对数函数公式
log函数基本公式
log函数基本公式在数学的广袤世界里,log 函数(对数函数)是一个非常重要的概念,它在众多领域都有着广泛的应用,从数学理论的研究到实际生活中的各种计算问题,都能看到它的身影。
首先,我们来了解一下什么是对数。
简单来说,如果 a 的 b 次幂等于 N(a>0,且a≠1),那么数 b 叫做以 a 为底 N 的对数,记作logₐN=b。
其中,a 被称为对数的底数,N 被称为真数。
log 函数的基本公式有很多,我们先来看最基础的几个。
第一个重要的公式是:logₐ(M×N) =logₐM +logₐN 。
这个公式可以理解为,如果要计算两个数相乘的对数,就等于这两个数各自对数的和。
比如说,log₂(4×8) = log₂4 + log₂8 。
因为 2²= 4 ,2³= 8 ,所以 log₂4 = 2 ,log₂8 = 3 ,那么 log₂(4×8) = log₂32 = 5 ,正好等于 2 + 3 。
第二个公式是:logₐ(M÷N) =logₐM logₐN 。
这意味着,两个数相除的对数等于被除数的对数减去除数的对数。
例如,log₃(9÷3) =log₃9 log₃3 ,因为 3²= 9 ,所以 log₃9 = 2 ,log₃3 = 1 ,那么log₃(9÷3) = 1 。
接下来是:logₐ(Mⁿ) =n×logₐM 。
这个公式表明一个数的幂的对数等于幂指数乘以这个数的对数。
比如,log₅(25²) = 2×log₅25 ,由于5²= 25 ,log₅25 = 2 ,所以 2×log₅25 = 4 ,正好等于 log₅(25²) 。
还有一个常用的公式是:logₐa = 1 。
这很好理解,因为底数的 1 次幂就是底数本身,所以以 a 为底 a 的对数就是 1 。
对数函数基本公式
对数函数基本公式对数函数基本公式是一种函数,它以比例的形式表示两个量之间的关系。
它能够帮助人们解决复杂的数学问题,比如求解各种类型的方程,因此也被称为“指数函数”。
对数函数基本公式可以表示如下:y = log_a (x)其中,log_a表示以a为底的对数函数,x表示被求对数的值,y表示结果。
在数学中,对数函数是一种特殊的函数,它的值通过对原始值的对数运算来计算,而不是直接计算原始值。
它可以用于求解复杂的方程,解决数学问题,也可以用于求解统计数据。
一般来说,对数函数的基本公式可以表示为:y=log_a(x)其中,a表示底数,x表示原始值,y表示结果。
以10为底的对数函数可以表示为:y = log_{10} (x)以e为底的对数函数可以表示为:y = ln (x)其中,ln表示以e为底的对数函数。
对数函数的基本性质包括:1. 对数的性质:log_a (x)=c,则a^c=x;2. 对数的混合性质:log_a (mn)=log_a (m)+log_a (n);3. 对数的乘法性质:log_a (xy)=log_a (x)+log_a (y);4. 对数的除法性质:log_a (x/y)=log_a (x)-log_a (y)。
从上面的性质可以看出,对数函数是一种很强大的数学工具,它可以帮助人们快速求解复杂的方程,从而解决复杂的数学问题。
此外,对数函数也被广泛应用于生活中,比如在财务领域,可以使用对数函数计算股票价格的变化,以及股票的收益率。
在统计学中,对数函数也可以用来计算数据的变化,以及数据的分布情况。
总之,对数函数基本公式是一种重要的函数,它能够帮助人们快速解决复杂的数学问题,也可以用于生活中的计算,因此是一种非常重要的数学工具。
log运算法则公式14个
log运算法则公式14个log运算法则是一种经典的数学运算,在各种高等数学课程中都有涉及。
log运算法则主要用于计算幂和对数。
它们可以帮助我们快速计算出幂和对数。
