最新人教版七年级数学下册:平移习题二

合集下载

七年级下数学平移练习题含答案

七年级下数学平移练习题含答案
C.先向右平移 个小格,再向下平移 个小格
D.先向右平移 个小格,再向下平移 个小格
8.如图,在方格纸中,三角形 经过变换得到三角形 ,正确的变换是( )
A.把三角形 向下平移 格,再绕点 逆时针方向旋转
B.把三角形 向下平移 格,再绕点 顺时针方向旋转
C.把三角形 绕点 逆时针方向旋转 ,再向下平移 格
(1)求这个地毯的长是多少?
(2)求这个地毯的面积是多少平方米?
(3)求购买地毯至少需要多少元钱?
22.星期天早晨,小刚和爸爸正在商量往楼梯上铺地毯的事,如图所示,
爸爸:“小刚,你帮我算一下,从一层铺到二层需要地毯几米?”
小刚:“我早已用盒尺量好了,每阶高 ,宽为 …”
爸爸:(打断小刚的话)“不量每阶的高度和宽度,你想想有没有办法?”
D.把三角形 绕点 顺时针方向旋转 ,再向下平移 格
9.将直线 向右平移 个单位,在向上平移 个单位后,所得的直线的表达式为()
A. B. C. D.
10.下列各图中,能够通过图①平移得到的是()
A. B. C. D.
11.如图,一张长为 ,宽为 的长方形白纸中阴影部分的面积(阴影部分间距均匀)是________ .
17.如图,等边三角形的顶点 ,规定把等边三角形 “先沿 轴翻折,再向左平移 个单位长度”为一次变换,如果这样连续经过 次变换后,等边三角形 的顶点 的坐标为________.
18.如图,在矩形 中 ,点 为 边上一个动点,连接 ,将线段 绕点 顺时针旋转 ,点 落在点 处,当点 在矩形 外部时,连接 、 若 为直角三角形,则 的长为________.
【解析】
此题暂无解析
【解答】
此题暂无解答
28.

七年级数学下册平移练习题

七年级数学下册平移练习题

七年级数学下册平移练习题七年级数学下册平移练题回顾归纳1.平移的要素:(1)平移的方向;(2)平移的距离。

2.(1)平移:将一个图形沿某个方向移动叫平移。

(2)平移的性质:对应点的连结线段平行且等长。

3.平移作图方法:1)找出已知图形上的关键点;2)过这些点沿指定方向平移,使平移距离等于已知距离;3)依次作出各个对应点,连结所平移后的点得平移图形。

课堂测控知识点平移1.(1)将线段AB向北偏东方向平移5cm,A'则点A'平移方向向北偏东,平移距离为5cm。

(2)经过平移后的图形与原图形的形状和大小都不改变。

2.下列物体运动中平移的是3.汽车在笔直公路上运动。

3.如图1所示的“田”字格可以看成由平移得到的。

4.如图2所示,线段b向右平移3格,再向上平移2格,能与线段a重合。

5.如图3所示,三角形ABC向下(右)平移2格,再向右(下)平移1格得到三角形A'B'C',图形的面积相等,形状不变。

6.下列各组图形可以通过平移得到另一个图形的是B。

7.(经典题)如图4所示,长方形ABCD中,对角线AC,BD交于点O。

DE∥AC,CE⊥∥BC。

那么三角形EDC可以看成什么三角形平移得到的,指出平移方向,并求出平移距离?课后测控1.将正方形ABCD向XXX°方向平移4cm,对角线交点O向北偏东方向平移2√3 cm。

2.如图5所示,BC垂直于水平面,高5.196m,现要建造阶梯,每级台阶不超过20cm,则至少要建17级台阶(不足20cm,按一级台阶计算)。

3.在5×5方格纸中将图6(1)中的图形N平移后的位置如图6(2)中所示,那么正确的平移方法是B。

1.下列计算正确的是(C)解析:A中的等号应该是不等号,B中绝对值不能为负数,D中符号错误。

2.如果c为有理数,且c≠0,下列不等式中正确的是(B)解析:当c为正数时,B成立;当c为负数时,不等式左边为正数,右边为负数,不成立。

(新人教版)数学七年级下册:5.4《平移》练习题及解析

(新人教版)数学七年级下册:5.4《平移》练习题及解析
此题移动方向与距离均未知只要求移动三条线段成一个三角形时最少需移动那么首先我们应该知道移动后组成三角形的大致形状因平移不改变图形形状和大小只是位置发生变化故易知三角形形状应是由此作为突破口去探索显然若只移两条线段单移任一条或两条向居中位置移动最少格数是一样的但三条就不同了应让三条尽最大可能的少拐弯观察图31应在三条线段的中间画出最后所形成的三角形如图32可得出三条线段平移成一个三角形至少要平移b点就是b点的对应点c点即是c点的对应点连接abacbc即可得到平移后的三角形反思
平移题
1如图,△A′B′C′是由△ABC沿BC方向平移3个单位得到的,则点A与点A′的距离等于个单位.
2观察下面图案,在A,B,C,D四幅图案中,能通过图案(1)平移得到的是()
3如图, 方格纸的两条对称 轴 相交于点 ,对图 分别作下列变换:
①先以直线 为对称轴作轴对称图形,再向上平移4格;
②先以点 为中心旋转 ,再向右平移1格;
7分析:题中具体指明了平移的距离是2cm,在平移方向上只说明了“水平方向”,并未指明向左还是向右,故应分向左平移还是向右平移两种情况。作平移时可利用五个关键点平移后的位置进行。
解:平移后的图形如图2-2所示,有两种情况。
8分析:此题移动方向与距离均未知,只要求移动三条线段成一个三角形时最少需移动的格数,那么首先我们应该知道移动后组成三角形的大致形状,因平移不改变图形形状和大小,只是位置发生变化,故易知三角形形状应是“◣”,由此作为突破口去探索,显然若只移两条线段,单移任一条或两条向居中位置移动,最少格数是一样的,但三条就不同了,应让三条尽最大可能的少“拐弯”,观察图3-1,应在三条线段的“中间”画出最后所形成的三角形,如图3-2,可得出三条线段平移成一个三角形至少要平移9格。

人教版七年级数学 下册 5.4平移 同步测试题 有答案

人教版七年级数学 下册 5.4平移 同步测试题  有答案

5.4 平移一选择题1.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是( )图1图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位2.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是( )3.如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有()A.0条B.1条C.2条D.3条4.如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=( ) A.40°B.50°C.90°D.140°5.在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是( )6.下列现象不属于平移的是( )A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度7.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长8.将长度为5 cm的线段向上平移10 cm所得线段长度是( )A.10 cm B.5 cmC.0 cm D.无法确定9.如图所示,△FDE经过怎样的平移可得到△ABC( )A.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长二填空题1.(1)火车在笔直的铁轨上行驶,可以看作是数学中的_____________现象.(2)线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的关系是_________.(3)△ABC平移到△DEF的位置,则△DEF和△ABC的关系是____________. (4)平移只改变图形的____________,而不改变图形的____________.2.图中六幅图案中,(2)、(3)、(4)、(5)、(6)中的图案可以由(1)图案平移得到的是____________.3.如图,∠DEF是∠ABC经过平移得到的,∠ABC=35°,则∠DEF=____________.4.如图所示,Rt△A′B′C′是△ABC向右平移3 cm所得,已知∠B=60°,B′C=5 cm,则∠B′=_____________,B′C′=_____________ cm.三解答题1.如图,将字母T按箭头方向平移4 cm,作出平移后的图形.2.请欣赏下面的图形,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?3.小学数学老师在教乘法应用题时,画出下面的图案,说出图中的任意两个图案之间有何关系?4.如图,在正方体ABCD—A′B′C′D′中,哪些线段可看做是由C′D′平移得到的?哪些线段可看做是由BB′平移得到的?A′D′是否也可由C′D′或BB′平移而得到.参考答案一选择题BBDACCDBA二填空题1.(1)平移(2)平行且相等(3)全等(4)位置形状和大小2.(3)3.35°4.60°8三解答题1.先观察此图形有几个关键点,然后按箭头方向分别作出这几个点的对应点,再连结即可.如图:2.仔细分析找出基本图案,从一个、二个、三个、四个、六个正方体等不同角度进行分析.可以看作一个正方体经过上、下、左、右平移得到;也可看作两个正方体经过上、下、左、右平移得到;也可以看作三个正方体经过左、右平移得到;还可以看作四个正方体经过上、下平移得到;也可以看作六个正方体,经过左、右平移得到.3.这五个图案大小形状都相同,对应边平行,底边在同一条直线上,所以它们可以由某一个左右平移得到.所以任意两个图案的关系是:彼此互相平移得到.4.∵CD∥C′D′且CD=C′D′,∴CD可由C′D′向下平移C′C的长来得到;同理,A′B′、AB都可以由C′D′平移得到,A′A、DD′、C′C都可以由BB′平移得到.∵A′D′不平行于C′D′,也不平行于BB′,∴A′D′不能由C′D′或BB′平移得到.。

