基础化学李保山第二版10-分子结构习题答案

合集下载

基础化学李保山第二版氧化还原反应习题答案

基础化学李保山第二版氧化还原反应习题答案

8 氧化还原反应习题解答(p222-226)1. 用氧化值法配平下列各氧化还原方程式。

(1)3Cu 2S +22HNO 3 = 6Cu(NO 3)2 +3H 2SO 4 +10NO+8H 2O (2)NH 4NO 2 = N 2 + 2H 2O(3)(NH 4)Cr 2O 7 = N 2 + Cr 2O 3 +4H 2O(4)3As 2S 3 + 28HNO 3+4 H 2O = 6 H 3AsO 4 + 9H 2SO 4 +28 NO(5)K 2Cr 2O 7 + 3H 2S +4 H 2SO 4 = Cr 2(SO 4)3 + 3S + 7H 2O + K 2SO 4 (6)2Na 2S 2O 3 + I 2 = Na 2S 4O 6 + 2NaI(7)2 MnO 4-+3 Mn 2+ +2 H 2O =5 MnO 2 +4 H +(8)4[Co(NH 3)6]2+ + O 2 +2H 2O = 4 [Co(NH 3)6]3+ + 4OH -2. 用离子-电子法配平下列方程式。

(1-11)为酸性介质,(12-14)为碱性介质(1) Cr 2O 72- + 3H 2O 2 + 8H + = 2 Cr 3+ + 3O 2 +7 H 2O(2) 2 MnO 4- +5 SO 32- +6 H + = 2Mn 2+ + 5 SO 42- +3 H 2O (3) ClO 3- + 6I - + 6H + = Cl - +3 I 2 + 3H 2O(4) 5NaBiO 3(s) + 2Mn 2+ +14 H + = 5Na + +5 Bi 3+ + 2 MnO 4- +7 H 2O (5) H 2S +2 Fe 3+ = S +2Fe 2+ + 2H +(6) 3P 4(s)+20HNO 3(浓)+8 H 2O =12H 3PO 4+20NO(7) 2FeS 2+30HNO 3?Fe 2(SO 4)3+30NO 2+H 2SO 4+14H 2O(8) 7PbO 2+2MnBr 2+14HNO 3?7Pb(NO 3)2+2Br 2+2HMnO 4+6H 2O (9) 28HNO 3+3As 2S 3+4H 2O?9H 2SO 4+6H 3AsO 4+28NO (10) As 2S 5+10NO 3-+10H +?2H 3AsO 4+10NO 2+5S+2H 2O (11) 2Bi 3++3S 2O 32-+3H 2O?Bi 2S 3+3SO 42-+6H + (12) Cl 2 + 2OH -== Cl - + ClO -+ H 2O(13) 2[Cr(OH)4]- + 3H 2O 2 + 2OH -== 2 CrO 42- +8H 2O (14) SO 32- + Cl 2 +2OH -==2 Cl - + SO 42-+ H 2O3. (1)逆向进行(2) )(0=θ/Snn θ+24V E E 15.=++S)(=θ/MgMg θ-V E E 37.22-=+)(2.370.15=-θ-θ+θV E E E 52.2=+=∴正向进行(3) )1.09(==θ/BrBr θ+-2V E E)(77.0==θ/Fe e F θ-+2+3V E E )(32.0=0.77-1.09=-=θ-θ+θV E E E∴正向进行(4) )(=θ/Pbθ+2V E E 13.0-=+Pb )(=θn/Z n θ-2V E E 76.0-=+Z )(0-0.13=-θ-θ+θV E E E 63.076.=+=∴正向进行4.(1)V n n E 55.1100.1)0.1(10.0lg 50592.051.1)M /O M (4824=⨯⨯+=-+-(2)V E 67.110.00.1lg 10592.072.1)Ce /Ce (34=+=++(3)VcK E E HAc 17.01075.110.0lg 0592.000.0lg 10592.0)/H H ()HAc/H (522-=⨯⨯+=+=-+θθ(4)Vc K g E E Cl sp 341.0100.1108.1lg 0592.0799.0lg 10592.0/Ag)A ()AgCl/Ag (210+=⨯⨯+=+=--+-θθ(5)V c c c c c c E E 40.018.058.0)100.1(0.10.1lg 40592.058.0)/)(/()/(lg 40592.0)O /S SO ()O /S SO (6226OH O S 2SO 232232322323223-=+-=⨯⨯+-=+=--------θθθθ(6)Vc c p p E E O 564.0)100.1(100/0.10lg 40592.0401.0)/(/lg 40592.0)/OH O ()/OH O (434OH 222=⨯+=+=----θθθ5. 解答:(1)2Ag + mol·L -1) + Cu(s) ==2Ag(s) + Cu 2+ mol·L -1)电池符号: (-) Cu|Cu 2+ mol·L -1)||Ag + mol·L -1)|Ag (+) 电极反应:(+) Ag ++e = Ag(s) (-) Cu-2e = Cu 2+ 电动势∶Vc c g E A g E Ag 740.010.0lg 0592.0799.0lg 10592.0/Ag)A ()g /A (+=+=+=+++θθ Vc c C Cu E C Cu E Cu 278.0010.0lg 20592.0337.0lg 20592.0)u /()u /(222+=+=+=+++θθV C Cu E A g E E 462.0278.0740.0)u /()g /A (2=-=-=++(2)MnO 2(s)+ 2Cl -(12 mol·L -1) + 4H +(12 mol·L -1) = Mn 2+ mol ·L -1)+ Cl 2(100kPa) + 2H 2O(l) 电池符号:(-) Pt, Cl 2(100kPa)|Cl - mol·L -1)||Mn 2+·L -1),H + mol·L -1)|MnO 2(s),Pt(+) 电极反应:(+) MnO 2+ 4H ++2e== Mn 2++ 2H 2O\(-) 2Cl —2e== Cl 2 电动势∶Vc c c c E E Mn 36.10.112lg 20592.023.1/)/(lg 20592.0)/Mn MnO ()/Mn MnO (44H 22222+=+=+=++++θθθV c c p p E E Cl 30.1121lg 20592.036.1)/(lg 20592.0)/Cl Cl ()/Cl Cl (22Cl 222+=+=+=--θθθV E 06.030.136.1=-=(3)H 3AsO 3 mol·L -1)+ I 2(s) + H 2O(l) = H 3AsO 4 mol·L -1) + 2I -mol·L -1) +2H + mol·L -1) 电池符号:(-) Pt|H 3AsO 4 mol·L -1), H + mol·L -1), H 3AsO 3 mol·L -1)||I -·L -1)|I 2(s), Pt (+) 电极反应:(+) I 2+2e =2I -(-) H 3AsO 3+ H 2O-2e = H 3AsO 4+2H + 电动势∶34332H AsO H 34333433H AsO 2(/)(/)0.0592(H AsO /H AsO )(H AsO /H AsO )lg2/0.0592 1.0(0.10) 0.559lg 0.52920.10c c c c E E c c Vθθθθ+=+⨯=+=+22222I 0.059210.05921(I /I )(I /I )lg 0.536lg 0.6542(/)2(1.010)E E V c c θθ----=+=+=⨯E = (4)Cr 2O 72- mol·L -1) + 6Fe 2+ mol·L -1) +14H + mol·L -1) = 2Cr 3+mol·L -1) + 6Fe 3+ mol·L -1) + 7H 2O(l)电池符号:(-)Pt|Fe 3+ mol·L -1), Fe 2+ mol·L -1)||Cr 2O 72-·L -1), Cr 3+·L -1), H + mol·L -1)|Pt (+)电极反应:(+) Cr 2O 72-+14H ++6e = 2Cr 3++ 7H 2O (-) Fe 2+-e = Fe 3+ 电动势∶227314Cr O H 232327272Cr (/)(/)0.0592(Cr O /Cr )(Cr O /Cr )lg 6(/)c c c c E E c c θθθθ-++-+-+=+1420.0592(1.0)(1.0)1.33lg 1.356(0.10)V =+=323232Fe Fe /0.0592 1.0(Fe /Fe )(Fe /Fe )lg 0.7710.0592lg 0.8301/0.10c c E E Vc c θθθ++++++=+=+=+E = 解答:(1) E =E (+)-E (-)θθθc c c c E E E /lg 20592.0440.0/lg 20592.0)/Fe Fe ()/Fe Fe ()(22Fe Fe 22+++-=+==+++ Vc c E E E 822.0100.1lg 20592.0763.0/lg 20592.0)/Zn Zn ()/Zn Zn ()(2Zn 222-=⨯+-=+==--+++θθ = +2)lg c (Fe2+)+ c (Fe2+)=×10-3(mol ·L -1)(2)(-)Ag ∣Ag +(y mol·L -1)‖Ag +(×10-1 mol·L -1)∣Ag (+) E =,求负极Ag +的浓度。

