数轴学案(1)

合集下载

数轴(1)学案

数轴(1)学案

2.2数轴(1)学案 组别 姓名自学目标:1、理解数轴的三要素,会画数轴能将已知有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数理解有理数都可以用数轴上的点表示。

2、渗透数形结合的数学思想,让学生知道数学来源于实践.一、课前热身1. 正数都比零______,负数都比零______.2. 零既不是_______,也不是________.3. 整数和_______统称为有理数.二、自学新知阅读教材15-16页,先自己回答下面问题,课内合作如图:温度计上有刻度,我们可以方便的读出温度的度数,并且还可以区分出是零上还是零下-5 0 5类似的,将温度计看成一条直线,得-3 -2 -1 0 1 2 3 4像上面这样的就是数轴, 观察一下数轴,看看有什么特征?(1)________________________________________________(2)_______________________________________________(3)_______________________________________________(4)_______________________________________________所以数轴就是__________________________________________________________数轴三要素是:____________________________________________________________三、基础训练1、有了数轴,数可以转化为图形画出数轴,在数轴上标出 -3 ,-2.5, 2, 431, 0 等各数的点2,、在数轴上,点也表示为数,有了数轴,实现了数形结合。

指出图所示的数轴上A 、B 、C 、D 、E 各点分别表示的有理数四、当堂达标训练(共100分) 我的得分1、画出数轴,在数轴上找出表示下列各数的点:3,-2、1.4,-0.8,0,-4,3.5。

人教版七年级上册数学学案:1.2.2数轴

人教版七年级上册数学学案:1.2.2数轴

师生共用导学稿年级:七年级学科:数学执笔:审核:七年级数学组内容:1.2.2数轴课型:新授时间:9月〖课前回顾〗下列各数:25%、-2.5、3.14、-2、72 、π、-π、0、-0.0101、中正数有__________非负整数有________整数有_________负分数有__________有理数有___________________________〖学习目标〗1、掌握数轴的概念,和数轴的画法;(重点)2、理解数轴上的点与有理数的对应关系“并非一一对应”(难点)〖自主学习〗一、数轴概念:自学课本第8-9页数轴-3 -2 -10 1 2 3图中这条直线有方向(向右方向为正方向),有原点(用0表示),有单位长度,它是数轴。

小结:像上面这样规定了、、和的直线叫数轴。

1、下列各图表示的数轴是否正确?A ······答:-3-2-1 1 2 3B ····答:-2 -1 0 1C ·答:D ·····答:-2-1 0 1 22、读出数轴上的数B D AC E········-4-3-2-1 0 1 2 3答:A点表示-1,B点表示,C点表示,D点表示,E点表示。

3、在图中指出表示0,3,-3.5,-2,2的点A B C D E···········-4-3-2-1 0 1 2 3 4 5答:C点表示0,表示3,表示-3.5,表示-2,表示2.小结:数轴上原点右边的点表示的数是,原点左边的点表示的数是,原点表示的数是。

二、数轴画法画出数轴并在数轴上表示下列各数的点,再按数轴上从左到右的顺序将这些数重新排成一行 4,-3,-1.5,1.3,0小结:在数轴上画出表示数的点,可以先由这个数的符号确定它在原点的哪一边,然后在相应的方向上确定它与原点相距几个单位长度,最后画上点。

1.2数轴学案

1.2数轴学案

一中数学学案 人教版七年级上 第一章有理数
植养人文气韵 奠基文化人生 1 1.2.1数轴
学习目标:
1、了解数轴的概念,掌握数轴的三要素,理解数轴上的点和有理数的对应关系。

2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。

二.分组合作共探讨 汇报评议师精导
1、一般地,在数学中人们用画图的方式把数“_______”,通常用一条直线上的______表示______,这条直线叫做数轴。