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案) (31)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案) (31)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)一、单选题1.将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( ) A.(-6,0) B.(6,0) C.(0,-2) D.(0,2)【答案】D【解析】【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,即可求解.【详解】解:横坐标右移加,左移减;纵坐标上移加,下移减,将点A(-3,4)向右平移3个单位,再向下平移2个单位,得到的点A′的坐标是(0,2).故选:D.【点睛】本题主要考查了在平面直角坐标系中,图形的平移与图形上某点的平移相同,难度适中.2.在平面直角坐标系中,点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣3,﹣1)B.(﹣3,7)C.(1,﹣1)D.(1,7)【答案】C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为(﹣1+2,3﹣4),即(1,﹣1),故选:C.【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.3.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为( ) A.(6,3) B.(0,3) C.(6,﹣1) D.(0,﹣1)【答案】D【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】解:由题意A (1,3)的对应点的坐标为(-2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B (3,1)的对应点的坐标为(0,-1).故选:D .【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.抛物线23y x =先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )A .23(2)1y x =+-.B .23(2)1y x =-+C .2(2)1y x =--D .23(2)1y x =++ 【答案】A【解析】【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x 2先向向下平移1个单位可得到抛物线y=3x 2-1;由“左加右减”的原则可知,将抛物线y=3x 2-1先向左平移2个单位可得到抛物线23(2)1y x =+-.故选A.本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.5.将点A(3, 1)向上平移2个单位得到点B , 点B 的坐标是( )A .(5,3)B .(1, 3)C .(3, 3)D .(5, 1)【答案】C【解析】【分析】根据点的平移规律,向上平移2个单位,将纵坐标加2即可.【详解】点A(3, 1)向上平移2个单位,纵坐标加2得(3, 3),故B 的坐标是(3, 3),选C.【点睛】本题考查点的平移,熟练掌握上下平移是改变纵坐标,左右平移改变横坐标是关键,与函数图像平移的“左加右减”要进行区分. 6.点()34--,先向上平移5个单位,再向右平移4个单位后的坐标为( )A .()20,B .()71-,C .()19-,D .()11, 【答案】D【解析】【分析】根据坐标系中点的平移规律,上下平移改变纵坐标,左右平移改变横坐标,即可解答.向上平移5个单位,纵坐标为-4+5=1,向右平移4个单位,横坐标为-3+4=1,所以平移后的坐标为()11,,故选D.【点睛】本题考查坐标系中点的平移,熟记平移规律是解题的关键.7.将△ABC向左平移2个单位长度后得到△A'B'C'.若点A的坐标是(-3,7),则点A'的坐标是( )A.(-5,5) B.(-1,9) C.(-5,7) D.(-1,7)【答案】C【解析】【分析】根据平移点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.【详解】解:∵△ABC向左平移2个单位长度后得到△A′B′C′,∴点A(-3,7)向左平移2个单位长度后得到的点A′的坐标为(-5,7).故选:C.【点睛】本题考查了坐标与图形变化——平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8.在平面直角坐标系中,将点(2,3)向右平移2个单位,所得到的点的坐标是()A.(2,5 )B.(4,3 )C.(0,3 )D.(2,1 )【答案】B【解析】【分析】把点(2,3)的横坐标加2,纵坐标不变得到(4,3),就是平移后的对应点的坐标.【详解】点(2,3)向右平移2个单位长度后得到的点的坐标为(4,3).故选B.【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.9.在如图所示的网格中,有两个完全相同的直角三角形纸片,如果把其中一个三角形纸片先横向平移m格,再纵向平移n格,就能使它的一条边与另一个三角形纸片的一条边重合,拼接成一个四边形,那么m n 的结果()A.只有一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值【答案】B【解析】【分析】根据使一个三角形的一条边与另一个三角形的一条边重合,分情况讨论平移方式,然后分别求出m+n即可.【详解】解:①上边的三角形向右平移两个单位,向下平移三个单位,此时m+n=5;②上边的三角形向右平移两个单位,向下平移五个单位,此时m+n=7;③上边的三角形向左平移两个单位,向下平移三个单位,此时m+n=5;所以m n+的结果有两个不同的值,故选B.【点睛】本题考查图形的平移,根据题目要求判断出平移方式是解题关键.A B,其中点A,B的对应点分别10.如图,线段AB经过平移得到线段''A B 为点'A,'B,这四个点都在格点上.若线段AB上有一个点(),P a b,则点P在''上的对应点P'的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b ++ 【答案】A【解析】【分析】 先根据点A 到它的对应点'A 的平移规律即可得到线段AB 到线段''A B 的平移规律,从而得到点P 到对应点P' 的平移规律,即可得到P'的坐标【详解】解:∵点A (1,﹣1)到它的对应点'A (﹣1,2)的平移规律是:先向左平移2个单位,再向上平移3个单位,∴AB 到线段''A B 的平移规律是:先向左平移2个单位,再向上平移3个单位,∴点(),P a b 平移后对应点P'的坐标为:()2,3a b -+故选A.【点睛】此题考查的是坐标与图形的变化——平移:横坐标为左减右加,纵坐标为上加下减,掌握点的平移规律是解决此题的关键.。