log运算法则一共有14个,如下:1、对数的乘法法则:loga(mn) = loga m + loga n;2、对数的除法法则:loga(m/n) = loga m - loga n;3、对数的乘方法则:loga(m^n) = nloga m;4、对数的开方法则:loga(m^(1/n)) = loga m / n;5、乘方的乘法法则:(m^n)(m^p) = m^(n+p);6、乘方的除法法则:(m^n)/(m^p) = m^(n-p);7、乘方的乘方法则:(m^n)^p = m^(np);8、乘方的开方法则:(m^n)^(1/p) = m^(n/p);9、对数的加法法则:loga(m + n) = loga m + loga n;10、对数的减法法则:loga(m - n) = loga m - loga n;11、乘方的加法法则:(m + n)^p = m^p + n^p;12、乘方的减法法则:(m - n)^p = m^p - n^p;13、乘方的乘积法则:(m*n)^p = m^p * n^p;14、乘方和开方的混合法则:(m^n)^(1/p) = m^(n/p)。
log运算法则在数学中有着重要的地位,它可以把复杂的问题简化,帮助我们更快更有效地进行计算。
14个法则就是由它而来,它们可以帮助我们快速计算出幂和对数。
由于log 运算法则可以把复杂的问题变得更加容易理解,所以在研究数学的过程中,应该充分利用它们,努力掌握log运算法则,从而更好地掌握数学知识。
对数函数运算公式大全
对数函数运算公式大全对数函数是数学中的一种重要函数。
它主要由幂函数的逆运算演变而来,可以描述幂函数的指数部分。
对数函数的定义如下:对于任意的正实数 a 和正实数 x,我们将 b 称为以 a 为底 x 的对数,记作 logₐ(x) = b,如果且仅如果 a^b = x。
在实际问题中,对数函数常被用于解决各种指数增长和指数衰减的问题。
我们先来看一下对数函数的基本特性。
1.对数函数的定义域是正实数集,即x∈(0,+∞)。
2.对数函数的值域是全部实数集,即y∈(-∞,+∞)。
3. 对数函数的图像是由直线 y = x 和平行于 x 轴的直线 y =logₐx 组成。
当a>1时,对数函数是增函数;当0<a<1时,对数函数是减函数。
4.对数函数的性质:(a) logₐ(xy) = logₐx + logₐy(b) logₐ(x/y) = logₐx - logₐy(c) logₐ(x^n) = nlogₐx(d) logₐ(1/x) = -logₐx(e) logₐ1 = 0(f) logₐa = 1(g) log₁₀x = loga(x)/loga(10)下面我们来看一些常见的对数函数运算公式。
1. 换底公式:logₐb = logc(b) / logc(a),其中 c 是任意的正实数。
2. 对数的乘法运算公式:logₐ(xy) = logₐx + logₐy3. 对数的除法运算公式:logₐ(x/y) = logₐx - logₐy4. 对数的幂运算公式:logₐ(x^n) = nlogₐx5. 对数的倒数运算公式:logₐ(1/x) = -logₐx6. 底数为 10 的对数与底数为 a 的对数的转换关系:log₁₀x = loga(x) / loga(10)7. 自然对数和常用对数的转换关系:logₑx = ln(x) / ln(ₑ10)8. 对数函数与指数函数的逆运算关系:a^logₐx = x有了以上的对数函数运算公式,在解决实际问题中,我们可以更方便地进行计算和分析。
对数函数公式运算大全
对数函数公式运算大全
对数函数是数学中一类重要的函数,它在很多领域有着重要的应用,比如物理学、电路学、工程学、统计学、金融学等等。
在数学中,对数函数是指以一个变量X为底,另一个变量Y为指数,以X为底Y的对数记为logX(Y),这就是对数函数的定义。
对数函数的公式表达方式为:logX(Y)=a,它表示X的a次幂为Y,其中a是常数,X是底数,Y是指数。
对数函数的运算大全主要有以下几类:
一、求底数:若已知logX(Y)=a,则X=Y^a,即X为Y的a次幂,故X称为logX(Y)的底数。