有机化学第二版(高占先)10-13章习题答案

有机化学第二版(高占先)10-13章习题答案

第10章 醛、酮、醌10-1 命名下列化合物。

(1)3-甲基-1-苯基-1-戊酮; (2)2,4,4-三甲基戊醛; (3)1-(1-环已烯基)丁酮; (4)(E )-苯基丙基酮肟; (5)3-丁酮缩乙二醇; (6)2-环已烯酮; (7)三氯乙醛缩二甲醇; (8)2-戊酮苯腙; (9)2,6-萘醌; (10)2,4-已二酮; (11)((E )-间甲基苯甲醛肟。

10-2 写出下列反应的主要产物。

PhCHOHCOONa +浓NaOHHCHO2OH+(Cannizzaro 反应)OZn-Hg / HClHCNH 3OOH COOHO(Clemmensen 还原)H 3CC CH 3OMg 66H 3OH 2SO 4△(CH 3)2C C(CH 3)2OH OH(H 3C)3CC CH 3O(pinacol 重排)(1)(2)(3)(4)+HCHO(Mannich 反应)+HCl(5)(6)O N HCH 2CH 2NOCH 3OCH3CH 3OH(黄鸣龙还原)CO 3Cl+CO 2HCl+(Baeyer-Villiger reaction)ONH 2+PCl 5H NO(Beckmann 重排)O(1) HSCH 2CH 2SH2O(1) Cl 2 / NaOH 3OHO(卤仿反应)(7)(8)(9)(10)CHCl 3+(Wittig reaction)CH 3MgBr +Ph 3(1) CuCl 3(13)(12)(11)O+O(1,4-加成产物)OCHCH 2CH 3O OOHHONCO(双烯合成反应)10-3 比较下列化合物的亲核加成反应活性。

(2)(1)C OCH 3H 3C C CH 3OH 3CC HOCOCH 3H 3C(3)(4)(3)>(1)>(2)>(4)10-4 将下列化合物按烯醇式的含量多少排列成序。

CH 3COCHCOCH 3CH 3COCH 2CH 3(2)(1)PhC H 2C O(3)(4)3CH 3COCH 2COCH 3C CH 3O(1)>(4)>(3)>(2)10-5 指出下列化合物中,哪些能发生碘仿反应?哪些能与饱和NaHSO 3反应?(2)(1)O(3)(4)(5)ICH 2CHOCH 3CH 2CHOC 6H 5COCH 3CH 3CHOCH 3CH 2CH 2OHCH 3CH 22CH 3CH 3CH 23OH(7)(6)(8)O能与饱和NaHSO 3反应的有(1)、(2)、(5)、(8)[脂肪族甲基酮、大多数醛和8个碳以下的脂肪酮能进行此反应]。

基础化学(李保山)D10z分子结构

基础化学(李保山)D10z分子结构
原则:①A的价电子数=主族序数; ②配体X: H和卤素每个原子各提供一 个价电子, 氧与硫不提供价 电子; 例:VP( SO 2)= 1 (6+4×0-(-2))=4
4
2
注:① 卤素原子作中心原子时,提供所有的7个 价电子,作配位原子时只提供1个价电子;
② 氧族元素的原子作中心原子时,提供所有
的6个价电子,作配位原子时不提供价电子; ③ 惰性气体元素的原子作中心原子时,最外 层电子均看作价层电子
sp sp sp 杂化轨道类型 不等性 sp 3 参加杂化的轨道 s+p s+(2)p s+(3)p s+(3)p 杂化轨道数 2 3 4 4 成键轨道夹角 1800 1200 1090 28' 900 1090 28' 分子空间构型
2
3
实例
中心原子
BeCl 2 BF3 CH 4 NH3 H 2O HgCl 2 BCl 3 SiCl 4 PH3 H 2S Be(ⅡA) B(ⅢA) C,Si N,P O,S Hg(ⅡB) (ⅣA) (ⅤA) (ⅥA)
LP=0
BF3
CH 4
LP=0
LP=0 LP=0 LP=0
PCl5
SF 6
②LP≠0 分子的空间构型≠电子对的空间构型 使价层电子对斥力最小 VP 3 LP
电子对的 空间构型 分子的 空间构型
1 1
2
4
6
1 2
VP=5
LP=1
LP=2
F F
四变 面形 体 字 形 T
: Cl :
F o 90 LP-LP( ) 0 o 90 LP-BP( ) 4
键能力增强。
1. sp3杂化 CH4的空间构型 为正四面体

基础化学李保山第二版10-分子结构习题答案

基础化学李保山第二版10-分子结构习题答案

10 分子结构习题解答(p322-325)思考题1. Na和Cl、F之间,K和Cl、F之间能形成离子化合物。

2. 答案:Be2+ 2电子构型;Ca2+8电子构型;Fe3+9~17电子构型;Cu+ 18电子构型;Sn2+18+2电子构型;Pb4+18电子构型;O2-8电子构型。

3.答案:S2->K+>Na+>Mg2+4. Sn4+ >Fe2+ >Sn2+ >Sr2+>Ba2+5. S2->O2->F->Cu+ >Na+6. (1)半径比规则可以用来判断离子晶体的晶格类型。

晶格能可以用来衡量离子键的强弱。

(2)离子极化的结果使原来的离子键向共价键方向过渡。

(3)18电子构型的正离子极化率较强;18电子构型的负离子变形性较强。

7. 答案:原子轨道的角度分布方向是一定的,共价键的形成遵循最大重叠原则,所以只能在建轴方向上才能形成稳定的共价键,因而共价键具有方向性;每个原子的未成对电子数时一定的,有几个未成对电子就可以形成几个共用电子对,所以共价键具有饱和性。