七年级数学下册第五章相交线与平行线5.4平移习题含解析新版新人教版

七年级数学下册第五章相交线与平行线5.4平移习题含解析新版新人教版

5.4平移一.选择题(共12小题)1.如图,若△DEF是由△ABC经过平移后得到,已知A,D之间的距离为1,CE=2,则EF是()A.1 B.2 C.3 D.42.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.4.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.5.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.6.下列图形中,哪个可以通过如图平移得到()A.B.C.D.7.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为()A.10cm2B.12cm2C.15cm2D.17cm28.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动9.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤10.下列运动属于平移的是()A.电风扇扇叶的转动B.石头从山顶滚到山脚的运动C.缆车沿索道从山顶运动到山脚D.足球被踢飞后的运动11.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格12.如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是()A.先向上移动1格,再向右移动1格B.先向上移动3格,再向右移动1格C.先向上移动1格,再向右移动3格D.先向上移动3格,再向右移动3格二.填空题(共8小题)13.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.14.如图,将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为.15.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=.16.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过平移与右手手印完全重合.17.如图,四边形ABCD平移到四边形A′B′C′D′的位置,这时可把四边形A′B′C′D′看作先将四边形ABCD向右平移格,再向下平移2格.18.下面生活中的物体的运动情况可以看成平移的是.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).19.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是cm.20.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=cm.5.4平移同步基础习题解析卷一.选择题(共12小题)1.如图,若△DEF是由△ABC经过平移后得到,已知A,D之间的距离为1,CE=2,则EF是()A.1 B.2 C.3 D.4【分析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=1.∴EF=BC=BE+EC=1+2=3,故选:C.2.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、△DEF由△ABC平移而成,故本选项正确;B、△DEF由△ABC对称而成,故本选项错误;C、△DEF由△ABC旋转而成,故本选项错误;D、△DEF由△ABC对称而成,故本选项错误.故选:A.3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.【解答】解:∵只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B.4.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、由图中所示的图案通过旋转而成,故本选项错误;B、由图中所示的图案通过翻折而成,故本选项错误C、由图中所示的图案通过旋转而成,故本选项错误;D、由图中所示的图案通过平移而成,故本选项正确.故选:D.5.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于图形旋转所得到,故错误;B、属于图形旋转所得到,故错误;C、图形形状大小没有改变,符合平移性质,故正确;D、属于图形旋转所得到,故错误.故选:C.6.下列图形中,哪个可以通过如图平移得到()A.B.C.D.【分析】看哪个图形相对于所给图形的形状与大小没有改变,并且对应线段平行且相等即可.【解答】解:A、没有改变图形的形状,对应线段平行且相等,符合题意,故此选项正确;B、对应线段不平行,不符合平移的定义,不符合题意,故此选项错误;C、对应线段不平行,不符合平移的定义,不符合题意,故此选项错误;D、对应线段不平行,不符合平移的定义,不符合题意,故此选项错误.故选:A.7.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为()A.10cm2B.12cm2C.15cm2D.17cm2【分析】根据平移的性质可得△A1B1C1的面积等于△ABC的面积,再根据平移的性质求出B1C=BC,CD=AC,然后利用相似三角形的性质解决问题即可.【解答】解:∵△ABC沿BC方向平移得到△A1B1C1,∴△A1B1C1的面积=20cm2,B1C=BC,CD=AC,∵CD∥A1C1,∴△B1CD∽△B1C1A1,∴:=1:4,∴=×20=5,∴四边形A1DCC1的面积=20﹣5=15cm2.故选:C.8.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:A、荡秋千不符合平移的性质,不属于平移,故本选项错误;B、地球绕着太阳转不符合平移的性质,不属于平移,故本选项错误;C、风筝在空中随风飘动,不符合平移的性质,故本选项错误;D、急刹车时,汽车在地面上的滑动,符合平移的性质,故本选项正确.故选:D.9.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤【分析】根据平移的定义即可作出判断.【解答】解:①②⑤都是平移现象;③④是旋转.故选:D.10.下列运动属于平移的是()A.电风扇扇叶的转动B.石头从山顶滚到山脚的运动C.缆车沿索道从山顶运动到山脚D.足球被踢飞后的运动【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【解答】解:A、B、D中,物体在运动的过程中,不断的旋转,不是平移;C、缆车沿索道从山顶运动到山脚符合平移的性质,是平移.故选:C.11.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【分析】找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.【解答】解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.12.如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是()A.先向上移动1格,再向右移动1格B.先向上移动3格,再向右移动1格C.先向上移动1格,再向右移动3格D.先向上移动3格,再向右移动3格【分析】根据图形,对比图甲与图乙中位置关系,进行分析即可.【解答】解:要将图中阴影三角形由甲处平移至乙处,可选用先向上移动3格,再向右移动1格或先向右移动1格,再向上移动3格,故选:B.二.填空题(共8小题)13.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=110 °.【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【解答】解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣70°=110°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=110°,故答案为:110.14.如图,将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为13 .【分析】根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.【解答】解:∵将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF, ∴AD=BE=2,各等边三角形的边长均为3.∴四边形ABFD的周长=AD+AB+BE+FE+DF=13.15.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD= 5 .【分析】根据平移的性质得出AD=CF,再利用AF=17,DC=7,即可求出AD的长.【解答】解:∵将△ABC沿射线AC平移得到△DEF,AF=17,DC=7,∴AD=CF,∴AF﹣CD=AD+CF,∴17﹣7=2AD,∴AD=5,故答案为:5.16.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印不能(填“能”或“不能”)通过平移与右手手印完全重合.【分析】左手手印与右手手印是左右对称的图形,故不能通过平移使之完全重合.【解答】解:由于左手手印和右手手印是轴对称图形,故左手手印不能通过平移与右手手印完全重合.故本题答案为:不能.17.如图,四边形ABCD平移到四边形A′B′C′D′的位置,这时可把四边形A′B′C′D′看作先将四边形ABCD向右平移 5 格,再向下平移2格.【分析】找到一对对应点,例如D与D′,观察图形,根据平移的性质,即可求出答案.【解答】解:四边形ABCD平移到四边形A′B′C′D′的位置,这时可把四边形A′B′C′D′看作先将四边形ABCD向右平移5格,再向下平移2格.故答案为5.18.下面生活中的物体的运动情况可以看成平移的是(2 )(6).(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).【分析】根据平移的性质,对题材中的条件进行一一分析,选出正确答案.【解答】解:(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).19.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是 1 cm.【分析】根据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是一样的,现在将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.20.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C= 1 cm.【分析】先根据平移的性质得出AA′=2cm,再利用AC=3cm,即可求出A′C的长.【解答】解:∵将△ABC沿射线AC方向平移2cm得到△A′B′C′,∴AA′=2cm,又∵AC=3cm,∴A′C=AC﹣AA′=1cm.故答案为:1.。