二、求指数:若已知logX(Y)=a,则Y=X^a,即Y为X的a次幂,故Y称为logX(Y)的指数。
三、求幂次:若已知logX(Y)=a,则a=logX(Y),即a称为logX(Y)的幂次。
四、同底数情况:若X,Y,Z均为同一个底数,则有logX(YZ)=logX(Y)+logX(Z),即Y的指数与Z的指数的和等于YZ的指数。
五、不同底数情况:若X,Y,Z均为不同的底数,则有logX(Y)=logZ(Y)/logZ(X),即X,Y,Z三者之间的对数之比等于X,Z两者之间的对数之比。
以上就是对数函数公式运算大全的介绍,从上面的内容可以看出,对数函数具有简单、实用和可操作性,所以在数学方面有着广泛的应用。
在统计学、物理学、金融学等领域,对数函数可以用来求解复杂的问题,它被广泛应用在工程学、息学和其他学科中。
可以说,对数函数是一个重要的数学函数,它在很多领域中都可以发挥重要的作用。
对数所有公式大全
对数所有公式大全对数是高等数学中重要的概念之一,广泛应用于各个领域。
在学习和应用对数的过程中,我们需要掌握一些重要的公式。
在本文中,将为你介绍一些常见的对数公式,以帮助你更好地理解和应用对数。
1. 对数的定义公式:对数的定义公式表达了对数和幂的关系:若a>0且a≠1,那么对任意的正数x,b>0以及b≠1,有如下等式成立:loga(x)=b ⟺ x = a^b2. 对数的基本性质:对数具有一些重要的基本性质,可以帮助我们简化对数的运算。
2.1 对数的基本性质1:对数的幂等式loga(a) = 1这个公式表示对数底与求对数运算互为逆运算,即一个数和它的对数底数的对数等于1。
2.2 对数的基本性质2:对数的相等性质若loga(x) = loga(y),那么x = y。
这个公式表示如果两个数的对数的底数相同,并且对数相等,那么这两个数本身也是相等的。
2.3 对数的基本性质3:对数的乘法公式loga(x * y) = loga(x) + loga(y)这个公式表示对数的乘法可以转化为对数的加法。
2.4 对数的基本性质4:对数的除法公式loga(x / y) = loga(x) - loga(y)这个公式表示对数的除法可以转化为对数的减法。
2.5 对数的基本性质5:对数的幂公式loga(x^k) = k * loga(x)这个公式表示对数的幂可以转化为对数的乘法。
3. 常用对数公式:除了对数的基本性质,还有一些特殊的对数公式在实际问题中非常常见。
3.1 自然对数的公式自然对数(以e为底的对数)在科学和工程领域中广泛使用。
自然对数的定义公式为:ln(x) = loge(x),其中e ≈ 2.71828是自然对数的底数。
3.2 对数的积分公式对数函数的积分公式是数学中一种重要的积分公式。
∫(1/x)dx = ln|x| + C其中C是常数。
3.3 对数的换底公式对数的换底公式用于将一个对数转换为另一个底数的对数。
对数函数的计算方法
对数函数的计算方法对数函数是数学中的一种基本函数,它在自然科学、工程技术等领域具有广泛的应用。
掌握对数函数的计算方法是十分必要的。
本文将详细讲解对数函数的计算方法,帮助大家更好地理解和运用这一数学工具。
一、对数函数的定义对数函数是以自然对数e为底的对数函数,记作y=log(x)。
这里的x称为真数,y称为对数。
对数函数的定义域为(0, +∞),值域为(-∞, +∞)。
二、对数函数的计算方法1.对数恒等式对数恒等式是对数函数计算的基础,主要包括以下两个公式:(1)log(a×b) = log(a) + log(b)(2)log(a/b) = log(a) - log(b)2.对数换底公式对数换底公式用于将一个对数函数转换为另一个底数的对数函数,其公式如下:log(a)b = log(c)b / log(c)a其中,a、b、c为任意正数,且a≠1,c≠1。
3.对数函数的求导对数函数的求导公式如下:d/dx log(x) = 1/x4.对数函数的积分对数函数的积分公式如下:∫log(x)dx = x(log(x) - 1) + C其中,C为积分常数。