8. (1)由两个相同或不相同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键(头碰头),叫做σ键。

当两个原子的轨道从垂直于成键原子的核间连线的方向接近,发生电子云重叠而成键(肩并肩),这样形成的共价键称为π键。

(2)单键:在价键理论中,两个原子之间如只有一对共用电子,形成的化学键称为单键。

单电子键:在分子轨道理论中,只有一个电子填入分子轨道形成的化学键称为单电子共价键。

(3)同类型的杂化轨道可分为等性杂化和不等性杂化两种。

如果原子轨道杂化后形成的杂化轨道是等同的,这种杂化叫做等性杂化。

如果原子轨道杂化后形成的杂化轨道中有一条或几条被孤对电子所占据,使得杂化轨道之间的夹角改变,这种由于孤对电子的存在而造成杂化轨道不完全等同的杂化,叫做不等性杂化。

9. (1)BF3键角大,因为BF3中B的价电子结构为2s22p1,形成分子时,进行sp2杂化,三个sp2杂化轨道分别与三个F原子的p轨道成键,故BF3分子为平面三角形,键角为120度。

基础化学第二版课后习题答案

基础化学第二版课后习题答案

基础化学第二版课后习题答案【篇一:基础化学第二版习题答案chap5】1.何谓沉淀溶解平衡?同物质的量的bacl2和h2so4混合溶液中,含有哪些离子?这些离子浓度之间存在着哪些关系?答:难溶电解质溶解和沉淀速度相等,固体的量和溶液中分子或离子的量不再改变的状态,称为沉淀溶解平衡。

ba2+、cl-、so4、h+、oh-2?2.活度积、溶度积、离子积之间有何区别与联系?答:活度积、溶度积指平衡状态下的活度积或浓度积,对给定的难溶电解质其活度积只与温度有关,溶度积不但与温度有关,还和溶液离子强度有关,对于ma型难溶电解质:?ksp(ma)。

离子积指任意状态下的浓度积,其值是任意的。

?(m?)??(a?)3.无副反应时,沉淀的溶度积与溶解度有何关系?溶度积小的物质,它的溶解度是否一定小?举例说明。

答:s?mmnn不同类型难溶电解质的溶解度不能根据溶度积数值大小直接判断。

溶度积小的物质,它的溶解度是不一定小,如ag2cro4与agcl。

4.除了沉淀物质本性以外,影响沉淀溶解度的主要因素有哪些?答:除了沉淀物质本性以外,影响沉淀溶解度的主要因素还有:同离子效应、盐效应、酸碱效应、配位效应等。

5.判断下列操作中可能发生的反应和现象并予以解释。

(1)将少量caco3固体放入稀hcl中。

(2)将少量mg(oh)2放入nh4cl溶液中。

答:(1)caco3固体溶解,有无色无味气体产生。

caco3(s)ca2+ + co32-+2h+h 2co 3→co2 +h 2o(2)mg(oh)2固体溶解,有无色刺激性气体产生。

的氨水,有肉色沉淀生成。

原因是饱和h2s水溶液提供的s2-很少,此时mg(oh)2(s)mg2+ + 2oh-+2nh4+(4)黑色固体变成白色固体。

so42- +h2o(5)白色沉淀变成黄色沉淀。

agcl(白)+ i-(6)浅兰色沉淀消失,生成深兰色溶液。

cu(oh)2 + 4nh3pb2++so42-→pbso4↓(白)agi(黄)+cl-[cu(nh3)4](oh)2答:(1)(2)减小(同离子效应);(3)增大(盐效应);(4)增大(配位效应)。

基础化学李保山第二版9原子结构习题答案

基础化学李保山第二版9原子结构习题答案

9 原子结构习题解答(p262-265)思考题:1. 1862年,尚古多提出了元素的性质就是原子量的变化论点,创造了一个元素螺旋图,初步提出了元素的周期性。

1864年,迈尔提出了六元素表,为元素周期表提供了雏形。

1865年,纽兰兹将元素按原子量次序排列发现了八音律。

1869年,人们已经发现了63种元素,门捷列夫按原子量的大小和元素的化学性质之间的关系列成一张表,这便是他的第一张元素周期表。

经过继续努力,1871年他发表了关于周期律的新的论文。

文中他修正了1869年发表的元素周期表。

在前表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。

同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。

在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。

元素周期律,使人类认识到化学元素性质发生变化是由量变到质变的过程,把原来认为各种元素之间彼此孤立、互不相关的观点彻底打破了,使化学研究从只限于对无数个别的零星事实作无规律的罗列中摆脱出来,从而奠定了现代化学的基础。

2. 根据电子排布顺序得出,第八周期排布为:8s、5g、6f、7d、8p,s轨道2个电子、p轨道6个电子、d轨道10个电子、f轨道14个电子、g轨道18个电子,总共有50个电子,也就是八周期元素共有50个元素。

3. 在多电子体系中,由于其他电子对某一电子的排斥作用而抵消了一部分核电荷,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。

在原子核附近出现的概率较大的电子,可更多地避免其余电子的屏蔽,受到核的较强的吸引而更靠近核,这种进入原子内部空间的作用叫做钻穿效应。

与屏蔽效应相反,外层电子有钻穿效应。

外层角量子数小的能级上的电子,如4s电子能钻到近核内层空间运动,这样它受到其他电子的屏蔽作用就小,受核引力就强,因而电子能量降低,造成E(4s) <E(3d) 。

基础化学李保山第二版-化学热力学基础习题标准答案

基础化学李保山第二版-化学热力学基础习题标准答案

基础化学李保山第二版-化学热力学基础习题答案————————————————————————————————作者:————————————————————————————————日期:2884 化学热力学基础习题解答(p87-89)思考题1.解:(1) ⨯ 原因见(3)(2) ⨯ 原因见(3)(3) √ 确切地说,应为:恒压过程中,系统的焓变等于恒压反应热。

