+BC+AC=10+7=17(cm)
相关文档
最新文档