动态规划背包问题C版2
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
01背包问题回溯法c语言
01背包问题回溯法c语言01背包问题是一个经典的动态规划问题,可以使用回溯法来解决。
在C语言中,我们可以通过递归的方式来实现回溯法解决01背包问题。
首先,让我们来看一下01背包问题的描述:给定n个物品,每个物品有一个重量和一个价值。
现在有一个背包,它能够容纳一定的重量,问如何选择装入背包的物品,使得背包中物品的总价值最大。
接下来,让我们来看一下如何使用回溯法来解决这个问题。
我们可以定义一个递归函数来尝试将每个物品放入背包或者不放入背包,然后找出最优解。
以下是一个简单的C语言代码示例:c.#include <stdio.h>。
#define N 5 // 物品的数量。
#define W 10 // 背包的容量。
int weight[N] = {2, 2, 6, 5, 4}; // 每个物品的重量。
int value[N] = {6, 3, 5, 4, 6}; // 每个物品的价值。
int maxValue = 0; // 最大的总价值。
void backtrack(int index, int currentWeight, int totalValue) {。
if (index == N || currentWeight == W) {。
if (totalValue > maxValue) {。
maxValue = totalValue;}。
return;}。
// 不放入背包。
backtrack(index + 1, currentWeight, totalValue); // 放入背包。
if (currentWeight + weight[index] <= W) {。
backtrack(index + 1, currentWeight +weight[index], totalValue + value[index]);}。
}。
int main() {。
backtrack(0, 0, 0);printf("背包能够容纳的最大总价值为,%d\n", maxValue);return 0;}。
《信息学奥赛一本通》:第9章 第2节 动态规划背包问题(C++版)
【参考程序】
#include<cstdio> using namespace std;
const int maxm = 201, maxn = 31;
int m, n;
int w[maxn], c[maxn];
int f[maxn][maxm];
int main()
{
scanf("%d%d",&m, &n);
for (int i=1; i <= n; i++)
//设f(v)表示重量不超过v公斤的最大价值
for (int v = m; v >= w[i]; v--)
if (f[v-w[i]]+c[i]>f[v])
f[v] = f[v-w[i]]+c[i];
printf("%d",f[m]);
// f(m)为最优解
【例9-12】、完全背包问题 【问题描述】
设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限 的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品 可以多次选取),使其重量的和小于等于M,而价值的和为最大。
【输入格式】
第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 【输出格式】
第九章 动态规划
第二节 背包问题
第二节 背包问题
一、01背包问题 问题:
有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量, 且价值总和最大。 基本思路:
c语言部分背包问题的算法设计
很高兴能为您提供文章撰写服务。
在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。
第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。
在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。
2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。
第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。
具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。
2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。
第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。
2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。
第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。
通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。
掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。
以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。
希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。
期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。
背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。
在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
5.5动态规划求解01背包问题