(4) ⨯ H 是状态函数,任何过程都有∆H ,不是只有恒压过程才有∆H 。

(5) ⨯ 原因见(7) (6) ⨯ 原因见(7)(7) √ 应为:在某温度和标准压力下,最稳定的纯态单质的标准生成焓等于零。

(8) ⨯ 由于CaCO 3的生成焓为负值,但不是由于它的分解是吸热的。

(9) ⨯ 热化学方程式的系数影响反应的焓变值。

2.解:(1)、(2)、(5)单质的标准生成焓不等于零。

3.解:(1) 不同,因为二反应方程式中各物质前的系数不同; (2) 不同,因为二反应中Br 2的状态不同。

4.解:书写热化学方程式应注意:(1) 注明各物质前的计量系数−表明物质的量。

(2) 标明物质所处的状态(l 、g 、s)和晶形;对于溶液中的反应,还要注明物种的浓度,以aq 代表水溶液。

(3) 注明温度。

(4) 标明反应热(焓变)。

5. 解:(1) ∆S > 0 ; (2) ∆S > 0 ; (3) ∆S > 0 ; (4) ∆S < 0 ; (5) ∆S < 0 ; (6) ∆S < 0 6. 解:(1) ∆S < 0 ; (2) ∆S > 0 ; (3) ∆S > 0 ; (4) ∆S < 0 ; (5) ∆S > 0习题1.解:(1) ∆U = Q + W = 100 – 540 = - 440 J(2) ∆U = Q + W = – 100 + 635 = 535 J2.解:(1) W = – p 外∆V = – 100( 0.040 – 0.015 ) = - 2.5 kJ(2) 中间平衡态时,气体的体积为V = 33025.010200298314.80.2m p nRT =⨯⨯⨯= W = – p 外,1∆V 1 + (– p 外,2∆V 2) = - 200(0.025-0.015) - 100(0.040-0.025) = - 3.5 kJ3.解:此过程为: )()(22l O H g O H =解法1:恒压过程:∆H = Q = - 2.26 ⨯ 450 = -1017 kJ∆U = ∆H – (∆n)RT = -1017 – ( 0 - 18450)⨯ 8.314 ⨯ (100 + 273.15) ⨯ 10-3 = -939.4 kJW = ∆U – Q = -939.4 – (-1017) = 77.6 kJ9 9解法2:33311m 76480Pa 103101mol Kg 100218K 15373K mol J 3148Kg 450 0218450../....V RT .pV nRT pV =⨯⋅⨯⋅⋅⋅⋅=⇒=⇒=--- 所以77.5KJ 7648.0103.101W 33=⨯⨯=m PaKJ 1017g 450KJ/g 26.2-=⨯-=Q由于为恒压过程,KJ 1017Q -==∆p H-939.5KJ 77.5KJ KJ 1017U =+-=+=∆W Q4.解:方程式 (1) – (2) 得2N 2(g) + 2O 2(g) = 4NO(g) ∆H θ = 360 kJ ⋅mol -1所以11904360),(--⋅=⋅=mol kJ mol kJ g NO H m f θ∆5.解:反应)()(2)(42g CH g H s C =+可由 (1) + 2 ⨯ (2) – (3) 得到,所以123123935228588900753.(.)(.).r m r r r H H H H kJ mol θθθθ-∆=∆+⨯∆-∆==-+⨯---=-⋅6.解:① N 2H 4(l)生成反应为:N 2(g) + 2H 2(g) → N 2H 4(l)由反应[(2) ⨯ 3 + (3) – (1) – (4)]/4 得 N 2(g) + 2H 2(g) → N 2H 4(l)② N 2H 4(l)的)]4()1()3()2(3[41θθθθθm r m r m r m r m f H H H H H ∆-∆-∆+∆=∆16.50)]8.285()5.1011()143()3.317(3[41-⋅=-----+-⨯=mol kJ7.解:由反应(1) – 2 ⨯ (2) – 2 ⨯ (3)得N 2H 4 (l) + 2H 2O 2 (l) → N 2 + 4H 2O(l) 故此反应的12.818)5.51(25.14922.622)3(2)2(2)1(-⋅-=-⨯-⨯--=∆⨯-∆⨯-∆=∆mol kJ H H H H m r m r m r m r θθθθ8.解:(1) 反应NH 3(g) + HCl(g) = NH 4Cl(s) 的4313144461923176 (,)(,)(,).(.)(.)r m f m r m f mH H NH Cl s H NH g H HCl g kJ mol θθθθ-∆=∆-∆-∆=-----=-⋅故2.0mol HCl (g)与2.0mol NH 3 (g)反应生成NH 4Cl (s)放出的热量为2 ⨯ 176 kJ = 352 kJ ;(2) 由于HCl (g) → HCl (aq)12.73-⋅-=∆mol kJ H m r θ1010NH 3 (g) → NH 3 (aq)12.35-⋅-=∆mol kJ H m r θNH 3 (aq) + HCl (aq) = NH4Cl (aq) 1602.r mH kJ mol θ-∆=-⋅ 故1.0mol HCl (g)和1.0mol NH 3 (g)同时溶解于水中NH 3 (g) + HCl (g) = NH4Cl (aq) (i) 的热效应为7323526021686.(.)(.).r mH kJ mol θ-∆=-+-+-=-⋅(3) (i)过程的热效应),(),(),(34g HCl H g NH H aq Cl NH H H m f m r m f mr θθθθ∆-∆-∆=∆ 4)3.92()1.46(),(=----∆=aq Cl NH H m f θ可求出),(4aq Cl NH H m f θ∆=-307.0 kJ ⋅mol -1(4) 用反应NH 3(g) + HCl(g) = NH 4Cl(aq)减去NH 3(g) + HCl(g) = NH 4Cl(s)得 NH 4Cl(s) = NH 4Cl(aq)此过程的热效应为14.7)176(6.168-⋅=--=∆mol kJ H m r -θ,所以NH 4Cl (s)溶解是吸热过程。

基础化学第十章后习题解答

基础化学第十章后习题解答

基础化学第十章后习题解答第十章后习题解答习题1.区别以下名词:(1)σ键和π键(2)正常共价键和配位共价键(3)极性键和非极性键(4)定域π键和离域π键(5)等性杂化和不等性杂化(6)成键轨道和反键轨道(7)永久偶极和瞬间偶极(8)vanderwaals力和氢键求解(1)σ键就是指两个原子的原子轨道沿键轴方向以“头碰面”方式重合所构成的共价键;而π键就是指两个原子轨道旋转轴键轴以“肩并肩”方式重合所构成的共价键。

(2)正常共价键是指成键的两个原子各提供一个电子组成共用电子对所形成的化学键;而配位共价键是指成键的一个原子单独提供共用电子对所形成的共价键。

(3)极性键就是所指由电负性相同的两个原子构成的化学键;而非极性键则就是由电负性相同的两个原子所构成的化学键。

(4)定域?键属双中心键,是成键两原子各提供一个p轨道“肩并肩”重叠而成,成键电子仅在提供重叠轨道的两个原子之间运动;离域?键则为多中心键,是由多个原子提供的p轨道平行重叠而成,离域轨道上的电子在多个原子区域内运动。

(5)等性杂化就是指所构成的杂化轨道的能量全然成正比的杂化;而左右性杂化就是指所构成的杂化轨道的能量不全然成正比的杂化。

(6)成键轨道是指两个原子轨道相加叠加而成的分子轨道,其能量比原来的原子轨道低;而反键轨道是指两个原子轨道相减叠加而成的分子轨道,其能量比原来的原子轨道高。

(7)永久极化就是指极性分子的也已、负电荷战略重点不重合,分子本身存有的极化;瞬间极化就是指由于分子内部的电子在不断地运动和原子核在不断地振动,并使分子的也已、负电荷战略重点不断出现瞬间加速度而产生的极化。

(8)vanderwaals力是指分子之间存在的静电引力;而氢键是指氢原子与半径小,电负性大的原子以共价键结合的同时又与另一个半径小、电负性大的原子的孤对电子之间产生的静电吸引力。