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。

人教版七年级数学下平移试题精选及详细解答

人教版七年级数学下平移试题精选及详细解答

人教版七年级数学下平移试题精选及详细解答一.选择题(共12小题)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.2.如图,△ADE是由△DBF沿BD所在的直线平移得到的,AE、BF的延长线交于点C,若∠BFD=45°,则∠C的度数是()A.43°B.44°C.45°D.46°3.如图,将一个Rt△ABC沿着直角边CA所在的直线向右平移得到Rt△DEF,已知BC=a,CA=b,FA=b;则四边形DEBA的面积等于()A.ab B.ab C.ab D.ab4.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长是()A.8 B.10 C.12 D.165.如图,将周长为6的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.7 C.8 D.96.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是()A.3cm B.8cm C.10cm D.无法确定7.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离为()A.7 B.6 C.4 D.38.如图,将△ABC沿BC方向平移2cm得到△DEF.若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17 cm B.18 cm C.19 cm D.20 cm9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.2610.如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是()A.120°B.125°C.135° D.145°11.如图所示,由△ABC平移得到的三角形的个数是()A.5 B.15 C.8 D.612.如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2 B.4 C.6 D.8二.填空题(共1小题)13.如图,一块长AB为20m,宽BC为10m的长方形草地ABCD被两条宽都为1m的小路分成四部分,每条小路的两边都互相平行,则分成的四部分绿地面积之和为m2.人教版七年级数学下平移试题精选及详细解答参考答案与试题解析一.选择题(共12小题)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S 【分析】由S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.△ABC【解答】解:如图,=9、S△A′EF=4,且AD为BC边的中线,∵S△ABC∴S=S△A′EF=2,S△ABD=S△ABC=,△A′DE∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△D A′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2.如图,△ADE是由△DBF沿BD所在的直线平移得到的,AE、BF的延长线交于点C,若∠BFD=45°,则∠C的度数是()A.43°B.44°C.45°D.46°【分析】根据平移的性质得出DE∥BC,∠BFD=∠AED,再利用平行线的性质解答即可.【解答】解:∵△ADE是由△DBF沿BD所在的直线平移得到的,∴DE∥BC,∠BFD=∠AED,∴∠AED=∠C∴∠C=∠BFD=45°,故选:C.【点评】此题考查平移的性质,关键是根据平移的性质得出DE∥BC,∠BFD=∠AED.3.如图,将一个Rt△ABC沿着直角边CA所在的直线向右平移得到Rt△DEF,已知BC=a,CA=b,FA=b;则四边形DEBA的面积等于()A.ab B.ab C.ab D.ab【分析】根据平移的性质得出AD=b,再利用平行四边形的面积公式解答即可.【解答】解:由题意可得:FD=CA=b,BC=EF=a∴,∴四边形DEBA的面积等于AD•EF=,故选:C.【点评】此题考查平移的性质,关键是根据平移的性质得出AD=b.4.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长是()A.8 B.10 C.12 D.16【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.5.如图,将周长为6的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.7 C.8 D.9【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【解答】解:∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:C.【点评】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.6.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是()A.3cm B.8cm C.10cm D.无法确定【分析】根据平移的基本性质,可直接求得结果.【解答】解:平移不改变图形的形状和大小,故线段的长度不变,长度是3cm.故选:A.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离为()A.7 B.6 C.4 D.3【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=4﹣1=3,进而可得答案.【解答】解:根据平移的性质,易得平移的距离=BE=4﹣1=3,故选:D.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.8.如图,将△ABC沿BC方向平移2cm得到△DEF.若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17 cm B.18 cm C.19 cm D.20 cm【分析】根据平移的性质可得DF=AC,再求出四边形ABFD的周长等于△ABC的周长加上AD与CF,然后计算即可得解.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=15+2+2=19cm.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,确定出四边形的周长与△ABC的周长的关系是解题的关键.9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26=S△DEF,推出S四边形ABEH=S阴即可解决问题;【分析】由S△ABC【解答】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8﹣3=5,=S△DEF,∵S△ABC∴S=S阴四边形ABEH∴阴影部分的面积为=×(8+5)×4=26故选:D.【点评】此题主要考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,要熟练掌握.10.如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是()A.120°B.125°C.135° D.145°【分析】根据平移的性质和平行线的判定和性质进行解答即可.【解答】解:由平移的性质可得:GN∥FM,∵∠EFC=110°,∴∠EFD=180°﹣110°=70°,∵射线FM平分∠EFD,∴∠GFM==35°,∵GN∥FM,∴∠EGN=∠EFM=35°,∵AB∥CD,∴∠EFC=∠EGA=110°,∴∠AGN=∠EGA+∠EGN=110°+35°=145°,故选:D.【点评】此题考查平移的性质,关键是根据平移的性质和平行线的判定和性质解答.11.如图所示,由△ABC平移得到的三角形的个数是()A.5 B.15 C.8 D.6【分析】根据平移的性质,结合图形直接求得结果.【解答】解:平移变换不改变图形的形状、大小和方向,因此由△ABC平移得到的三角形有5个.故选:A.【点评】本题主要考查了平移的性质,要注意平移不改变图形的形状、大小和方向,注意结合图形解题的思想,难度适中.12.如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2 B.4 C.6 D.8【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=6﹣2=4,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.二.填空题(共1小题)13.如图,一块长AB为20m,宽BC为10m的长方形草地ABCD被两条宽都为1m的小路分成四部分,每条小路的两边都互相平行,则分成的四部分绿地面积之和为171m2.【分析】直接利用平移道路的方法得出草地的绿地面积=(20﹣1)×(10﹣1),进而得出答案.【解答】解:由图象可得,这块草地的绿地面积为:(20﹣1)×(10﹣1)=171(m2).故答案为:171.【点评】此题主要考查了生活中的平移现象,正确平移道路是解题关键.。

七年级数学人教版下册5.4第2课时平移的画图与应用课后作业课件

七年级数学人教版下册5.4第2课时平移的画图与应用课后作业课件

()
第五章 相交线与平行线
(3)顺次连接A′B′,B′C′,C′A′,则△A′B′C′即为所要画出的三角形,如图所示.
6.如图所示,学校校园内有一块长方形的空地,空地内有两条宽度均为1米的小路,空地的长是31米,宽是26米.为美化校园,学校决定绿化这块空地.如果小路继续保留,可以
绿化的面积是多少?
解:通过平移的方法,可以把绿化的部分平移成一个如图所示的新长方形,且新长方形的长是31-1=30(米),宽是26-1=25(米).
第五章 相交线与平行线
9.如图,沿射线PQ的方向平移△ABC,平移距离等
于线段AB的长度,请你画出平移后的△A′B′C′,说明 解:通过平移的方法,可以把绿化的部分平移成一个如图所示的新长方形,且新长方形的长是31-1=30(米),宽是26-1=25(米).
C.EF=5,∠F=70° 10.(2020年唐山期中)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.
第五章 相交线与平行线
∴可绿化的面积是:S=(31-1)×(26-1)=750(米2). ∴∠3=180°-46°-72°=62°. ∴∠3=180°-46°-72°=62°.
5.4 平 移
C.EF=5,∠F=70°
7.如图,△ABC平移得到△EFG,则图中共有平行线
()
第2课时 平移的画图与应用 4.(2020年襄州区期末)如图,两只蚂蚁沿两条不同的路径,同时从A出发爬到B,则
(1)求出四边形ABCD的面积; (2)请画出将四边形ABCD向上平移5个 单位长度,再向左平移2个单位长度后所得 的四边形A′B′C′D′.
第五章 相交线与平行线
第五章 相交线与平行线
解:(1)如图,连接 BD,

人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)

人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)如图,平面直角坐标系中,A (﹣3,0)B (0,4)把△AOB 按如图标记的方式连续做旋转变换,这样得到的第2017个三角形中,O 点的对应点的坐标为_____.【答案】(8064,0)【解析】解:∵A (﹣3,0),B (0,4),∴OA =3,OB =4,由勾股定理得:AB =,∴△ABC 的周长=3+4+5=12.∵△OAB 每连续变换3次后与原来的状态一样,2017÷3=672…1,∴第2017个三角形的直角顶点是第673个循环组第一个三角形的直角顶点,∴三角形2017的直角顶点O 的横坐标=672×12=8064,∴三角形2017的直角顶点O 的坐标为(8064,0).故答案为:(8064,0).点睛:本题考查了坐标与图形变化﹣旋转,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.42.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.【答案】(2,0)【解析】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.43.在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为_____.【答案】22016【解析】根据点A0的坐标为(1,0),可得OA=1.然后根据题意,将线段OA绕原点O沿逆时针方向旋转45°,可知360°÷45°=8,可得A1、A9、A17、···A2017都在第一象限,再根据OA1=2OA=2,∠A1OA=45°,可求得A1的纵坐标为同理可得,A 99;∴A201720172016故答案为:20162.44.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】【分析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).45.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N的坐标______.【答案】()7,2-或()3,2--.【解析】【分析】根据“平行于x 轴的直线上的点的坐标的特征”结合已知条件分析解答即可.【详解】∵MN ∵x 轴,且M 的坐标为(2,-2),∵可设点N 的坐标为(a ,-2),又∵MN=5, ∵25a -=,∵25a -=或25a -=-,解得:7a =或3a =-,∵点N 的坐标为(7,-2)或(-3,-2).故答案为:(7,-2)或(-3,-2).【点睛】本题解题有以下两个要点:(1)平行于x 轴的直线上的点的纵坐标相等;(2)平行于x 轴的直线上两点间的距离等于这两个点的横坐标差的绝对值.46.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线段A ′B ′,若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是___.【答案】(6,4)【解析】【分析】先求出点A 经过怎样的平移得到A ′,再将B 进行同样的平移即可.【详解】∵-2+5=3,1+1=2,∴A 点向右平移5个单位长度,向上平移1个单位长度,∴1+5=6,3+1=4,∴点B ′的坐标为(6,4).【点睛】此题主要考察线段的平移,根据对应点的平移分式相同是解题的关键.47.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.【答案】15 (7,3)【解析】分析:该题是点的坐标规律,通过对部分点分析,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯, 12342,6,12,20,a a a a ==== 找出规律.详解:由题意,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯,则12342,6,12,20,a a a a ====1122,a =⨯=2236,a =⨯=33412,a =⨯=44520,a =⨯= ,()1n a n n =+,第12秒的时候在()33,3,A 向下运动3秒,到点()3,0.即在第15秒的时候运动到点()3,0.77856,A =⨯=即粒子运动56秒后到点()77,7.A 然后粒子向下运动4秒后到点()7,3. 即粒子运动60秒后的坐标为()7,3.故答案为:()15,7,3.点睛:属于找规律题目,找出它们之间的规律是解题的关键.48.如图,在平面直角坐标系中,点A 的坐标为(﹣2,,以原点O为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________.【答案】(【解析】作AB ⊥x 轴于点B ,∴AB=OB=2,则tan ∠AOB=AB BO == ∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A ′后,∠A ′OC=165°-30°-90°=45°,OA ′=OA=2OB=4,∴A ′C=OC=即A ′(−),故答案为:(.49.如图,在直角坐标系中,设一动点M 自P 0(1,0)处向上运动1个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…如此继续运动下去,设P n (x n ,y n ),n =1,2,3,…求x 1+x 2+…+x 99+x 100的值.【答案】50【解析】由题意可得:x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2;∴原式=2×(100÷4)=50.故答案为:50.50.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为_____.【答案】3【解析】【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=1BC=3,2于是得到AA′=3.【详解】∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=12BC=3,∴AA′=3.故答案是:3.点睛:考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.。