2、动手画一条数轴,
思考: (1)数轴的三要素是什么?
(2)数轴必须要注意什么?
三、练习巩固结纲要
3、画出数轴,把下面小题的数分别表示在数轴上:
3,-1,0, ,+2.5, .
4.借助数轴回答下列问题:
(1)写出到原点的距离小于3的整数 .
(2)写出-5和+5之间的所有的整数 .
四.反馈拓展步步高
反馈:
画出一条数轴,,点A 表示-3,在数轴上标明点A ;从点A 出发,沿数轴移动4个单位长到达点B ,则点B 表示的数是多少?
拓展:
1.已知数轴上的点A 所表示的数是2,那么在数轴上到点A 的距离是3的点所表示的数 是 .
2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画
上一条长度为2 011厘米的线段AB ,则线段AB 盖住的整点个数为 .
323 21。

七年级数学《数轴》教案

七年级数学《数轴》教案
数轴是一个应用性很强的数学工具,是一个很直观的概念,能够将很多抽象的概念直观的表示出来,是培养学生“数形结合”的很好的例子。画图时要注意作图的规范,从而达到培养学生严谨的数学习惯的目的。做题时,要体会数形结合的思想。
2、学情分析
(1)知识掌握上,七年级学生刚刚学习了有理数中的正负数,对正负数的概念理解不一定深刻,所以应全面系统的去讲述。
(2)学生对数轴的概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中应予以简单明白、深入浅出的分析。
七年级学生年龄小,注意力易分散,教学中一方面要运用直观生动的形象,引发学生的兴趣;另一方面要创造条件和机会让学生发表见解,发挥学生学习的主动性。
案例名称
数轴
科目
数学
教学对象
七年级三班
主备人
课时
一课时
参与者
教材分析
1、教材的地位和作用
“数轴”是北师大版七年级上册第二章第二节“有理数及其运算”的重点内容之一,是在引进负数及分析了有理数的分类后给出的。数轴是理解有理数的概念和运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它解决一些实际问题:包括绝对值,有理数的运算等,非常直观的把数与点结合起来,渗透着初步的数形结合思想。还是以后学好不等式的解法,平面直角坐标系等打下良好的基础,起到承上启下的作用,可见地位之重要。
出示自学指导,要求学生按设问进行学习:
1、画出一条数轴可以分为哪几步?
2、什么是数轴?它有哪几个基本要素?
3、原点表示什么数?原点右边表示什么数?左边呢?
4、有理数与数轴上的点有什么关系?
5、数轴上两个点表示的数的大小如何确定?
6、正数、0、负数的大小关系在数轴上看出是怎样的?

小学数学数轴教案范文

小学数学数轴教案范文

小学数学是孩子们学习的第一门学科,也是十分重要的一门学科,数轴是小学数学中的一个重要知识点。

在初学数轴的过程中,良好的教案对孩子们的学习起到了很大的帮助。

因此,本文将为大家介绍一篇优秀的小学数学数轴教案。

一、教案设想1、教学目标:(1)掌握数轴的概念及其用法。

(2)学会在数轴上数值的正负及大小关系。

(3)通关数轴解题思路,解决数轴上的加减乘除。

2、教学重点:掌握数轴解题的方法和技巧,理解数轴上数值的正负,判断数值的大小关系。

3、教学难点:学会在数轴上进行加减乘除,掌握数轴的正负规则。

4、教具准备:教材、白板、马克笔、数轴、笔、本子等。

二、教学内容:1、引入:学生们对数轴还不是很熟悉,需要老师引入相关内容:(1)数轴的意义:我们可以将数轴比作一条直线,在它上面用一定的方式标出整数,可以使我们更直观地了解数的大小、正负和数量关系。

(2)数轴的构成:数轴由两部分组成,一是数轴上的数值,二是表示数轴坐标轴的垂线。

2、数轴的正负(1)在数轴上标出原点,并让学生们国际表示法。

(2)教师引导学生们步骤如下:从原点“0”向右走,第一个数是“1”,第二个数是“2”,第三个数是“3”,第四个数是“4”…以此为类推,向左走,依次标出“-1”、“-2”、“-3”、“-4”等。