氢键的作用力比vanderwaals力强。

2.共价键为什么具备饱和状态性和方向性?解根据pauli不相容原理,一个轨道中最多只能容纳两个自旋方式相反的电子。

高教第二版有机化学课后习题答案第10章

高教第二版有机化学课后习题答案第10章

第十章 醇和醚一、将下列化合物按伯仲叔醇分类,并用系统命名法命名。

仲醇,异丙醇 仲醇,1-苯基乙醇 仲醇,2-壬烯-5-醇1.正丙醇解:与卢卡斯试剂反应速度顺序如下:三、 比较下列化合物在水中的溶解度,并说明理由。

理由:羟基与水形成分子间氢键,羟基越多在水中溶解度越大,醚可与水形成氢四、 区别下列化合物。

解:烯丙醇 丙醇 1-氯丙烷3.α-苯乙醇β-苯乙醇解:与卢卡斯试剂反应,α-苯乙醇立即变浑,β-苯乙醇加热才变浑。

五、顺-2-苯基-2-丁烯和2-甲基-1-戊烯经硼氢化-氧化反应后,生成何种产物?解:六、写出下列化合物的脱水产物。

七、比较下列各组醇和溴化氢反应的相对速度。

1.苄醇,对甲基苄醇,对硝基苄醇八、1、 3-丁烯-2-醇与溴化氢作用可能生成那些产物?试解释之。

解:反应产物和反应机理如下:2、 2-丁烯-1-醇与溴化氢作用可能生成那些产物?试解释之。

解:反应产物和反应机理如下:九、反应历程解释下列反应事实。

解:反应历程如下:十、 用适当的格利雅试剂和有关醛酮合成下列醇(各写出两种不同的组合)。

1.2-戊醇4.2-苯基-2-丙醇十一、合成题1.甲醇,2-丁醇合成2-甲基丁醇2.正丙醇,异丙醇 2- 甲基-2-戊醇3.甲醇,乙醇 正丙醇,异丙醇 解:4.2-甲基-丙醇,异丙醇 2,4-二甲基-2-戊烯 解:5.丙烯 甘油 三硝酸甘油酯3-甲基-1-苯基-2-丁烯1.乙基异丙基甲醇 2-甲基-2-氯戊烷。

(CH)CCH CH2OHMg, (C2H5)2O(CH3)3CMgBrO(CH3)3CCH2CH2MgBr(CH3)3CCH2CH2OH2+2.OOHCH 2CH 2CH 3O2CH 3CH 2CH 2MgBrH 2O, H+CH 2CH 2CH 3+OHCH 2CH 2CH 3H 2O 2, OH OHCH 2CH 2CH 3(1)OOH2CF 3CO 3HOCH 3CH 2CH 2MgBr2+OHCH 2CH 2CH 3(2)(2)OH OCH3OCH3C2H5OCH3C2H5BrOCH3C2H5MgBrOCH3C2H5CH(OH)CH2CH332醚Br2/FeC2H5Cl脱水则生成一种不饱和烃,将此烃氧化可生成酮和羧酸两种产物的混合物,推测该化合物的结构。

基础化学第二版课后习题答案

基础化学第二版课后习题答案

基础化学第二版课后习题答案【篇一:基础化学第二版习题答案chap5】1.何谓沉淀溶解平衡?同物质的量的bacl2和h2so4混合溶液中,含有哪些离子?这些离子浓度之间存在着哪些关系?答:难溶电解质溶解和沉淀速度相等,固体的量和溶液中分子或离子的量不再改变的状态,称为沉淀溶解平衡。

ba2+、cl-、so4、h+、oh-2?2.活度积、溶度积、离子积之间有何区别与联系?答:活度积、溶度积指平衡状态下的活度积或浓度积,对给定的难溶电解质其活度积只与温度有关,溶度积不但与温度有关,还和溶液离子强度有关,对于ma型难溶电解质:?ksp(ma)。

离子积指任意状态下的浓度积,其值是任意的。

?(m?)??(a?)3.无副反应时,沉淀的溶度积与溶解度有何关系?溶度积小的物质,它的溶解度是否一定小?举例说明。

答:s?mmnn不同类型难溶电解质的溶解度不能根据溶度积数值大小直接判断。

溶度积小的物质,它的溶解度是不一定小,如ag2cro4与agcl。

4.除了沉淀物质本性以外,影响沉淀溶解度的主要因素有哪些?答:除了沉淀物质本性以外,影响沉淀溶解度的主要因素还有:同离子效应、盐效应、酸碱效应、配位效应等。

5.判断下列操作中可能发生的反应和现象并予以解释。

(1)将少量caco3固体放入稀hcl中。

(2)将少量mg(oh)2放入nh4cl溶液中。

答:(1)caco3固体溶解,有无色无味气体产生。

caco3(s)ca2+ + co32-+2h+h 2co 3→co2 +h 2o(2)mg(oh)2固体溶解,有无色刺激性气体产生。

的氨水,有肉色沉淀生成。

原因是饱和h2s水溶液提供的s2-很少,此时mg(oh)2(s)mg2+ + 2oh-+2nh4+(4)黑色固体变成白色固体。

so42- +h2o(5)白色沉淀变成黄色沉淀。

agcl(白)+ i-(6)浅兰色沉淀消失,生成深兰色溶液。

cu(oh)2 + 4nh3pb2++so42-→pbso4↓(白)agi(黄)+cl-[cu(nh3)4](oh)2答:(1)(2)减小(同离子效应);(3)增大(盐效应);(4)增大(配位效应)。

基础化学习题库(附答案)

基础化学习题库(附答案)

基础化学习题库(附答案)一、判断题(共100题,每题1分,共100分)1.某物质的质量如果是1千克,它的物质的量就是1mol。

A、正确B、错误正确答案:B2.普通酸度计通电后可立即开始测量。

A、正确B、错误正确答案:B3.没有用完,但是没有被污染的试剂应倒回试剂瓶继续使用,避免浪费。

A、正确B、错误正确答案:B4.烯烃的化学性质比较稳定,原因是双键比单键牢固。

A、正确B、错误正确答案:B5.实验室中油类物质引发的火灾可用二氧化碳灭火器进行灭火。

A、正确B、错误正确答案:A6.判断滴定终点并不一定都用指示剂,还可以用光学或电学的方法来确定。

A、正确B、错误正确答案:A7.溶液的浓度是指一定量的溶液或溶剂中所含溶质的量。

A、正确B、错误正确答案:A8.将醋酸溶液加水稀释一倍,则溶液中的氢离子浓度就减少到原来的二分之一。

A、正确B、错误正确答案:B9.烃分子中的氢原子被其他原子或原子团代替而生成的一系列化合物叫做烃的衍生物。

A、正确B、错误正确答案:A10.由于溶液的体积随温度变化而变化,所以物质的量浓度也随温度的变化而改变。

A、正确B、错误正确答案:A11.配合滴定中,一般情况下,对主反应影响最大的是EDTA的浓度。

A、正确B、错误正确答案:B12.苯环中因含有碳碳双键,所以化学性质非常活泼。

A、正确B、错误正确答案:B13.分析结果要求不是很高的实验,可用优级纯或分析纯试剂代替基准试剂。

A、正确B、错误正确答案:A14.物质的量是国际单位制中7个基本量之一。

A、正确B、错误正确答案:A15.一般来说,只要沉淀后溶液中被沉淀离子的浓度小于或等于10-5mol·L-1,就可以认为该离子被沉淀完全。

A、正确B、错误正确答案:A16.按质子理论,Na2HPO4是两性物质。

A、正确B、错误正确答案:A17.离子的摩尔质量在数值上等于组成该离子的各原子相对质量之和。

A、正确B、错误正确答案:A18.苯环上容易发生亲电取代反应,也容易发生亲电加成反应。

基础化学习题参考答案 (58)[1页]

基础化学习题参考答案 (58)[1页]