三、对数函数的计算实例下面通过一个实例来演示对数函数的计算方法。
例题:计算log(20)。
解法1:利用对数换底公式,将log(20)转换为以10为底的对数:log(20) = log(10×2) = log(10) + log(2) = 1 + log(2)解法2:利用对数恒等式,将log(20)分解为两个对数的和:log(20) = log(4×5) = log(4) + log(5) = 2log(2) + log(5)然后,利用对数换底公式将对数转换为以10为底的对数:log(20) = 2log(2) + log(5) = 2(log(2)/log(10)) + log(5)/log(10)通过计算,可以得到log(20)的近似值为1.301。
对数函数的运算法则
对数函数的运算法则对数函数是数学中常见的一类函数,它在许多科学领域都有广泛的应用。
在对数函数的运算中,有一些基本的法则和性质可以帮助我们简化计算和推导。
本文将介绍对数函数的常用运算法则,包括对数的加减法、乘除法、指数运算法则以及对数函数的换底公式。
一、对数的加减法对数函数的加减法法则可以用以下两个公式表示:1. 对数的加法法则:loga (mn) = loga m + loga n这个公式表示,在同一个底数a下,两个数的乘积的对数等于它们分别的对数之和。
例如,log2 (8×16) = log2 8 + log2 16 = 3 + 4 = 72. 对数的减法法则:loga (m/n) = loga m - loga n这个公式表示,在同一个底数a下,两个数的商的对数等于被除数的对数减去除数的对数。
例如,log10 (100/10) = log10 100 - log10 10 = 2 - 1 = 1二、对数的乘除法对数函数的乘除法法则可以用以下两个公式表示:1. 对数的乘法法则:loga (m^p) = p*loga m这个公式表示,在同一个底数a下,一个数的指数乘积的对数等于指数与底数的对数之积。
例如,log3 (9^2) = 2*log3 9 = 2*2 = 42. 对数的除法法则:loga (m^p/n^q) = p*loga m - q*loga n这个公式表示,在同一个底数a下,两个数的指数商的对数等于被除数的指数与底数的对数之差。
例如,log5 (25^2/5^3) = 2*log5 25 - 3*log5 5 = 2*2 - 3*1 = 4 - 3 = 1三、指数运算法则对数函数的指数运算法则可以用以下两个公式表示:1. 指数和对数的互换:a^loga m = m这个公式表示,在同一个底数a下,以底数为底的对数和指数可以互相抵消,得到原来的数。
例如,2^log2 8 = 82. 对数的指数运算:loga (a^m) = m这个公式表示,在同一个底数a下,以底数为底的对数函数和指数函数可以互相抵消,得到原来的指数。
对数函数求导公式大全
对数函数求导公式大全对数函数是高中数学学科中的常见函数之一、在微积分中,对数函数求导是基础的求导技巧,掌握对数函数的求导公式对于解题和理解函数的性质非常重要。
下面将列举常见的对数函数及其求导公式。
一、自然对数函数(ln x)自然对数函数是以自然数e为底数的对数函数,记作ln x。
自然对数函数的导函数是它自身的倒数,即ln'(x) = 1/x。
用数学符号表示如下:d/dx (ln x) = 1/x二、以a为底的对数函数(logₐx)以a为底的对数函数记作logₐx。
其中,a>0且a≠1,而x>0。
以a 为底的对数函数的导函数与自然对数函数类似,只是需要应用换底公式,用数学符号表示如下:d/dx (logₐx) = 1/(xlna)三、对数函数的换底公式当我们需要对以a为底的对数函数求导时,可以利用换底公式进行计算。
换底公式是指我们可以将以一个底数为a的对数转换成以另一个底数为b的对数,并通过求导公式计算导数。