(3)在数轴上标出正数“5”和负数“-5”,并让学生们把它们排列在一起观察正数和负数互相独立的特点。

3、数轴的大小关系(1)通过教师的引导和实际操作,让学生掌握在数轴上判断数值大小的方法和技巧。

(2)教师先出一组数并让学生在数轴上标出来,学生依次标出后,在数轴上互相对比,根据数轴大小关系判断每个数的大小关系。

(3)在数轴上给出两个数问学生它们的大小关系,教师引导学生从数轴上的位置出发判断两个数的大小关系,以帮助学生掌握数轴上数值大小的判断方法。

4、数轴解题方法(1)在数轴上对比数值大小(2)在数轴上进行加减(3)在数轴上进行乘除5、教学实验:通过练习题目,巩固学生对数轴的掌握以及应用技能,并让学生能够自主解题。

1[1].2.2数轴学案

1[1].2.2数轴学案

学科长:审核意见:签名时间:备课组长:杨爱国编写组组成员:杨爱国、杨明海、杨占成班级:姓名:学号:课题:1.2.2数轴(学案)学习目标1.会正确画出数轴,初步了解有理数与数轴上的点的对应关系.2.能将有理数用数轴上的点来表示,能说出数轴上的点所表示的数.预习要求1.预习课本P8-10有关内容,完成练习。

2.掌握数轴三要素,能正确画数轴,理解有理数与数轴上点的对应关系.尝试练习一1.中的各图是不是数轴?为什么?尝试练习二1.指出数轴上A、B、C、D、E各点分别表示什么数。

2.在数轴上与表示1的点的距离是2个单位长度的点有几个?请你有数轴上把它们画出来,它们分别表示什么数?尝试练习三在数轴上有M、N两点(如图),请回答:(1)将M点向右移动5个单位,点M表示什么数?(2)将N点向左移动2个单位,点N表示什么数?(3)将M、N点怎样移动才能使它们表示的数是0?课堂练习一、选择题。

1、在数轴上,原点及原点左边所表示的数是( )A 、正数B 、负数C 、不是负数D 、不是正数2、下列语句中正确的是( )A 、 数轴上的点只能表示整数B 、 两个不同的有理数可以用数轴上的同一点表示C 、 数轴上的一个点,只能表示一个数D 、 数轴上的点所表示的数都是有理数二、填空。

1、数轴上表示-3的点在原点 侧,距原点的距离是 ,表示-4的点在原点的 侧,距原点的距离是 。

2、与原点的距离为3个单位的点有 个,它们分别表示有理数 和 。

3、在数轴上,A 点表示3,现在将A 点向右移动5个单位,再向左移动12个单位,这时A 点必须向 移动 单位,才能到达原点。

配餐作业一、1、把下列各数在数轴上表示出来。

(1)、-1 ,221 ,0 ,-0.52、指出数轴上A 、B 、C 、D 、E 各点表示什么数。

二、一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?1、向右移动2个单位,再向左移动3个单位。

2、向右移动个单位,再向左移动3个单位。

江苏省南京师范大学附属苏州石湖中学苏科版数学七年级上册导学案设计:2.3数轴(1)(无答案)

江苏省南京师范大学附属苏州石湖中学苏科版数学七年级上册导学案设计:2.3数轴(1)(无答案)

课题:2.3数轴(1)班级姓名【学习目标】1、掌握数轴的三要素及其概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

重点:能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

难点:数轴的概念和用数轴上的点表示有理数【学具准备】直尺、圆规、半径为5cm的圆形小纸片【学法指导】针对学案中的自学指导学习教材,并独立完成学案中自主学习部分的题目。

准备好直尺、圆规,并根据活动要求实际操做。

【学习内容】一、自主学习学习内容学法指导、对应训练阅读课本第18页想一想,完成下列各题:问题一读出下面温度计所表示的温度:()()()问题二在一条东西向的马路上,有一个汽车站,汽车站向东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站向西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