试题库出题卡多选题教材名称作者
二、选择题
1、分子组成符号CnH2n-2通式的化合物可能是(B )。

A、环烷烃
B、环烯烃
C、环状共轭二烯烃D、单环芳烃
2、能使溴水溶液颜色退去的物质可能是(B)。

A、环戊烷
B、甲基环丙烷
C、苯
D、乙基环己烷
3、不能发生傅克反应的物质是(B)。

A、甲苯
B、硝基苯
C、氯苯
D、叔丁基苯
4、不能使酸性高锰酸钾溶液褪色的物质是( B )。

A、环己烯
B、环己烷
C、甲苯
D、1,3丁二烯
5、能够活化苯环的第一类定位基是(C)。

A、-ClB、-CHOC、-NHCOCH3D、SO3H
编号方法:题目编号按章编号:章号在前占2位,共用四位数。

如简答题第十一章第二题:1102
答题卡请同时提供电子版文档,如果某种类型题没有,就不用填该类型卡。

如果提供卡中有没有所须类型,可仿照设计。

基础化学(李保山)化学平衡与化学动力学习题解答

基础化学(李保山)化学平衡与化学动力学习题解答

第五章 化学反应速率及化学平衡习题 (p111-113)参考答案P110:2. 解:(1) 252242]/)([]/)([]/)([θθθθp O N p p O p p NO p K = (2) 224]/)([]/)([θθθp O H p p HCl p K = (3) θθp CO p K /)(2=(4) 222]/)([]/)(][/)([θθθθc H c c Zn c p S H p K ++=(5) ]/)([]/)(][/)([2θθθθp Cl p c HClO c c HCl c K = (6) ]/)(][/)([1θθθc Cl c c Ag c K -+=1.解答:(1) 在0~2分钟内的平均反应速率为13min dm mol 125.0--⋅⋅=v(2) 在第2分钟时瞬时速率需通过作图法(如右图)求得 =瞬时v 11min L mol 089.0--⋅⋅2.解答:反应对反应物A 的反应级数为2,对反应物B 的反应级数为1,反应的速率方程为 B 2A 9c c v =3.解答:(1)反应对HgCl 2的反应级数为1,对-242O C 的反应级数为2,总反应级数为3;(2) 速率常数是7.6⨯10-3 mol -2⋅dm 6⋅s -1;(3) 当HgCl 2浓度为0.020 mol ⋅ dm -3,-242O C 的浓度为0.22 mol ⋅ dm -3时,反应速率为 136s dm mol 104.7---⋅⋅⨯=v4.解答:(1) 即该反应对反应物A 的级数为1,反应对反应物B 的级数为2,故反应总级数为3; (2) 反应的速率系数为 k = 2.0 mol -2 ⋅ dm 6 ⋅ s -1(3) 反应速率方程:2B A ))((0.2c c v =;当c A = c B = 0.50 mol ⋅dm -3时,反应速率为: v = 0.25 mol ⋅dm -3⋅s -1 5.解答: k 227 = 3.9 ⨯ 10-3 dm 3 ⋅ mol -1 ⋅ s -1 6.解答:反应的活化能为E a = 103 kJ ⋅ mol -17.解答:该反应用I -催化时,其反应速率是无催化剂时的1.88 ⨯103倍;用酶催化时,其反应速率是无催化剂时的5.51⨯108倍。

大学化学(第二版)部分习题参考答案

大学化学(第二版)部分习题参考答案
Q = = = 100
(PNH3/Pө)2
(PN2/Pө)1 ·(PH2/Pө)3
ΔrGm(T) = ΔrGmө(T)+2.303RT lgQ
Sn(s)+O2(g)= SnO2(s)
[P34:8题] 设汽车内燃机内温度因燃料燃烧反应达到1300℃, 试计算该反应: N2 (g) + O2 (g) = 2NO(g) 在1300℃时的标准摩尔吉布斯函数变和标准平衡常数Kө。
p(O2) = 101.325Kpa×21% = 21.28Kpa
P(O2)

1
P(O2)/Pө
21.28Kpa
100Kpa
解: 查表可知: Sn(s) + O2(g) = SnO2(s) ΔfGmө (298.15K)/( kJ·mol-1) 0 0 -519.7
(1) 在标准态下自发进行的温度T的计算:
△rSmө(298.15K) =∑viSmө(生成物) -∑viSmө(反应物) =[ 1×106.7] –[1×39.75 + 1×248.22 + 1/2×205.14] = -283.84J·mol-1·K-1
(1000/100)1 ·(1000/100)3
(1000/100)2
ΔrGm(T) = ΔrGmө(T) + 2.303RTlgQ = -21.63 + 2.303×8.314×10-3×573.15×lg(100) = 0.318(kJ·mol-1)
ΔrGm(T) =ΔrGmө(T) +2.303RTlgQ = -145.28 + 2.303×8.314×10-3×1250×lg(22.37) = -112.98kJ·mol-1<0

结构化学基础第二版

结构化学基础第二版

光电效应:光照射在金属表面,使金属发射出电子的现象。
1900年前后,许多实验已证实:
●照射光频率须超过某个最小频率0,金 属才能发射出光电子;
●增加照射光强度,不能增加光电子的动
能,只能使光电子的数目增加;
Ek
●光电子动能随照射光频率的增加而增加。

电子
金属
经典理论不能解释光电效应:
经典理论认为,光波的能量与其强度 成正比,而与频率无关;只要光强足够, 任何频率的光都应产生光电效应;光电子 的动能随光强增加而增加,与光的频率无 关。这些推论与实验事实正好相反。
经典理论无论如何也得不出这种 有极大值的曲线。
实验曲线 黑体辐射能量分布曲线 波长
Planck能量量子化假设
• 1900年,Planck(普朗克)假定,黑体中原子或分子辐射 能量时作简谐振动,只能发射或吸收频率为,能量为h 的整数倍的电磁能,即振动频率为的振子,发射的能量 只能是0h,1h,2h,……,nh(n为整数)。
1. 波函数和微观粒子的状态
• 假设Ⅰ:对于一个微观体系,它的状态和有关情况可用波函数(x,y,z,t) 表示。是体系的状态函数,是体系中所有粒子的坐标和时间的函数。
• 定态波函数:不含时间的波函数(x,y,z)。本课程只讨论定态波函数。
• 一般为复数形式: =f+ig,f和g均为坐标的实函数。 的共轭复数 *=f-ig, *=f2+g2,因此*是实函数,且为正值。为书写方便, 常用2代替*。
电子单缝衍射实验示意图
●测不准关系是经典力学和量子力学适用范围的判据
例如,0.01kg的子弹,v=1000m/s,若△v= v1%,则,
△x=h /(m△v)=6.610-33m,完全可忽略,宏观物体其动量和位置可同时确定; 但对于相同速度和速度不确定程度的电子,△x=h /(m△v)=7.2710-5m,远远 超过原子中电子离核的距离。

基础化学第二版李保山12 主族元素及其化合物概述-学生用

基础化学第二版李保山12 主族元素及其化合物概述-学生用

12 主族元素及其化合物概述习题 (p400-4702) 参考解答1.解答:大量的NH 4+干扰鉴定。

大量的NH 4+应在鉴定前加碱煮沸以除去。

2.解答:(1) [CrO 42-]=2.0×10-3mol .L -1; (2) [Ba 2+]min =1.2×10-10/2.0×10-3=6.0×10-8 mol .L -13.解答: A—BaCO 3;B—BaO ;C—CaCO 3;D—BaCl 2;E—BaSO 4;4.解答:白色固体为KCl 和MgSO 4的混合物。