2022-2023学年人教版七年级数学下册《5-4平移》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-4平移》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.4平移》同步练习题(附答案)一.选择题1.如图是第七届世界军人运动会的吉祥物“兵兵”,将图中的“兵兵”通过平移可得到下列选项中的()A.B.C.D.2.如图所示:某公园里有一处长方形风景欣赏区ABCD,AB长50米,BC宽25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小明同学在假期沿着小路的中间行走(图中虚线),则:小明同学所走的路径长约为()米.(小路的宽度忽略不计)A.150米B.125米C.100米D.75米3.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风车的转动D.急刹车时,汽车在地面上的滑动4.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB.其中正确的是()A.仅①②B.仅①②④C.仅①②③D.①②③④5.如图,将直线CD向上平移到AB的位置,若∠1=130°,则D的度数为()A.130°B.50°C.45°D.35°6.如图,将△ABC向右平移acm(a>0)得到△DEF,连接AD,若△ABC的周长是36cm,则四边形ABFD的周长是()A.(36+a)cm B.(72+a)cm C.(36+2a)cm D.(72+2a)cm 7.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则平移的距离为()A.1B.2C.3D.48.如图,将直角三角形ABC沿AB方向平移得到直角三角形DEF.已知BE=4,EF=8,CG=3,则图中阴影部分的面积为()A.16B.20C.26D.129.下列说法正确的个数是()①同位角相等;②同旁内角互补,两直线平行;③若a∥b,b∥c,则a∥c;④直线外一点到这条直线的距离是指这一点到这条直线的垂线段;⑤在连接直线外一点与直线上各点的线段中,垂线段最短;⑥平移既改变图形的位置,也改变图形的形状与大小.A.2个B.3个C.4个D.5个10.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同11.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=.12.如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为cm2.13.在长为a(m),宽为b(m)一块长方形的草坪上修了一条宽2(m)的笔直小路,则余下草坪的面积可表示为m2;先为了增加美感,把这条小路改为宽恒为2(m)的弯曲小路(如图),则此时余下草坪的面积为m2.14.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为.15.如图是一个会场的台阶的截面图,要在上面铺上地毯,则所需地毯的长度是.16.如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)(1)画出三角形ABC向上平移4个单位后的三角形A1B1C1;(2)画出三角形A1B1C1向左平移5个单位后的三角形A2B2C2;(3)经过(1)次平移线段AC划过的面积是.17.已知AB=13,CD=8,M和N分别为线段AB,CD的中点.(1)若BC重合,D在线段AB上,如图1,求MN的长度.(2)①如果将图1的线段CD沿着AB向右平移n个单位,求MN的长度与n的数量关系.②当n为多少的时,MN的长度为9.(3)如果AB保持长度和位置不变,点D保持图1的位置不变,改变DC的长度,将点C沿着直线AB向右移动m个单位,其余条件不变,①BN+BC;②MN﹣BC,请问以上两个式子哪一个式子的值是定值,定值是多少?18.在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,△ABC沿AB方向平移至△DEF,若AE=8cm,DB=2cm.(1)AC和DF的关系为.(2)∠BGF=°.(3)求△ABC沿AB方向平移的距离.19.如图,AN∥DM,点B在AN上(点B与点A不重合),点C在DM上(点C与点D 不重合),∠DAB=∠BCD.(1)那么AD∥BC吗?试说明理由;(2)若平行移动BC,保持∠ABC=100°;点E、F在DC上,且满足∠F AC=∠BAC,AE平分∠DAF.①小红发现可求出∠EAC的度数,请你帮助小红写出求∠EAC的度数的过程;②在平行移动BC的过程中,是否存在某种情况,使∠BCA=∠DEA?若存在,请直接写出∠BCA的度数;若不存在,请说明理由.20.已知点C在射线OA上.(1)如图①,CD∥OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示);(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.参考答案一.选择题1.解:将图中的“兵兵”通过平移可得到图为:故选:C.2.解:由平移的性质可知,由于小路的宽度忽略不计,因此说行走的路程为AD+AB+BC=25+50+25=100(米),故选:C.3.解:A、荡秋千,不符合题意;B、地球绕着太阳转,不符合题意;C、风车的转动,不符合题意;D、急刹车时,汽车在地面上的滑动,属于平移变换,符合题意;故选:D.4.解:∵△ABC沿着某一方向平移一定的距离得到△DEF,∴①AD∥CF,正确;②AC=DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.5.解:∵∠1和∠2是邻补角,∴∠1+∠2=180°,∵∠1=130°,∴∠2=180°﹣∠1=50°,∵AB∥CD,∴∠D=∠2=50°,故选:B.6.解:∵将周长为36cm的△ABC沿边BC向右平移a个单位得到△DEF,∴AD=a,BF=BC+CF=BC+a,DF=AC,又∵AB+BC+AC=36cm,∴四边形ABFD的周长=AD+AB+BF+DF=a+AB+BC+a+AC=(36+2a)(cm).故选:C.7.解:△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则平移的距离为2cm,故选:B.8.解:由平移的性质可知,S△ABC=S△DEF,EF=BC=8,∵CG=3,∴BG=BC﹣CG=5,∴S阴=S梯形EFGB=(5+8)×4=26,故选:C.9.解:①同位角相等,错误,只有两直线平行,才有同位角相等;②同旁内角互补,两直线平行,正确;③若a∥b,b∥c,则a∥c,正确;④直线外一点到这条直线的距离是指这一点到这条直线的垂线段的长度,故本小题错误;⑤在连接直线外一点与直线上各点的线段中,垂线段最短,正确;⑥平移只改变图形的位置,不改变图形的形状与大小,故本小题错误;综上所述,正确的有②③⑤共3个.故选:B.10.解:由图和平移可得:三角板平移的方向不同,距离不同,故选:B.二.填空题11.解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.12.解:由题意,阴影部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=2×3=6(cm2),故答案为6.13.解:余下草坪的长方形长仍为a,宽为(b﹣2),则面积为a(b﹣2)=ab﹣2a;长方形的长为a,宽为b﹣2.余下草坪的面积为:a(b﹣2)=ab﹣2a,故答案为:(ab﹣2a),(ab﹣2a).14.解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.∴道路的面积为20×10﹣144=56米2故答案为:56米2.15.解:楼梯的长为5m,高为2.5m,则所需地毯的长度是5+2.5=7.5(m).故答案为:7.5m.三.解答题16.解:(1)如图,A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)经过(1)次平移线段AC划过的面积=4×4=16.故答案为:16.17.解:(1)∵M和N分别为线段AB,CD的中点,∴AM=BM=AB,CN=DN=CD,∵MN=BM﹣CN=AB﹣CD,∵AB=13,CD=8,∴MN=﹣=;(2)①∵线段CD沿着AB向右平移n个单位,∴BC=n,∵MN=BM﹣BN=AB﹣(CN﹣BC)=AB﹣CD+BC,∵AB=13,CD=8,∴MN=+n;②∵MN=9,∴+n=9,∴n=;(3)∵点C沿着直线AB向右移动m个单位,∴BC=m,∵点D保持位置不变,∴CD=8+m,∵N是CD的中点,∴CN=DN=CD=(8+m)=4+m,∴BN=CN﹣BC=4+m﹣m=4﹣m,当0<m≤8时,∴BN+BC=4﹣m+m=4,MN﹣BC=(BM﹣BN)﹣BC=AB﹣BN﹣BC=﹣(4﹣m)﹣m=;∴BN+BC是定值4,MN﹣BC是定值;当m>8时,N点在B点右侧,∵BN=BC﹣CN=m﹣4﹣m=m﹣4,MN=BM+BN=+m﹣4=m+,∴BN+BC=m﹣4+m=m﹣4,MN﹣BC=m+﹣m=,∴BN+BC不是定值,MN﹣BC是定值;综上所述:无论m取何值,MN﹣BC的值都是定值.18.解:(1)∵△ABC沿AB方向平移至△DEF,∴AC=DF,AC∥DF,故答案为:AC=DF,AC∥DF;(2)由平移的性质得出AC∥DF,∴∠ACB=∠DGB=90°,∴∠BGF=180°﹣90°=90°,故答案为:90;(3)由平移得AD=BE,AE=8cm,DB=2cm,∴AD=BE==3(cm),∴平移的距离为3cm;19.(1)解:结论:AD∥BC.理由:∵AB∥CD,∴∠D+∠DAB=180°,∵∠DAB=∠BCD,∴∠D+∠BCD=180°,∴AD∥BC.(2)①∵AD∥BC,∴∠DAB+∠ABC=180°,∵∠ABC=100°,∴∠DAB=80°,∵∠F AC=∠BAC,AE平分∠DAF,∴∠EAC=∠DAF+∠F AB=(∠DAF+∠F AB)=40°.②存在.理由:∵AD∥BC,∴∠DAC=∠ACB,∵CD∥AB,∴∠DEA=∠EAB,∵∠ACB=∠DEA,∴∠DAC=∠EAB,∴∠DAE=∠CAB,∵∠F AC=∠BAC,AE平分∠DAF,∴∠DAE=∠EAF=∠F AC=∠CAB=20°,∴∠ACB=∠DAC=60°.20.解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°﹣∠AOE﹣∠AOB=360°﹣90°﹣120°=150°;(2)∠OCD+∠BO′E′=360°﹣α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°﹣∠OCD,∠BOF=∠E′O′O=180°﹣∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°﹣∠OCD+180°﹣∠BO′E′=360°﹣(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°﹣α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°﹣2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°﹣2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°﹣α=360°﹣∠AOB,∴360°﹣2∠AOB+∠BO′E′=360°﹣∠AOB,∴∠AOB=∠BO′E′.。