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
C语言动态规划之背包问题详解
C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。
问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。
根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。
它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。
输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。
输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。
按照题⽬要求进⾏打表,列出对应的dp表。
W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。
第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。
第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。
背包问题C语言程序设计
1 问题要求及任务描述1.1 题目要求假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。
例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)(1,4,5)(8,2)(3,5,2)。
1.2 主要任务在给定物品数量,物品各自体积和背包体积的前提下,找出物体组合后的总体积与背包体积相等的物体组合2 解决问题的主要思路和方法2.1 关键问题如何选择第i件物品:(1)考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。
选中后,继续去考虑其余物品的选择。
(2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
2.2 拟采用解决问题的方法可利用回溯法的设计思想来解决背包问题。
首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。
但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。
2.3 主要算法和处理流程图1.输入物品总个数2.依次输入各物品的体积3.输入背包总体积4.将物品排成一列,按顺序选取物品装入背包中,当物品太大不能装入时则弃之继续选取下一件,直到背包装满为止,5.出现在剩余的物品中找不到合适的物品填满背包的情况是说明刚刚装入背包的那件物品不适合,将它取出后继续选取后面的物品。
6.重复步骤4和5直至求出满足条件的解或者无解。
0-1背包问题动态规划详解及代码
0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。
其关键是发现子问题和记录其结果。
然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。
输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。
所以,我们的程序要从1到M一个一个的试。
比如,开始任选N 件物品的一个。
看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。
怎么能保证总选择是最大价值呢?看下表。
测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。
加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。
总的最佳方案是5+4为9.这样.一排一排推下去。
最右下放的数据就是最大的价值了。
(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
博物馆大盗问题的动态规划(背包问题)
博物馆⼤盗问题的动态规划(背包问题)博物馆⼤盗问题⼤盗潜⼊博物馆,⾯前有5件宝物,分别有重量和价值,⼤盗的背包仅能负重20公⽄,请问如何选择宝物,总价值最⾼?item weight value1232343484585610m(i, W) 表⽰前i(1<=i<=5)个宝物中,组合不超过W(1<=W<=20) 重量,得到的最⼤价值。
第 i 件宝物重量 Wi > 背包承重 W, 那么m(i, W) = m(i-1, W);第 i 件宝物重量 Wi <= 背包承重 W,如果第 i 件宝物太重,加不到背包中,那么前 i 件宝物价值等于前 i-1 件宝物价值,即 m(i, W) = m(i-1, W);如果第 i 件宝物可以加⼊到背包中,那么前 i 件宝物价值等于前 i-1 件宝物价值加上第 i 件宝物价值Wi,即 m(i, W) = m(i-1, W-Wi)+vi。
因此,m(i, W) 应该是m(i-1, W) 和m(i-1, W-Wi)+vi 两者最⼤值,即m(i, W) = max{m(i-1, W), m(i-1, W-Wi)+vi}以m(5, 5)为例,m(5,5) = m(4,5) = max(m(3,5), m(3,0)+8), 动态规划表格如下:动态规划解法代码# ⽤⼀个列表来保存宝物的重量w和价值vtr = [None, {'w':2, 'v':3}, {'w':3, 'v':4},{'w':4, 'v':8}, {'w':5, 'v':8}, {'w':9, 'v':10}]# 设置背包最⼤承重max_w = 20# 初始化⼆维表格m[(i, w)],将表格中所有价值均初始化为0# 表⽰前i个宝物中,最⼤重量w的组合,所得到的最⼤价值# 当i或w为0时,价值为0m = {(i, w):0 for i in range(len(tr))for w in range(max_w + 1)}# 逐个填写⼆维表格# 外层循环为 