5.解答:A—Na ;B—NaOH ;C—HCl ;D—NaCl ;E—AgCl ;F—NaO 2;G—Na 2O 2;H—H 2O 2;I—O 26.解答:(1) 2I -+Cl 2=I 2+2Cl -I 2+6H 2O+5Cl 2=2IO 3-+10Cl -+12H +2Br -+Cl 2=Br 2+2Cl -(2) 不一定。

电动势大,反应速度不一定快。

7.解答:(1) 3HClO 2HCl+HClO ⎯⎯→⎯加热3(2) HClO 3加热的反应有:3HClO 3⎯⎯→⎯加热HClO 4+2ClO 2+H 2O|----------------→Cl 2+2O 28HClO 3⎯⎯→⎯加热4HClO 4+3O 2+2Cl 2+2H 2O26HClO 3⎯⎯→⎯加热10HClO 4+15O 2+8Cl 2+8H 2O(3) KClO 3加热的反应有:2KClO 3⎯⎯→⎯加热2KCl+3O 2 (cat.)4KClO 3⎯⎯→⎯加热3KClO 4+KCl(4) NH 4Cl NH ⎯⎯→⎯加热3+HCl(5) (NH 4)2CO 3⎯⎯→⎯加热2NH 3+CO 2+H 2O(6) NH 4NO 2加热的反应有:NH 4NO 2⎯⎯→⎯加热N 2+2H 2O2NH 4NO 2⎯⎯→⎯加热2NH 2+2HNO 2(7) NH 4NO 3加热的反应有:2NH 4NO 3⎯⎯→⎯低温 NH 3+HNO 32NH 4NO 3⎯⎯→⎯加热N 2O+2H 2O (100~300℃)2NH 4NO 3⎯⎯→⎯加热2N 2+O 2+4H 2O (突然加热至高温)2NH 4NO 3⎯⎯→⎯加热N 2+2NO+4H 2O (加热) 3NH 4NO 3⎯⎯→⎯加热2N 2+N 2O 3+6H 2O (加热) 4NH 4NO 3⎯⎯→⎯加热3N 2+2NO 2+8H 2O (加热)5NH 4NO 3⎯⎯→⎯加热4N 2+2HNO 3+9H 2O (加热)(8) (NH 4)2SO 4⎯⎯→⎯加热NH 3+NH 4HSO 4(9) (NH 4)2Cr 2O 7⎯⎯→⎯加热Cr 2O 3+N 2+4H 2O8.解答:CaCO 3、CaC 2O 4可溶于HAcCaCO3+2HAc=Ca(Ac)2+CO2↑+H2OCaC2O4+2HAc=H2C2O4+Ca(Ac)2CaCO3可溶于稀强酸:CaCO3+2H+=Ca2++CO2↑+H2OBaSO4不溶于酸9.解答:(1) 2Ag++S2O32-= Ag2S2O3↓(白色)Ag2S2O3+H2O = +H2SO4+Ag2S↓(黑色)(2) 2Ag++S2O32-= Ag2S2O3↓(白色)Ag2S2O3+2S2O32-= [Ag2(S2O3)3]4-10.解答:Na2O:与H2O作用呈碱性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 分子结构习题解答(p322-325)思考题1. Na和Cl、F之间,K和Cl、F之间能形成离子化合物。

2. 答案:Be2+ 2电子构型;Ca2+8电子构型;Fe3+9~17电子构型;Cu+ 18电子构型;Sn2+18+2电子构型;Pb4+18电子构型;O2-8电子构型。

3.答案:S2->K+>Na+>Mg2+4. Sn4+ >Fe2+ >Sn2+ >Sr2+>Ba2+5. S2->O2->F->Cu+ >Na+6. (1)半径比规则可以用来判断离子晶体的晶格类型。

晶格能可以用来衡量离子键的强弱。

(2)离子极化的结果使原来的离子键向共价键方向过渡。

(3)18电子构型的正离子极化率较强;18电子构型的负离子变形性较强。

7. 答案:原子轨道的角度分布方向是一定的,共价键的形成遵循最大重叠原则,所以只能在建轴方向上才能形成稳定的共价键,因而共价键具有方向性;每个原子的未成对电子数时一定的,有几个未成对电子就可以形成几个共用电子对,所以共价键具有饱和性。

8. (1)由两个相同或不相同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键(头碰头),叫做σ键。

当两个原子的轨道从垂直于成键原子的核间连线的方向接近,发生电子云重叠而成键(肩并肩),这样形成的共价键称为π键。

(2)单键:在价键理论中,两个原子之间如只有一对共用电子,形成的化学键称为单键。

单电子键:在分子轨道理论中,只有一个电子填入分子轨道形成的化学键称为单电子共价键。

(3)同类型的杂化轨道可分为等性杂化和不等性杂化两种。

如果原子轨道杂化后形成的杂化轨道是等同的,这种杂化叫做等性杂化。

如果原子轨道杂化后形成的杂化轨道中有一条或几条被孤对电子所占据,使得杂化轨道之间的夹角改变,这种由于孤对电子的存在而造成杂化轨道不完全等同的杂化,叫做不等性杂化。

9. (1)BF3键角大,因为BF3中B的价电子结构为2s22p1,形成分子时,进行sp2杂化,三个sp2杂化轨道分别与三个F原子的p轨道成键,故BF3分子为平面三角形,键角为120度。

PF3中,磷原子有一对孤对电子。

孤对电子与单键之间的斥力使它们的分子构型为三角锥形。

因此BF3键角大。

(2)NH3比PH3的键角大是因为P的电负性较N小,PH3中的成键电子云比NH3中的更偏向于H,同时P-H键长比N-H键长大,这样导致PH3中成键电子对之间的斥力减小,孤对电子对成键电子的斥力使H-P-H键角更小。

(3)NH3的键角大,因为在NH3中成键的电子对都靠近电负性较大的氮原子一边,在氮原子处成键电子的相互排斥较强。

但是,在NCl3中成键的电子对都被拉向电负性较大的氯原子一边(“远离”中心原子),在氮原子处成键电子的相互排斥较弱.10. CO2中,先有一个2s电子受到激发而进入空的2p z轨道中,形成2s2p x2p y2p z中各有一个电子的激发态电子构型,然后2s2p x两条轨道杂化形成两条sp杂化轨道。

这两条轨道再分别去与氧各成一个σ键(头碰头重叠),如O-C-O结构。

此时C原子还有两个未参加成键的p轨道,分别与O的p轨道从侧面重叠各形成一个π键,两个π键分布于C的两侧,且所在平面互相垂直。

BBr3中,先有一个2s电子受到激发而进入空的2p y,形成sp2杂化轨道。

这三条轨道再分别去与Br各成一个σ键(头碰头重叠)。

轨道中B的2p z轨道(空)和Br的孤对电子(在4p z中)可以共轭,形成π(4,6)。

其中以xy平面为分子平面。

HgCl2,类似于CO2,Hg的外层电子为6s2,2个Cl提供2个电子,所以其外层为4个电子,采取sp杂化;这两条轨道再分别去与Cl各成一个σ键(头碰头重叠),Cl的孤对电子可以和Hg的6p轨道重叠形成π键,且为2组π(3,4)。