具体换底公式如下:logₐx = log_bx / log_ba四、对数函数的求导法则对于一些复合函数,我们可以利用链式法则来求导。
对数函数的求导法则包括以下几种情况:1. 形式为ln(u)的函数:如果函数y = ln(u),其中u是关于x的函数,那么其导数可以用链式法则表示为:dy/dx = 1/u * du/dx2. 形式为logₐ(u)的函数:如果函数y = logₐ(u),其中u是关于x 的函数,那么其导数可以用链式法则表示为:dy/dx = 1/(u ln a) * du/dx3. 形式为ln,u,的函数:如果函数y = ln,u,其中u是关于x的函数,那么其导数可以用链式法则表示为:dy/dx = 1/u * du/dx (u>0)1/u * du/dx (u<0)需要注意的是,当u为负数时,对数函数是没有定义的,因此负数的对数函数的导数也是没有定义的。
对数函数公式转换
对数函数公式转换对数函数是一种特殊的函数形式,由指数函数逆运算得到。
在常用的对数函数公式中,最经典的是以10为底的常用对数函数和以自然对数e为底的自然对数函数。
1.以10为底的常用对数函数公式为:y = log₁₀(x)这个公式表示,y是以10为底的对数函数,x是自变量。
这个公式的意义是,y表示的是一个数x在以10为底的对数函数中的指数值。
例如,若y=2,则表示x=10²=100。
对数函数的特点是,它将一个数的指数转换为以10为底的对数值。
这种转换能够帮助我们更直观地理解数的大小关系,特别是在处理大数字时更为方便。
2.以自然对数e为底的自然对数函数公式为:y = ln(x)这个公式表示,y是以e为底的自然对数函数,x是自变量。
与常用对数函数类似,这个公式的意义是,y表示的是一个数x在以e为底的自然对数函数中的指数值。
对数函数的公式可以在一定条件下进行转换。
这里我们介绍两种常见的对数函数公式转换方法。
1.换底公式:对于任意的底数a、b和正实数x,满足a>0、b>0、a≠1、b≠1,我们有以下换底公式:logₐ(x) = logₐ(b) · log_b(x)这个公式的意思是:将底数为a的对数转换为底数为b的对数,需要将底数为a的对数值除以底数为b的对数的值。
换底公式是在实际应用中常用的对数函数公式转换方式,特别是当需要将对数底数转换为10或e以外的其他数时。
2.对数函数的幂函数表示:对数函数可以使用幂函数来表示。
以常用对数函数为例,将其转换为幂函数形式,则有:y = log₁₀(x)x=10^y这个公式的意思是:将常用对数函数y = log₁₀(x)转换为x = 10^y,即将对数值y转换为以10为底的指数值。
对数函数的幂函数表示提供了一种直观的理解对数函数的方式,帮助我们更好地理解对数函数和指数函数之间的关系。
综上所述,对数函数公式的转换可以通过换底公式和幂函数形式来实现。
log的计算公式
log的计算公式在数学中,对数(logarithm)是一种重要的数学函数,它在数学和科学领域有着广泛的应用。
对数函数可以将一个数值输入转化为另一个数值输出,这个输出数值通常可以用来解决一些复杂的计算问题。
log的计算公式是对数函数的数学表达式,可以用于计算对数的值。
本文将介绍log的计算公式以及其应用。
log的计算公式可以用下面的形式表示:logb(x) = y。
其中,b是底数,x是真数,y是对数。
这个公式表示,以底数b为底的对数函数,将真数x映射到对数y。
换句话说,logb(x)的值等于y,即b 的y次幂等于x。
log函数的底数可以是任意正数,常用的底数有10、e和2。
其中,以10为底的对数函数称为常用对数(common logarithm),以e为底的对数函数称为自然对数(natural logarithm),以2为底的对数函数称为二进制对数(binary logarithm)。
常用对数的底数为10,常用对数函数的计算公式为:log(x) = log10(x)。
常用对数函数的结果表示数x的10为底的对数。