人教版数学七年级下册7 2 2 用坐标表示平移 同步练习(含解析)

人教版数学七年级下册7 2 2 用坐标表示平移  同步练习(含解析)

第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。

(人教版数学)初中7年级下册-同步练习-7.2.2 用坐标表示平移-七年级数学人教版(下册)(解析版

(人教版数学)初中7年级下册-同步练习-7.2.2 用坐标表示平移-七年级数学人教版(下册)(解析版
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图所示,将点A向右平移几个单位长度可得到点B
A.3个单位长度B.4个单位长度
C.5个单位长度D.6个单位长度
【答案】B
长度,故选B.
2.如图所示,将点A向下平移5个单位长度后,将重合于图中的
A.点CB.点F
C.点DD.点E
【答案】D
16.三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.
(1)写出三角形EFG的三个顶点坐标;
(2)求三角形EFG的面积.
(1)如 图所示:
点E(4,1),点F(0,–2),点G(5,–3);
(2)S三角形EFG=4×5– ×4×3– ×1×5– ×1×4= .
9.已知三角形ABC,A(–3,2), B(1,1),C(–1,–2),现将三角形ABC平移,使点A到点(1,–2)的位置上,则点B,C的坐标分别为______,________.
【答案】(5,–3);(3,–6)
点C横坐标为:–1+4=3; 纵坐标为:–2+(–4)=–6;
∴ B点的坐标为(5,–3),C点的坐标为(3,–6).
(2)分别过A、C两点作x轴的平行线,过B、D两点作y轴的平行线,围成矩形,利用“割补法”求四边形ABCD的面积.如图,用矩形EFGH围住四边形ABCD,则
S四边形ABCD=S矩形EFGH–S三角形ABE–S三角形 BCF–S三角形CDG–S三角形ADH
=3×4– ×1×2– ×1×2– ×2×2– ×1×3=6.5.
6.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为