NH4+中,N发生不等性sp3杂化,孤电子对占有了能量低含s成分多的杂化轨道,与H+的空轨道形成配位键。

其余3个未成对电子分别占有另外3个杂化轨道,它们分别与H原子的s轨道重叠形成σ键。

11.答案:BF3分子中B原子采用sp2杂化轨道与F原子成键,所以具有平面三角的几何构型;而NF3分子中N原子采用不等性sp3杂化轨道与F原子成键,所以其几何构型为三角锥型。

12.答案:CS2:直线型,非极性分子SiCl4:正四面体型,非极性分子CHCl3:变形四面体型,弱极性分子H2S:V型,极性分子NO2:V型,极性分子BCl3:平面正三角形,非极性分子NF3:三角锥型,极性分子13.答案:(1)HF>HCl;(2) FO2>CS2;(3)CCl4=SiBr4;(4) BF3<NF314. 答案:B2分子轨道表达式为(σ1s)2(σ1s*)2(σ2s)2 (σ2s*)2 (π2p y)1 (π2p z)1,计算得键级为1,因此较稳定,π2p y和π2p z 各有一个电子,因此具有顺磁性。

15. 键能越大,分子越稳定;键长越长,稳定性越差;键级越高,键能越大,分子越稳定。

16.答案:(1)氖气和四氯化碳:色散力(2)碘化氢和水:取向力,诱导力,色散力(3)过氧化氢和氟化氢:取向力,诱导力,色散力,氢键(4)二氧化碳和二氧化硫:诱导力,色散力(5)甲醇和水:取向力,诱导力,色散力,氢键17.答案:(1) NaCl:阴、阳离子间的静电作用力离子键(2) Ne:瞬间偶极子与瞬间诱导偶极子之间的静电作用力色散力(3) HCl:偶极子与偶极子之间的静电作用力色散力(4) C6H6:瞬间偶极子与瞬间诱导偶极子之间的静电作用力色散力18. 答案:(1) 氯化氢的热稳定性比碘化氢好;(2) 键能。

H-Cl键的键能比H-I键的键能大,化学键稳定,不易断裂;(3) 如果用氟化氢代替氯化氢进行实验,也不会生成F2。

19. 答案:(1)I2(s):色散力;色散力较大,呈固态(2)SO2(g):取向力,诱导力,色散力;主要色散力,作用力较小,呈气态(3)H2O(l):取向力,诱导力,色散力,氢键;主要氢键。

较强,液态(4)溴水(aq):取向力,诱导力,色散力;主要色散力。

作用力较大,液态(5)干冰:色散力;色散力较小,易升华。

20.答案:乙醇(C2H5OH)沸点较大,因其分子间有氢键,而二甲醚(CH3OCH3)分子间无氢键。

21. 答案:分子间氢键,使分子间的结合力增强,使熔沸点升高,如能与溶剂分子间产生氢键,会使溶解度增加。

分子内可以产生氢键时,会阻碍分子间氢键的形成,因此使熔沸点减低,在溶剂中的溶解度下降。

对硝基苯酚不能形成分子内氢键,可以形成分子间氢键,邻硝基苯酚能形成分子内氢键。

因此对硝基苯酚熔沸点,在水中溶解度都比邻硝基苯酚高。

22. 答案:导体能导电,是因为存在导带,Ag和Mg的最外电子排布如下:Ag: 4d10 5s1 Mg:3s2 。

都具有空的分子轨道,因此电子可在能带内不同的能级之间自由运动,在外电场的作用下,即可形成电流。

23. 答案:(1)正确;(2)错,体心立方堆积配位数为8,而六方密堆积和面心立方密堆积的配位数都为12;(3)正确。

24. 略25. 答案:超分子化学研究的是分子之间以分子间力高层次组装的化学,是分子识别和分子组装的化学。

可以说超分子化学是高于分子层次的化学,或称之为分子之外的化学。

超分子具有分子识别的功能。

因此,超分子在分子器件,靶向药物,高选择性催化剂等方面具有重要应用前景。

具体应用请自行查阅相关文献(, )。

26.以PBr3为例,过程如下:LP=(5-3*1-0)/2=1;中心原子与三个Br成键,所以BP=3;VP=LP+BP=1+3=4。

因此电子几何构型为正四面体。

由于有一对孤对电子,排斥作用较大,因此分子几何构型为三角锥形。

27. 对NH3,与上题计算过程相同得:LP=1 BP=3 VP=4。

因此电子几何构型为正四面体。

由于有一对孤对电子,对其他三根键产生排斥作用,所以氨气的分子几何结构是三角锥型。

28. H2分子的基态电子组态为(σ1s)2键级为(2-0)/2=1;H2+分子的基态电子组态为(σ1s)1键级为(1-0)/2=1/2;He2+分子的基态电子组态为(σ1s)2(σ1s*)1键级为(2-1)/2=1/2;29. 晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。

具有各向异性。

非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。

宏观上,晶体具有整齐规则的几何外形和固定的熔点。

30. 晶状石英是SiO2晶体,是原子晶体,键能很大,键长很短,且排列长程有序,因此密度较大,而无定型硅不存在这种长程有序的晶格结构,原子间的晶格网络呈无序排列,因此密度较小。

31. Zr:金属晶体;N2O4:分子晶体;Si:原子晶体;Ne:分子晶体;Ni(ClO3)2:离子晶体对二氯苯:分子晶体。

32.(1)Xe沸点高,都是分子晶体,且Ar和Xe结构类似,因此分子量高的沸点高。

(2)SiO2沸点高,因为SiO2是原子晶体,固体二氧化碳是分子晶体。

(3)KBr沸点高,因为KBr是离子晶体,固体Br2是分子晶体。

(4)C6Cl6沸点高,都是分子晶体,且两者结构类似,因此分子量高的沸点高。

习题1.答案:RbCl r+/r-=0.818 CsCl型AgCl r+/r-=0.696 NaCl型NaI r+/r-=0.440 NaCl型CaO r+/r-=0.707 NaCl型2.答案:(1)Ag+ (电荷相同,Ag+的半径略小,18电子构型的离子,外层d电子对原子核的屏障作用较小,离子的有效核电荷高,对负离子外层电子的引力较大,极化力强。

如Ag+离子的极化力>K+的极化力。

)(2)Li+ (电荷相同,Li+的半径小)(3)Be2+ (Be2+的半径小、且电荷多)(4)Cu+ (Cu+半径<K+(Cu+半径与Na+相近),K+的价电子层为8,Cu+为18)(5)Fe3+ (Fe3+电荷多,半径小)3.答案:(1)因为钠的卤化物是离子晶体,而硅的卤化物是原子晶体。

离子晶体中存在离子键,因而熔点高。

(2)因为从NaF到NaI,阴离子半径变大,离子极化能力变强,形成化学键的极性减弱,因而熔点降低,而硅的卤化物随着原子半径增大,原子之间相互作用力增大,因此熔点增加。

4.答案:V=(0.418×10-9m)3m=4×(59+16)/N A=4.98×10-22gρ=6.82g/cm35.答案:r=2.884×31/2÷4=0.125nm6.答案:离子的变形性和极化力都是Zn2+>Na+,因此ZnS因离子的极化作用而具有较强的共价性,在水中的溶解度小,而Na2S中离子的极化作用小,属于离子化合物,在水中的溶解度大。

相关文档
最新文档