i个宝物,[1,6)的循环# 内层循环为重量w,[1, max_w+1)的循环for i in range(1, len(tr)):for w in range(1, max_w + 1):if tr[i]['w'] > w:# 装不下第i个宝物,即不装第i个宝物m[(i, w)] = m[(i-1, w)]else:# 装得下第i个宝物时,在不装第i个宝物与装第i个宝物这两种情况下,取最⼤价值m[(i, w)] = max(m[(i-1, w)],m[(i-1, w-tr[i]['w'])] + tr[i]['v'])# 输出结果print(m[(len(tr)-1, max_w)])递归解法# ⽤⼀个字典来保存宝物的重量w和价值vtr = {(2, 3), (3, 4), (4, 8), (5, 8), (9, 10)}# 设置背包最⼤承重max_w = 20# 初始化记忆化表格m# key是(宝物组合,最⼤重量),value是最⼤价值m = {}def thief(tr, w):if tr == set() or w == 0: # 基本结束条件m[(tuple(tr), w)] = 0return 0elif (tuple(tr), w) in m:return m[(tuple(tr), w)]else:vmax = 0for t in tr:if t[0] <= w:# 逐个从集合中去掉某个宝物t,递归调⽤ # 选出所有价值中的最⼤值v = thief(tr-{t}, w-t[0]) + t[1] # 调⽤⾃⾝ vmax = max(vmax, v)m[(tuple(tr), w)] = vmaxreturn vmax# 输出结果print(thief(tr, max_w))。
(完整版)动态规划问题常见解法
(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。
动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。
二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。
常见的解法有两种:递归和动态规划。
递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。
动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。
常见的解法有两种:Dijkstra算法和Bellman-Ford算法。
Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。
Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。
总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。
在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。
01背包问题回溯法c语言
01背包问题回溯法c语言背包问题是一个很经典的动态规划问题,其中最常见的一种形式就是 01 背包问题。
在该问题中,给定一组物品的重量和价值,以及一个背包的容量限制,要求选择一些物品,使得在不超过背包容量的前提下,背包中物品的总价值最大。
这里我们将讨论如何使用回溯法解决01 背包问题,使用C 语言进行编程实现。
首先,我们需要定义问题的数据结构。
我们可以使用一个数组来表示不同物品的重量和价值,背包的容量可以通过一个常量来表示。
```c#define N 5 // 物品的个数#define MAX_WEIGHT 10 // 背包的容量int weights[N] = {2, 3, 4, 5, 9}; // 物品的重量int values[N] = {3, 4, 5, 8, 10}; // 物品的价值int bestValue = 0; // 最优解的价值int bestSelection[N]; // 最优解中物品的选择情况```接下来,我们可以定义一个递归函数来实现回溯法。
该函数将遍历所有可能的物品选择情况,并更新当前的最优解。
```cvoid backtrack(int depth, int weight, int value, int selection[]) {if (depth == N) {if (weight <= MAX_WEIGHT && value > bestValue) {bestValue = value;for (int i = 0; i < N; i++) {bestSelection[i] = selection[i];}}return;}// 不选择当前物品selection[depth] = 0;backtrack(depth + 1, weight, value, selection);// 选择当前物品selection[depth] = 1;backtrack(depth + 1, weight + weights[depth], value + values[depth], selection); }```最后,我们可以在主函数中调用回溯函数,得到最优解。
DP-资源背包动态规划
带条件的背包问题(1)
• 有N件物品; • 第i件物品Wi公斤; • 第i件物品价值Ci元; • 第i件物品可能带0~2个附件; • 若装载附件,必须装载主件,反之没有约束; • 现有一辆载重M公斤的卡车; • 问选取装载哪些物品,使得卡车运送的总价值最
大?
分析
• 假设只有主件的情况 ,显然与经典背包问题完 全相同!
动态规划
• 可以按每个物品进行规划,同样每种物品有选和 不选两种选择
• 设F(i,j)表示前i件物品载重为j的最大效益,则有
F(i 1, j w[i]) C[i],第i种物品装载 F(i, j) MaxF(i 1, j),第i种物品不装载
• 1<=i<=N, 0<=j<=N • 初值:F(0,j)=0 • F(N,M)即答案 • 显然时间复杂度为O(NM)
,与数据相关
总结