由上述两问题我们得到什么启发?你能根据直线上的点写出合适的数吗?你能在直线上画出点来表示数吗?试试看。

尝试在已有的认知中寻找数轴。

二、课堂探究(一)预习汇报1.根据数轴的定义,试着画一条数轴,并指出数轴上的三要素。

2.判断下列数轴的画法是否正确,若不正确,请指出错误原因23-1-2-3013213210-1-2-3例1.如图,指出数轴上点A 、B 、C 、D 、E 表示的数3EDC BA例2.在数轴上画出表示下列各数的点2,-1.5,0,-3,1.5,-2,0,4,0.5,-4,-0.5注:表示正数的点都在原点的_________侧,表示负数的点都在原点的_________侧例3.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:⑴ 在数轴上,到原点的距离为5的点有_______个,它们表示的数是______________; ⑵ 在数轴上,从表示2的点出发,先向右移动3个单位长度,再向左移动6个单位长度,最后的终点表示的数是_____________________⑶ 在数轴上,点M 表示数2,那么与点M 相距4个单位的点表示的数是_____________(二)动手探究有理数都可以在数轴上表示出来,无理数也可以在数轴上表示出来吗? 问题一:面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点? (提示:以原点为一个端点,在数轴上向右画一条长为a 的线段。

1.2.2数轴(教案)(1)1.doc

1.2.2数轴(教案)(1)1.doc
(3)温度计刻度的正、负是怎样规定的?以A;
什么为基准?基准刻度线表示多少摄氏度?
(4)每摄氏度两条刻度线之间有什么特点?C,
— 一
r j ff j f
1、观察温度计
并回答问题
2、画示意图,体 会方向与距

创设情景引入课题
示习标示纲生学讲课示 、笏出练题 展学目出提学自{评出学案训课示习
同上
明确任务
单位长度
•“ f• ,*"*•
1
学生做练习

解疑
释惑
攻艰
解疑释惑攻坚克难
思考:在数轴上表示下列各数
+3,-4, —,-1.5 4
±
1| 「七5|4|【.I
学生做练习并点 评答案


克难
-4 -3 -2 -1 0 1 2 3 4f任何一个有理数都可以用数轴上的一个点来表! 示。





解疑
释惑 攻艰 克难
1甲11;1 F一
2、如图,数轴上点A表示的数为+3,把点A先向右平
移5个单位,再向左平移10个单位到点B,则点B表示• 的数为-2.
11111「1一
-10123
J

3、下列命题正确的是(B )
A:数轴上的点都表示整数。
B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于54
k
学生做达标练习 并点评
单位长度。
C:数轴包括原点与正方向两个要素。
D:数轴上的点只能表示正数和零。
6.下列各图表示的数轴是否正确?
rI、・・・・・・・・・・・■»
-3-1 QI
(、、・・,・■・・・・»

数轴 学案

数轴 学案

一题多变之数轴与绝对值
学习目标:
1、理解绝对值的几何意义,并能结合数轴求两点之间的距离。

2、善于利用数形结合的思想解决绝对值的相关问题。

学习过程
一、探究数轴与绝对值
认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|1﹣2|表示1、2在数轴上对应的两点之间的距离;|1+2|=|1﹣(﹣2)|,所以|1+2|表示1、-2在数轴上对应的两点之间的距离;|1|=|1﹣0|,所以|1|表示1在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.
(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).
(2)利用数轴探究:
①求|x﹣1|+|x+2|的最小值是;
②找出满足|x﹣1|+|x+2|=5的x的所有值是;
③求|x+3|+|x+2|+|x-1|的最小值为,此时x的值为.
④求|x+3|+|x+2|+|x-1|+|x-2|的最小值,求此时x的取值范围.
二、结合数轴与绝对值的知识解下列问题:
①若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
②当数a的点什么位置时,|a+4|+|a﹣2|的值最小,最小值是多少?
③找出满足|a+4|+|a﹣2|=8的a的所有值是;
④求|a+4|+|a﹣2|+|a-3|的最小值为,此时a的值为.
⑤求|a+5|+|a+4|+|a﹣2|+|a-3|的最小值,求此时a的取值范围.
三、反思
理解绝对值的几何意义是关键.请根据所学内容命题并进行一题多变,再利用所学内容求解。

初中教资面试数轴教案

初中教资面试数轴教案

一、教学目标1. 能够理解数轴的概念,掌握数轴的基本特点和表示方法。

2. 能够通过数轴比较大小,解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点1. 重点:数轴的概念和表示方法。