自然对数的底数为e,自然对数函数的计算公式为:ln(x) = loge(x)。
自然对数函数的结果表示数x的e为底的对数。
二进制对数的底数为2,二进制对数函数的计算公式为:log2(x)。
二进制对数函数的结果表示数x的2为底的对数。
log的计算公式在数学和科学领域有着广泛的应用。
首先,log函数可以用于解决指数运算问题。
例如,如果我们想要计算2的3次幂,可以使用log函数来计算,即2^3 = 10^log2(2^3) = 10^(3*log2(2)) = 10^3 = 1000。
这个计算过程中,log函数帮助我们将指数运算转化为对数运算,使得计算更加简便。
log函数可以用于解决复杂的数值计算问题。
例如,在计算机科学中,log函数常用于衡量算法的时间复杂度。
算法的时间复杂度通常用大O表示法表示,其中log函数在计算复杂度时起到重要的作用。
对数函数法则
对数函数法则
对数函数法则指的是对数函数的一些基本计算法则,包括对数的加减法、乘除法、幂次方、换底公式等。
对数的加减法:logab + logac = loga(bc),logab - logac = loga(b/c)
对数的乘除法:logab × logac = loga(bc),logab ÷ logac = loga(b/c)
对数的幂次方:logabn = n × logab
换底公式:logab = logcb / logca
这些基本的对数函数法则在数学中有着广泛的应用,尤其在解决指数和对数方程、计算复杂科学问题时更是不可或缺的工具。
掌握对数函数法则是学习高等数学、物理、化学等学科的基础,也是提高计算能力和解题能力的必要手段。
- 1 -。
对数函数运算公式
对数函数运算公式对数函数是指以一个常数为底数的指数函数。
对数组的运算公式包括对数函数的性质和对数函数的运算法则。
下面是关于对数函数运算公式的详细解释。
1.对数函数的性质:(1) 对于对数函数y=log_a(x),其中a>0,a≠1,x>0,y是实数。
底数a称为常数底,x称为对数函数的自变量,y称为对数函数的因变量。
(2) 对于对数函数y=log_a(x),x=a^y。
这个性质表示对数函数和指数函数互为逆运算。
(3) 对数函数y=log_a(x)的图像是一个增长趋缓的曲线,曲线上的点的坐标是(x,y)。
(4) 对数函数y=log_a(x)在a<1时是递增函数,在a>1时是递减函数。
(5) 对数函数y=log_a(x)的定义域是x>0,值域是实数集。
(6) 对数函数y=log_a(x)在底数a>1时,正值有限,负值无限;在0<a<1时,正值无限,负值有限。
(7) 对数函数y=log_a(x)与曲线y=x在点(1,0)处相交。
2.对数函数的运算法则:(1) 对数函数的乘法法则:log_a(x*y)=log_a(x)+log_a(y)。
即两个数的乘积的对数等于这两个数的对数之和。
(2) 对数函数的除法法则:log_a(x/y)=log_a(x)-log_a(y)。
即两个数的商的对数等于这两个数的对数之差。
(3) 对数函数的幂法则:log_a(x^n)=n*log_a(x)。
即一个数的幂的对数等于这个幂与这个数的对数之积。
(4) 对数函数的换底公式:log_a(x)=log_b(x)/log_b(a)。
即可以通过换底公式将以任意底数的对数转化为以其他底数的对数。
(5) 对数函数与指数函数的关系:log_a(x)的定义和底数为a的指数函数a^x的定义相对应,是互为逆运算的。
3.例题:(1) 计算log_2(8)/log_2(4)解:根据换底公式(2) 化简log_3(27^2)解:根据幂法则,log_3(27^2)=2*log_3(27)=2*3=6对数函数的运算公式是数学中重要的概念,它在解决各种实际问题和数学推导中都有广泛应用。
对数函数性质
对数函数性质对数函数是高中数学中的一个重要知识点,在许多数学、物理、化学等领域中都有广泛的应用。