(新人教版)数学七年级下册:5.4《平移》练习题及答案

(新人教版)数学七年级下册:5.4《平移》练习题及答案

平移练习题1 如图1,在长方形ABCD 中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标明的数据,其中空白部分的面积是多少?2 如图2,某商场重新装修后,准备在大厅的主楼梯上铺设一种红色的地毯,已知这种地毯的批发价为每平方米40元,已知主楼梯道的宽为3米,其侧面如图2所示,则买地毯至少需要多少元?3 如图3,在四边形ABCD 中,AD ∥BC ,AB =CD ,AD <BC ,则∠B 与∠C 的数量关系怎样?试说明你的理由.4如图4,在△ABC 中,E 、F 分别为AB 、AC 上的点,且BE =CF ,则FE <BC 吗?为什么?图1c 图3ECBDADFBACE图4 M5 A 、B 两城市之间有一条国道,国道的宽为a ,现要在国道修建一座垂直于国道的立交桥,使通过A 、B 两城市路程最近,请你设计建桥的位置,并说明理论依据.6某医院用一个边长为1米的正方形材料制作一个红十字会的大型的“十字”标志.如图1,在正方形的四个角上挖去四个相同的小正方形即制作而成,则这个“十”字标志的周长为_________米.7在宽为20m ,长为30m 的矩形地面上,修筑同样宽的二条道路,余下的部分作为蔬菜地,根据图中数据,计算蔬菜地面积为_________.8有一种叫“俄罗斯方块”的电脑游戏,游戏规则是这样的:通过平移等变换,使所给的各种各样的方块排满每一横行,每排满一行,便消去一行,得100分;同时排满2行,得300分;依此类推.假如现在在电脑屏幕上显示的图形如图5所示,电脑给出的三个方块分别是甲、乙、丙,在只考虑平移的情况下,应如何平移甲、乙、丙三个方块,才能消去1行,得到100分?甲参考答案1简析利用“平移不改变图形的形状和大小”这一性质可使本题迅速解决.由图形可知,四个空白四边形经过平移可以组成一个长方形,其长为(a-c),宽为(b-c),所以面积为:(a-c)(b-c)=ab-ac-bc+c2.说明这里通过平移的知识,避免了对图形的分割,使求解简洁、方便.2简析我们可以利用平移的知识分别将楼梯水平方向的线段沿竖直方向平移到BC上,竖直方向的线段沿水平方向平移到AC上,于是铺地毯的横向线段的长度之和就等于横向直角边的长度,纵向线段的长度之和就等于纵向直角长度,所以地毯的总长度至少为 5.6米+2.8米=8.4米,此总面积为8.4米×3米=25.2平方米,所以购买地毯至少需要25.8平方米×40元/平方米=1018元.说明这道若要通过逐步计算,你会觉得比较复杂的,而运用了平移的知识,则问题就显得这么简单,因此,同学们在学习平移知识时一定要用心去体会.3简析由于∠B与∠C的位置较散,故考虑将∠B与∠C变换到同一个三角形中来.而AD∥BC,AD<BC,故将线段AB沿着AD的方向平移AD长,即点B平移到点E,此时有DE=AB,DE∥AB,所以∠DEC=∠B,于是,在△DEC中,因为DE=DC,所以∠DEC=∠C,故∠B=∠C.说明本题从平移的角度来思考问题,使问题简洁获解.4简析由于已知条件中的线段BE、CF和结论中的线段FE、BC比较散,所以我们可以考虑运用平移的知识将这四条线段相对集中,即将EF平移到BM,则此时BE平移到MF,这样只要说明BC>BM即可,而由于CF=BE=MF,再考虑到MF与CF的对称关系,作∠MFC的平分线交BC于点D,易得DM=DC,因为BD+DM>BM,所以BC>EF,即FE<BC.说明若已知条件中出现相互平行且相等的线段自然要想到利用平移知识解决问题,若条件中并没有出现这些问题,我们要想利用平移的知识求解,则可通过平移使有关线段或角相对集中,从而可降低求解的难度.5简析不妨设国道的两边分别为l1、l2,桥为MN,那么从A到B要走的路线就是A→M →N→B了,如图5,而MN=a=定值,于是要使路径最短,只要AM+BN最短即可.此时两线段应在同一平行方向上,若设想先过桥,即平移MN于AC,从C到B应是余下的路程,连结BC的线段即为最短的,此时不难说明线段BC与国道边缘l2的交点N就是修桥的位置.说明本题是设计建桥的位置,却隐含了平移的知识,体现了数学知识与社会生活的紧密联系,既能使我们在具体情况中分析、解决问题,又很好地培养和锻炼了同学们的发散思维能力.6分析:将这个“十字”标志的水平线段向上平移或向下平移,正好组成正方形的水平两条边;将这个“十字”标志的竖直线段向左能够移或向右平移,可以正好组成正方形的竖直两条.这样这个“十字”标志的周长正好等于大正方形的周长.而这个图1大正方形的周长为4米,所以应填4.7分析:把两条道路平移到边上去,如图3所示,则四块空白部分(即蔬菜地)可组成长(30-1)=29(m),宽(20-1)=19(m)的矩形,所以29×19=551(m2).即蔬菜地的面积为551m2.图37要给如图4所示的楼梯铺上地毯,数据如图所示,问共需地毯多长?分析:由于台阶级数未知,每级台阶的宽和高也未知,故直接求解不易.若采用平移的方法,把台阶宽都移到水平线上,台阶高都移到铅垂线上,这样所铺地毯的总米数就等于整个台阶的水平宽度和铅垂高度之和.即共 4需地毯的米数为8+4=12(米)8分析:甲方块左移2小格,下移1小格至屏幕左下角;乙方块右移1小格,下移6小格;丙方块下移6小格至屏幕图5 右下角.这样就排满1行,得到100分.。