2. 难点:数轴上点的表示和大小比较。

三、教学过程(一)导入新课1. 教师通过提问方式引导学生回顾已学过的知识,如直线、射线和线段的特点。

2. 教师引导学生思考:如何用数来表示一个物体的位置?引出数轴的概念。

(二)新课讲授1. 教师讲解数轴的定义:数轴是一条直线,规定了原点、正方向和单位长度,用来表示数的大小。

2. 教师演示数轴的画法,讲解数轴上的原点、正方向和单位长度的概念。

3. 教师通过示例,讲解如何在数轴上表示正数、负数和零。

4. 教师引导学生通过观察和思考,总结数轴上点的表示方法。

(三)课堂练习1. 教师布置练习题,让学生独立完成,检查学生对数轴概念的理解和掌握程度。

2. 教师选取部分学生的作业进行点评,指出优点和不足之处。

(四)应用拓展1. 教师提出实际问题,让学生利用数轴解决,如比较两个数的大小、计算两个数的距离等。

2. 教师引导学生通过数轴解决实际问题,培养学生的应用能力。

(五)总结反思1. 教师引导学生回顾本节课所学内容,总结数轴的概念和表示方法。

2. 教师鼓励学生谈谈自己在学习过程中的收获和感受。

四、教学评价1. 课后作业:检查学生对数轴概念的理解和掌握程度。

2. 课堂练习:观察学生在解决实际问题时,对数轴的应用能力和解决问题的能力。

五、教学反思1. 教师在教学过程中,是否充分讲解数轴的概念和表示方法?2. 学生对数轴的理解和掌握程度如何?是否需要加强巩固?3. 在解决实际问题时,学生是否能够灵活运用数轴?有哪些不足之处?通过以上教学设计,教师可以全面引导学生掌握数轴的概念和表示方法,培养学生解决实际问题的能力,提高学生的逻辑思维能力。

在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在数轴的学习中取得进步。

初中数轴运动教案模板

初中数轴运动教案模板

初中数轴运动教案模板一、教学目标:1. 知识与技能:让学生了解数轴的概念,掌握数轴的三要素(原点、正方向、单位长度),并能够用数轴上的点准确地表示有理数。

2. 过程与方法:通过观察与实际操作,让学生理解有理数与数轴上的点的对应关系,体会数形结合的思想方法。

3. 情感、态度与价值观:在数与形结合的过程中,培养学生对数学学习的兴趣和乐趣。

二、教学重难点:1. 教学重点:数轴的三要素,用数轴上的点表示有理数。

2. 教学难点:数形结合的思想方法。

三、教学过程:1. 引入新课:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

2. 探索新知:(1)学习数轴的概念:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下条件:任取一个点表示数0,称为原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