• 对于资源类动态规划问题,我们可以看出,问题描述必须 有一个基本要素:资源,有时这种资源可能是金钱、空间 或者时间,问题就是要对这些资源如何分配,一种基本的 想法是将资源应用于前i个阶段,然后考虑第i个阶段和前i1个阶段之间的关系。
• 设前i个点的消耗j的资源得到的最优值,研究前i-1个点消 耗的资源的最优值,利用第i个点决策转移,如下图。
主程序如下
for i:=1 to m do f[0,i]:=0; //初始化
for i:=1 to n do f[i,0]:=0;
for i:=1 to n do
// 动态规划,递推求f
for j:=1 to m do
begin
C语言背包问题课程设计
C语言背包问题课程设计一、课程目标知识目标:1. 学生能理解背包问题的概念,掌握其数学模型及相关算法。
2. 学生能掌握C语言中数组、循环、条件判断等基本语法结构,并将其应用于背包问题的编程实现。
3. 学生能了解并掌握贪心算法和动态规划算法在解决背包问题中的应用。
技能目标:1. 学生能运用C语言编写解决背包问题的程序,具备一定的编程能力。
2. 学生能通过分析实际问题,选择合适的算法解决问题,培养解决问题的能力。
情感态度价值观目标:1. 学生在课程学习中,培养对计算机编程的兴趣和热情,提高自主学习能力。
2. 学生通过团队协作,培养沟通、合作能力,增强团队意识。
3. 学生在解决问题的过程中,培养勇于尝试、克服困难的意志品质。
课程性质:本课程为信息技术学科,以C语言编程为基础,结合实际问题,培养学生编程解决问题的能力。
学生特点:学生为初中年级,对计算机编程有一定了解,具备基本的C语言知识。
教学要求:课程要求学生掌握背包问题的基本概念和算法,学会运用C语言编程解决问题,并在过程中培养良好的情感态度价值观。
教学过程中,注重理论与实践相结合,鼓励学生动手实践,培养编程思维。
通过分解课程目标为具体学习成果,便于教学设计和评估。
二、教学内容1. 背包问题基本概念:介绍背包问题的定义、数学模型及其实际应用场景。
- 教材章节:第三章第二节“算法举例——背包问题”2. C语言基础语法复习:回顾数组、循环、条件判断等基本语法结构。
- 教材章节:第一章“C语言概述”、第二章“数据类型与运算符”3. 贪心算法:讲解贪心算法在解决背包问题中的应用,并通过实例分析。
- 教材章节:第四章第三节“贪心算法”4. 动态规划算法:介绍动态规划算法在背包问题中的应用,并通过实例分析。
- 教材章节:第四章第四节“动态规划算法”5. 编程实践:指导学生运用C语言编写解决背包问题的程序。
- 教材章节:第五章“C语言编程实践”6. 算法分析与优化:引导学生分析算法性能,探讨优化策略。
分支界线法01背包问题c语言
分支界线法01背包问题c语言一、问题描述01背包问题是常见的动态规划问题,其描述如下:有一个背包,最多能承载重量为W的物品。
现在有n个物品,其重量分别为w1, w2, ..., wn,价值分别为v1, v2, ..., vn。
要求选取若干物品放入背包,使得放入背包的物品总价值最大,且总重量不超过W。
二、分支界线法思想分支界线法是一种求解组合优化问题的常用方法。
在01背包问题中,分支界线法的思想是通过一个优先级队列,不断生成和扩展状态空间树,记录每个节点的上界评价函数值,并根据上界值进行搜索剪枝,直至获得最优解。
三、算法步骤1. 定义物品结构体```ctypedef struct {double value; // 物品价值double weight; // 物品重量double unitValue; // 物品单位价值} Item;```2. 比较函数定义(用于优先级队列)```cintpare(const void* a, const void* b) {Item* itemA = (Item*)a;Item* itemB = (Item*)b;double diff = itemB->unitValue - itemA->unitValue; return diff < 0 ? -1 : diff > 0 ? 1 : 0;}```3. 分支界线法求解01背包问题```cdouble knapsack(int n, double W, Item* items) {qsort(items, n, sizeof(Item),pare);double maxValue = 0;double currentWeight = 0;for (int i = 0; i < n; i++) {if (currentWeight + items[i].weight <= W) {currentWeight += items[i].weight;maxValue += items[i].value;} else {double rem本人nWeight = W - currentWeight;maxValue += items[i].unitValue * rem本人nWeight;break;}}return maxValue;}```四、代码实现解释1. 首先根据物品单位价值对物品进行排序,通过单位价值可以快速确定选择哪个物品放入背包;2. 依次选择单位价值最高的物品放入背包,若背包容量不足则按部分放入;3. 根据剩余容量,估算能够放入的最大价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所 以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的 最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项 f[i-1][v],这样就可以保证f[N][V]就是最后的答案。但是若将所有f[i][j]的初始值 都赋为0,你会发现f[n][v]也会是最后的答案。为什么呢?因为这样你默认了最 开始f[i][j]是有意义的,只是价值为0,就看作是无物品放的背包价值都为0,所 以对最终价值无影响,这样初始化后的状态表示就可以把“恰”字去掉。