在学习对数函数时,我们需要掌握对数函数的性质,在这里,我将为大家详细介绍对数函数的性质,希望能对大家的学习有所帮助。
一、对数函数定义及性质对数函数的公式为:y=loga x ,其中x、y、a都是实数,a>0,且a≠1。
1.定义域和值域(1)定义域:对数函数的定义域为正实数集R+(2)值域:对数函数的值域为实数集R2.奇偶性(1)当a>1时,对数函数是增函数,是奇函数。
(2)当0<a<1时,对数函数是减函数,是偶函数。
(3)对于任意的a,对数函数均不具有周期性。
3.单调性(1)当a>1时,对数函数是单调递增的;(2)当0<a<1时,对数函数是单调递减的;(3)对于任意的a,对数函数均单调。
4.对称轴当a>1时,对数函数的对称轴是y=x;当0<a<1时,对数函数的对称轴是y=-x。
5.渐近线当a>1时,对数函数的x轴渐近线是x轴;当0<a<1时,对数函数的y 轴渐近线是x轴。
二、对数函数在求解实际问题中的应用对数函数是一种用于描述关系紧密的现象的数学工具,它广泛应用于数学、物理、化学、生物等领域。
下面分别介绍对数函数在不同领域的应用。
1.经济学中的应用对数函数在经济学中有广泛的应用,例如在计算经济增长率和物价指数时常常用到对数函数。
(1)经济增长率的计算对数函数可以用来表示数据的增长趋势。
在经济学中,经济增长率是一个重要指标。
假设某国的国内生产总值(GDP)在2010年为100亿美元,在2011年增加到120亿美元,那么这个国家的GDP增长率为:所以,GDP的增长率为20%。
可以使用以下公式来计算增长率:增长率 = log10(120) - log10(100) = 0.0792。
因此,增长率为7.92%。
(2)物价指数的计算物价指数是描述物价水平的一个指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
指数函数和对数函数
y a a a x =>≠01且定义域为R ,底数是常数,指数是自变量。
a 必须a a >≠01且。
如果
a N a a =>≠()01且,那么数
b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对
数式。
)由于
N a b =>0故log a N 中N 必须大于0。
当N 为零的负数时对数不存在 求35x
=中的x ,化为对数式x =log 35即成。
对数恒等式:由a N b N b
a ==()log ()12a N a N log =对数的性质:①负数和零没有对数; ②1的对数是零;
③底数的对数等于1。
对数的运算法则:
()()
log log log a a a MN M N
M N R =+∈+
,
()log log log a
a a M N
M N M N R =-∈+,()()
log log
a n
a N n N N R =∈+ ()
log log a n a N n
N N R =∈+1
3、对数函数:定义:指数函数y a a a x
=>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。
1、对三个对数函数y x y x ==log log 212
,,y x =lg 的图象的认识。
:
4、对数换底公式:
log log log log (.)log b a a n e g N N b
L N N e N L N N =
===其中…称为的自然对数称为常数对数
27182810 由换底公式可得:
L N N e N
N n =
==lg lg lg ..lg 04343
2303
由换底公式推出一些常用的结论:
(1)
log log log log a b a b b a
b a =
=1
1或· (2)log log a m a n b m n b =
(3)log log a n a n b b = (4)log a
m
n a m n
=
-----精心整理,希望对您有所帮助!。