(2)学习数轴的三要素:原点、正方向、单位长度。

(3)学习用数轴表示有理数:在数轴上,原点(0点)是正负数的分界点,从原点向左是负方向,向右是正方向。

数轴上的点表示的数,右边的点表示的数总比左边的大。

3. 实例讲解:(1)用数轴表示学生的成绩:假设学生的成绩范围在0分到100分之间,我们可以用数轴来表示这个范围。

原点(0点)表示0分,向右是正方向,表示成绩,单位长度可以选取1分或10分等。

(2)用数轴表示商品价格:假设一个商品的价格范围在10元到50元之间,我们可以用数轴来表示这个范围。

原点(0点)表示10元,向右是正方向,表示价格,单位长度可以选取5元或10元等。

4. 练习与巩固:让学生独立完成数轴相关的练习题,巩固数轴的概念和表示方法。

四、总结与拓展:1. 总结:通过本节课的学习,学生应掌握数轴的概念和三要素,能够用数轴上的点准确地表示有理数。

2. 拓展:进一步学习数轴的运用,如解不等式、比较大小等,体会数形结合在数学解题中的重要作用。

新苏教版七年级数学上册学案2.3数轴

新苏教版七年级数学上册学案2.3数轴

新苏教版七年级数学上册教案: 2.3 数轴( 1)教案部分注【学目】:1.会正确画出数,知道数的三因素;2.知道有理数和无理数都可以用数上的点表示,会用数上的点表示有理数,能出数上的点所表示的数;3.会用数比两个数的大小;4.初步感觉数形合的思想.【学要点】:1.用数上的点表示有理数,能出数上的点所表示的数;2.用数比两个数的大小.【学点】:用数上的点表示有理数,用数比两个数的大小.【前】1、什么叫数?2、分写出数上A、 B、 C、 D、 E 表示的数:3、在数上画出表示以下各数的点:,, 2, 3,0.5..【堂学】1、内助学、小展现:在小学里,我会依据直上的一个点的地点写出适合的数,也会在直上画出表示一个数的点.把中直上的点所表示的数写在相的方框里.活一:1.画一条水平直,并在条直上取一点表示 0,我把点称原点.2.定直上从原点向右正方向(画箭表示),向左方向.3.取适合度(如1cm)位度,在直上,从原点向右每隔一个位度取一点,挨次表示 1, 2, 3⋯⋯从原点向左每隔一个位度取一点,挨次表示- 1,- 2,- 3⋯⋯2.感悟新知(1)数的概念:像定了原点、正方向和位度的直叫做数.原点、正方向、单位长度称为数轴的三因素.(2)用数上的点表示有理数在数上,用原点右且到原点的距离是 1.5 个位度的点表示,用原点左且到原点的距离是 2.4 个位度的点表示-⋯【精点】例 1分写出数上A、 B、 C 表示的数:例 2在数上画出表示以下各数的点: 1.5,3,3,1.5, 31. 52有理数都能够用数轴上的点表示.【拓展延长】用数上的点表示无理数无理数能够用数上的点表示?活二面 2 的正方形的 a 是无理数,怎样在数上画出表示 a 的点? -a 呢?做一做:怎用数上的点表示周率π?1.画一个直径 1 的片,将片上的点 A 放在原点;2.把片沿数向右一周,点A抵达的地点点A′表示的数就是π.有理数和无理数都能够用数轴上的点表示;反过来,数轴上的随意一点都表示一个有理数或无理数.【讲堂检测】1.你能在数轴上找出与‐ 1 点距离为 1 个单位长度的点吗?这个点表示的数是.2.数轴上, -3 的点在原点 _____侧,距原点的距离是______ ,-4 的点在原点 ____ 侧,距原点的距离是______ ,因此表示‐ 4 的点位于‐ 3 点的______侧。

《数轴》数学教案

《数轴》数学教案

《数轴》数学教案
标题:《数轴》
一、教学目标:
1. 让学生理解数轴的概念和作用。

2. 学习如何在数轴上表示实数,并能进行简单的加减运算。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学重点与难点:
重点:理解和掌握数轴的概念,能在数轴上正确表示实数并进行简单运算。

难点:理解数轴的正负方向,以及数轴上的距离与数值大小的关系。

三、教学过程:
(一)引入新课
通过生活中的实例,如温度计、地图等引出数轴的概念,让学生初步了解数轴的作用。

(二)讲解新知
1. 定义数轴:数轴是一个具有原点、正方向和单位长度的直线。

2. 在数轴上表示实数:规定原点左边为负方向,右边为正方向;原点左边的点表示负数,原点右边的点表示正数,原点表示0。

3. 数轴上的距离与数值大小的关系:数轴上两个点的距离等于这两个点所表示的数的差的绝对值。

(三)课堂练习
设计一些数轴上的表示和计算问题,让学生在实际操作中加深对数轴的理解和应用。

(四)归纳总结
引导学生总结本节课的学习内容,强调数轴的重要性和使用方法。

(五)布置作业
设计一些相关的习题,让学生在家进一步巩固和提高。

四、教学反思:
回顾整个教学过程,分析学生的学习情况,找出教学的优点和不足,以便在以后的教学中改进。

年级数学数轴教案

年级数学数轴教案

教案:数学数轴一、教学目标:1.知识与技能:a)了解数轴的定义和用途;b)能够在数轴上标出正数、负数及零点;c)能够用数轴表示数与数之间的相对大小;d)能够利用数轴进行加法和减法运算;2.过程与方法:a)通过数轴的实际运用场景,提高学生对数轴的兴趣;b)结合游戏和问题解决等活动,培养学生的操作能力和思维能力;3.情感态度和价值观:a)通过数轴的讲解和活动,培养学生的合作意识和团队精神;b)培养学生对数轴的正确认知和积极态度。