【解法二】本问题的数学模型如下:设 f[v]表示重量不超过v公斤的最大价 值, 则f[v]=max{f[v],f[v-w[i]]+c[i]} ,当v>=w[i],1<=i<=n 。程序如下: #include<cstdio> using namespace std; const int maxm = 2001, maxn = 31; int m, n; int w[maxn], c[maxn]; int f[maxm]; int main(){ scanf("%d%d",&m, &n); //背包容量m和物品数量n for (int i=1; i <= n; i++) scanf("%d%d",&w[i],&c[i]); //每个物品的重量和价值 for (int i=1; i <= n; i++) //设f(v)表示重量不超过v公斤的最大价值 for (int v = m; v >= w[i]; v--) if (f[v-w[i]]+c[i]>f[v]) f[v] = f[v-w[i]]+c[i]; printf("%d",f[m]); // f(m)为最优解 return 0; }
int main(){ scanf("%d%d",&m, &n); //背包容量m和物品数量n for (int i = 1; i <= n; i++) //在初始化循环变量部分,定义一个变量并初始化 scanf("%d%d",&w[i],&c[i]); //每个物品的重量和价值 for (int i = 1; i <= n; i++) // f[i][v]表示前i件物品,总重量不超过v的最优价值 for (int v = m; v > 0; v--) if (w[i] <= v) f[i][v] = max(f[i-1][v],f[i-1][v-w[i]]+c[i]); else f[i][v] = f[i-1][v]; printf("%d",f[n][m]); // f[n][m]为最优解 return 0; } 使用二维数组存储各子问题时方便,但当maxm较大时,如maxm=2000时不能 定义二维数组f,怎么办,其实可以用一维数组。
【解法一】设f[i][v]表示前i件物品,总重量不超过v的最优价值,则f[i][v]=max(f[i-1][vw[i]]+c[i],f[i-1][v]) ;f[n][m]即为最优解,给出程序: #include<cstdio> using namespace std; const int maxm = 201, maxn = 31; int m, n; int w[maxn], c[maxn]; int f[maxn][maxm]; int max(int x,int y) { x>y?x:y;} //求x和y最大值
【例1】 0/1背包 【问题描述】 一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的 重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物 品只有一件求旅行者能获得最大总价值。 【输入格式】 第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 【输出格式】 仅一行,一个数,表示最大总价值。 【样例输入】package.in 10 4 2 1 3 3 4 5 7 9 【样例输出】package.out 12
第二节 背包问题
一、01背包问题 问题: 有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量, 且价值总和最大。 基本思路: 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即f[i][v]表示前i件物品(部分或全部)恰放入一个容量为v 的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i1][v-w[i]]+c[i]}。 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来 的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个 子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯 前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容 量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下 的容量为v-w[i]的背包中”,此时能获得的最大价值就是f [i-1][v-w[i]]再加上通过 放入第i件物品获得的价值c[i]。
优化空间复杂度 以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能
再优化了,但空间复杂度却可以优化到O(V)。
肯定是有一个主循环i=1..N,每次算出来二 维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结 束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-w[i]]两个子 问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i1][v]和f[i-1][v-w[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的逆序推 f[v],这样才能保证推f[v]时f[v-w[i]]保存的是状态f[i-1][v-w[i]]的值。 伪代码如下: for i=1..N for v=V..0 f[v]=max{f[v],f[v-w[i]]+c[i]}; 其中f[v]=max{f[v],f[v-w[i]]+c[i]}相当于转移方程f[i][v]=max{f[i-1][v],f[i-1][vw[i]]+c[i]},因为现在的f[v-w[i]]就相当于原来的f[i-1][v-w[i]]。如果将v的循环顺序从上 面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-w[i]]推知,与本题意不符,但它却 是另一个重要的完全背包问题最简捷的解决方案,故学习只用一维数组解01背包问 题是十分必要的。