二、教学重难点:1.教学重点:a)数轴的定义及用途;b)在数轴上标出正数、负数及零点;2.教学难点:a)利用数轴进行加法和减法运算。

三、教学过程:1.导入(5分钟)a)创设情境,引起学生兴趣:让学生想象一下,如果我们在一条直线上,怎样表示我们走过的距离呢?让学生将答案写在小组讨论板上。

b)讨论学生的答案及思路。

2.概念讲解(10分钟)a)用幻灯片展示数轴的定义和用途。

b)解释如何在数轴上标出正数、负数及零点。

c)解释如何利用数轴进行加法和减法运算。

3.课堂练习(20分钟)a)游戏一:教师展示一个数轴,学生将随机选择一个点,教师告诉学生该点的数值,学生需要判断该点是否正确,并解释自己的选择。

b)游戏二:学生分组进行竞赛,教师给出一个数轴和几组数字,学生需要按照顺序将数字放在数轴上,并写出相应的数值和运算过程。

4.拓展应用(20分钟)a)学生自主探究:教师给出几个实际问题,让学生用数轴表示问题并解答。

b)学生小组合作:学生以小组为单位,编写一个小故事,故事中涉及数轴的使用。

学生需要将故事情节用数轴表示,并进行相应的加法和减法运算。

5.总结反思(10分钟)a)课堂反馈:教师让学生回答几个关键问题,检验学生对数轴知识的掌握程度。

b)学生总结:学生通过小组合作,总结今天学到的数轴知识,每个小组向全班展示一个总结,并接受其他组的提问和评价。

四、作业布置:1.假设你是数轴的设计师,请你设计一个帮助小学生学习数轴的游戏。

人教版数学七年级上册《数轴》教学设计

人教版数学七年级上册《数轴》教学设计

-20-1001020304050课时课题:第二章 第二节 数轴课型:新授课一、教学目标1、通过与温度计的类比认识数轴,理解数轴的三要素并会画数轴.2、能说出数轴上的已知点所表示的数,能将已知数在数轴上表示出来.3、能利用数轴比较有理数的大小.二、教法及学法指导1、教法:采用“回顾旧知—情景导入—新知探索—课堂小结—过关检测”的方式组织教学。

在授课过程中采用启发式教学和探究式教学引导学生学习过程。

2、学法:在课堂上,学生合作交流、引导释疑、反馈应用、总结归纳。

学生采用自主探究、合作交流与小组讨论相结合的方式进行学习。

三、课前准备:课件制作、教案学案、温度计、三角板四、教学过程1、板书课题:§2.2数轴2、回顾旧知师:同学们,在上节课,我们学习了有理数的相关知识,那么请同学们回顾一下这三个基本概念。

(正数、负数、有理数)生:(1)正数:比0大的数叫正数。

(正数大于0)(2)负数:比0小的数叫负数。

(负数小于0)(3)有理数:整数与分数统称为有理数。

3、情景导入师:(课件呈现温度计)同学们,这个东西的你们知道吗? 生:知道,是温度计。

师:我们知道,温度计可以测定一定范围里的温度, 请同学们观察如图所示温度计,回答课件上展现的问题。

(1)点A 表示多少摄氏度?点B 呢?点C 呢? (2)温度计刻度的正负是怎样规定的?以什么为基准? (3)每摄氏度两条刻度线之间的距离有什么特点? 生:(1)点A 表示0℃,点B 表示零上20℃,点C 表示零下5℃。

(2)以0刻度线为准,0以上为正,以下为负。

(3)每摄氏度两条刻度线之间的距离相等。

师:同学们已经完美的解决了以上问题,那么同学们可以观察到温度计上有刻度,有数字,如果我们把温度计平放,同学们发现了什么? -20-10010********C生:在0℃左边的温度记作零下几度,用负数表示,在0℃右边的温度记作零上几度,用正数表示。

师:如果我们把平放的温度计抽象成一条直线,那么这一条直线具有怎样的特征?生:直线上应该有刻度,刻度对应的有数字,在数字0左边的数是负数,在0右边的数是正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴学案(1)
一、学习目标
1.理解数轴的定义.正确会画出数轴。

2.理解有理数与数轴上的点的对应关系.
3会用数轴上的点表示简单的有理数.
二、新课预习
知识点一:数轴的定义与画法
知识导入:
同学们都会读温度计吧?
同横放的温度计类似,可以在一条直线上画出刻度标上数,用直线上的点表示有理数.
画数轴的具体方法:
1.画直线(一般水平方向),标出一点为原点0.
2.规定从原点向右的方向为正方向,那么向左方为负方向.
3.选择适当的长度单位为单位长度.
数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

方法总结:数轴的画法可分为四个步骤:(1)画一条水平的直线;(2)在
这条直线上的适当位置取一点作为原点;(3)确定正方向,用箭头表示出来;(4)确定单位长度,用细短线画出,并对应地标注各数.
应用练习:
1、数轴是三要素分别是、、。

2、下列所画的数轴中正确的是()
A.B.C.D.
3、下列表示数轴的图形中正确的是()
4、下列图形中不是数轴的是()
知识点二、用数轴表示简单的有理数
1、数轴的用处:画好了数轴,就可以用数轴上的点表示有理数.正有理数用原点右边的点表示(在数轴上要画出实心的小圆点),负有理数用原点左边的点表示.所有的有理数都可以在数轴上找到它的对应点.
2、若数轴规定了向右为正方向,则原点表示的数为______,负数所对应的点在原点的______,正数所表示的点在原点的______.
3.指出数轴上A、B、C、D、E各点分别表示什么数:
A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.
4、指出下列数轴上A、B、C、D、E、各点分别表示的是什么数。

A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.
5、指出数轴上A ,B ,C ,D 各点分别表示的有理数。

解:A 点表示______,B 点表示______,C 点表示______,D 点表示______ 例题学习:
请同学们认真学会课本32页例1,并仿照例1完成下列各题。

1、你会在数轴上表示下列各数吗?
–1,3,0.5,–2,–1.5,5,–6
2、画出数轴,把下列各数在数轴上表示出来。

-121,2,3,-2.5,3
1
,-3,0
3、画出数轴,把下列各数在数轴上表示出来。

+3, 0, -14, 11
2
, -3,-1.5
当堂测试
一、填空题
1、在数轴上表示-4的点位于原点的___边,与原点的距离是___个单位长度。

2、与原点距离等于4的点有 个?其表示的数是
3、在数轴上点A 表示的数是-3,与点A 相距两个单位的点表示的数是
4、数轴上与原点距离是5的点有___个,表示的数是___。

5、在数轴上,点A 、B 分别表示-5和2,则线段AB 的长度是___。

6、从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是____,再向右移动两个单位长度到达点C,则点C 表示的数是____。

7、数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是_____个单位长度
8、在数轴上,-0.01表示A 点,-0.1表示B 点,则离原点较近的是_______. 9、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<3
10、在数轴上,点A 对应的数是1,那么在数轴上与点A 相距3个单位长度的点表示的数是______. 二、选择题
1、在数轴上表示-2的点离开原点的距离等于( )
A 、2
B 、-2
C 、±2
D 、4 2、数轴上与原点距离为3的点表示的是( ) A 、3 B 、-3 C 、±3 D 、6 3、下列数轴的画法正确的是( )
4 B
时,点B 所表示的实数是 ( )
A 1
B -6 C 2或-6 D 不同于以上答案
三、解答题
在数轴上表示出下列各点。

A. 2
1
- B. 23 C. 411- D. 0 E. 25.0
1
-2 0 1
2 0 1 0
1
A
B
C
D
0 1 2 3 -1 -2 -3。

相关文档
最新文档