人教版七年级下第五章相交线与平行线(平移)同步练习题含解析

人教版七年级下第五章相交线与平行线(平移)同步练习题含解析

人教版七年级下第五章相交线与平行线(平移)同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列现象中,属于平移的是( )A .将一张纸沿它的中线折叠B .飞碟的快速转动C .翻开书中的每一页纸D .电梯的上下移动2.下列图案中,可由左侧图案平移得到的是( )A .B .C .D . 3.下列图形都由若干个小图组成,其中可以由它的一个小图经过平移而得的图形是( )A .B .C .D .4.如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF = C .AC DF= D .ABC DEF △≌△ 5.如图,直线a 、b 都与直线l 垂直,垂足分别为E 、F ,EF =1,正方形ABCD 的边长AC 在直线l 上,且点C 位于点E 处,将正方形ABCD 沿l 向右平移,直到点A 与点F 重合为止,记点C 平移的距离为x ,正方形ABCD 位于直线a 、b 之间部分(阴影部分)的面积为y,则y关于x的函数图象大致为()A.B.C.D.6.下列图形不能通过平移变换得到的是()A.B.C.D.7.如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位8.把直线a沿箭头方向水平平移2cm得直线b,这两条直线之间的距离是()A .0.75cmB .0.8 cmC .1cmD .1.5cm9.已知(1,3)A -,(2,1)B -,现将线段AB 平移至11A B .若点1(,1)A a ,1(3,)B b -,则a b +=( ).A .6B .1-C .2D .2-10.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:△//BH EF ;△AD BE =;△BD CH =:△C BHD ∠=∠;△阴影部分的面积为26cm .其中正确的是( )A .△△△△△B .△△△△C .△△△△D .△△△△二、解答题11.三角形ABC 与三角形A B C '''在平面直角坐标系中的位置如图所示:(1)分别写出下列各点的坐标:A _______,A '________,三角形ABC 的面积为_______;(2)三角形A B C '''是由三角形ABC 经过怎样的平移得到的?(3)若点(,)P x y 是三角形ABC 内部一点,则三角形A B C '''内部的对应点P '的坐标_______.12.如图在边长为1个单位长度的小正方形组成的网格中给出了格点△ABC 和格点线段DE (顶点或端点为网格线的交点),以及过格点的直线l .(1)画出△ABC 关于直线成轴对称的△A 1B 1C 1;(2)将线段DE 进行平移后,使点D 的对应点D 1与点B 1重合,画出平移后的线段D 1E 1;(3)填空:△C 1B 1E 1的度数是_____.13.在数学活动课上,老师要求同学们用一副三角板拼角,并探索角平分线的画法.小斌按照老师的要求,画出了30角的角平分线,画法如下:△先按照图1的方式摆放45︒角的三角板,画出AOD ∠;△去掉45︒角的三角板,在AOD ∠处,再按照图2的方式摆放30角的三角板,画出射线OB ;△将30角的三角板摆放到如图3的位置,画出射线OC 射线OC 就是AOB ∠的角平分线. (1)AOC ∠的度数为 º.明明、亮亮也按照老师的要求,分别用一副三角板如图4,图5的拼法得到了图6,图7中的EOF ∠和MON ∠.请回答下类问题:(2)EOF ∠的度数是 º,MON ∠的度数是 º;(3)若明明,亮亮也只能用一副三角板画出EOF ∠和MON ∠角平分线,请你仿照小斌的画法,在图6,图7中画出如何摆放三角板.14.已知,如图,AD BE ∥,C 为BE 上一点,CD 与AE 相交于点F ,连接AC .12∠=∠,34∠=∠.(1)求证:AB CD ∥;(2)已知12cm AE =,5cm AB =,13cm =BE ,求AC 的长度.三、填空题15.如图,线段AB 是线段CD 经过平移得到的,那么线段AC 与BD 的关系是 _____16.如图,在长方形ABCD 中,线段AC ,BD 相交于O ,DE //AC ,CE //BD ,BC =2cm ,那么三角形EDC 可以看作由____平移得到的,连接OE ,则OE =____cm .17.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,若EC =2,BF =10,则BE =___.18.如图,将周长为16的三角形ABC向右平移2个单位后得到三角形DEF,则四边形ABFD的周长等于________________.19.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要__________元.参考答案:1.D【分析】在同一个平面内,如果一个图形上的所有点都按照某个方向做相同距离的移动,那么这样的图形运动就叫做图形的平移运动,简称平移;在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;根据以上定义逐一判断即可得到答案.【详解】解:将一张纸沿它的中线折叠,属于轴对称,故A不符合题意;飞碟的快速转动,属于旋转,故B不符合题意;翻开书中的每一页纸,属于旋转,故C不符合题意;电梯的上下移动,属于平移,故D符合题意;故选D【点睛】本题考查的是轴对称,平移,旋转,掌握“轴对称,平移,旋转的定义”是解本题的关键.2.D【分析】根据平移的性质可直接进行排除选项.【详解】由平移的性质可得:由左侧图案平移得到的只有D选项符合;故选D.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.3.B【分析】由旋转和平移的基本概念进行求解.【详解】选项(A)由它的一个小图经过旋转而得的图形;选项(B)由它的一个小图经过平移而得的图形;选项(C)既不是由它的一个小图经过旋转也不是由它的一个小图经过平移得到;选项(D)由它的一个小图经过轴对称变换而得的图形.故选:B.【点睛】本题考查了平移,旋转和轴对称变换的基本概念,以上三种变换都不会改变图形的大小和形状,其中平移变换后的图形的与原图形的对应点的连线之间是平行等距的关系,牢记这一特征是解本题的关键.4.A【分析】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC△Rt△DEF,据此判断即可.【详解】解:△Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,△Rt△ABC△Rt△DEF,△BC=EF,AC=DF,BC-EC=EF-EC,即BE=CF,所以只有选项A是错误的,故选:A.【点睛】本题考查了平移变换,全等三角形的性质等知识,解题的关键是熟练掌握基本知识,熟练应用平移的基本性质.5.B【分析】由已知易得AC=2,△ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断【详解】解:△当0≤x≤1时,如图1,设平移后的正方形交直线a于点G、H,则EC=x,△GHC为等腰直角三角形,故GH=2x,则y=S△HGC12=⨯EC•GH12=•x•2x=x2,为开口向上的抛物线;△当1<x≤2时,如图2,设平移后的正方形交b于点M、N交a于点GH,则△A′GH、△MNC′均为等腰直角三角形,则y=S正方形ABCD﹣(S△A′GH+S△MNC′)212-[(2﹣x)(2﹣x)×2﹣2×(x﹣1)(x﹣1)]=﹣2x2+6x﹣3;该函数为开口向下的抛物线;△当2<x≤3时,同理可得:y=(3﹣x)×2(3﹣x)12⨯=x2﹣6x+9,该函数为开口向上的抛物线;故选:B.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质等,结合图形正确分类是解题的关键.6.B【分析】平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移不改变图形的形状和大小.【详解】解:根据平移的性质可知:不能用平移变换得到的是选项B,故选:B.【点睛】本题考查平移图形的识别,是基础考点,掌握相关知识是解题关键.7.D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.C【分析】作AC△a,垂足为C,根据含30°角直角三角形性质求出AC,问题得解.【详解】解:如图,作AC△a,垂足为C,由题意得AB=2cm,△ABC=30°,△AC=12AB=1cm,△直线a、b之间的距离是1cm.故选:C【点睛】本题考查了平移、平行线间的距离的定义、“在直角三角形中,30°角所对的直角边等于斜边的一半”等知识,熟知相关知识,并根据题意添加辅助线构造直角三角形是解题关键.9.B【分析】根据平移的性质,通过列方程并求解,即可得到a 和b 的值,并代入到代数式计算,即可得到答案.【详解】根据题意得:()()131b --=---,132a -=-△3b =-,2a =△()231a b +=+-=-故选:B .【点睛】本题考查了平移、一元一次方程、代数式的知识;解题的关键是熟练掌握平移的性质,从而完成求解.10.A【分析】根据平移的性质可直接判断△△△,根据平行线的性质可判断△,阴影部分的面积=S 梯形BEFH ,于是可判断△,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF△AC ,故△△正确;所以C BHD ∠=∠,故△正确;△AC△DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故△正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故△正确;综上,正确的结论是△△△△△.故选:A .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.11.(1)(1,3),(3,1)-,2;(2)先向左平移4个单位,再向下平移2个单位,或先向下平移2个单位,再向左平移4个单位;(3)(4,2)x y --;【分析】(1)根据点的位置写出坐标即可,利用长方形面积减去三个直角三角形面积即可;(2)根据A ',A 的坐标位置,确定平移方式即可;(3)根据坐标的平移规律:横坐标向左平移减,向右平移加;纵坐标向上平移加,向下平移减;计算求值即可;(1)解:(1,3)A ,(3,1)A '-,△ABC 面积=2×3-12×1×3-12×1×1-12×2×2=6-32-12-2=2; (2)解:△A 点先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位可以得到A ',△平移方式为:先向左平移4个单位,再向下平移2个单位,或先向下平移2个单位,再向左平移4个单位;(3)解:△(,)P x y 先向左平移4个单位,再向下平移2个单位得到P ',△P '横坐标为x -4,纵坐标为y -2,故P '(4,2)x y --;【点睛】本题考查了平移的性质:平移不改变图形的大小、形状,只改变图形的位置;图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离;掌握坐标的平移规律是解题关键.12.(1)画图见解析(2)画图见解析(3)45°【分析】(1)根据轴对称作出点A ,B ,C 的对应点111,,A B C ,连接可得.(2)由平移的性质作出点E 平移后的点1E ,连接D 1E 1(3)补出11E FB △,易知为等腰直角三角形,可求△C 1B 1E 1(1)解:如图,△A 1B 1C 1即为所求.(2)解:如图,线段D 1E 1即为所求(3)延长11B C 交于格点F ,连接1E F ,如图,易知11E FB △为等腰直角三角形11145C B E ∴∠=︒故答案为:45°【点睛】本题考查作图—轴对称变换,平移变换等知识,解题的关键是理解题意,正确作出图形.13.(1)15°;(2)120°,150°;(3)见解析【分析】(1)根据图1可得△AOD的度数,根据图2可得△AOB的度数,由图3可知△DOC 的度数,从而可求出△AOC的度数;(2)由图4和图5可知,根据角的和差可求出图6 和图7的度数;(3)根据题中所给的方法拼出图6 和图7 的平分线即可.【详解】解:(1)由图1知,△AOD=45°,由图2得,△AOB=30°,△△BOD=△AOD-△AOB=45°-30=15°;由图知,△DOC=△DOB+△BOC=30°△△AOC=△AOD-△DOC=45°-30°=15°故答案为:15°;(2)△EOF=30°+90°=120°;△MON=60°+90°=150°;故答案为:120°,150°;(3)a)先按照图△的方式摆放一副三角板,画出△EOF,b)再按图△的方式摆放三角板,画出射线OC,c)图△是去掉三角板的图形;同理可画出△MON的平分线,【点睛】本题考查了利用三角形作图,角的和差,角平分线的定义,熟练掌握作图方法和相关定义是解答此题的关键.14.(1)证明见解析;(2)60.13AC【分析】(1)先证明13,EAC 再结合4,43,EAC ACD 证明1,ACD 从而可得结论;(2)先证明90,EAB DAC 再证明390, 从而利用等面积法可得AC 的长度. 【详解】解:(1) AD BE ∥,3,DAC 而2,DAC EAC12,∠=∠13,EAC 4,43,EAC ACD 1,EAC EAC ACD1,ACD .AB CD ∥(2) 12cm AE =,5cm AB =,13cm =BE ,22222125169,AE AB BE9012,EAB EAC EAC90,DAC ,AD BC ∥ 390,DAC 11,22AE AB BE AC 51260.1313AC 【点睛】本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明390∠=︒是解本题的关键.15.平行且相等【分析】根据平移的性质即可判断.【详解】△线段AB 是线段CD 经过平移得到的,△线段AC 与BD 平行且相等.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点.16. △OAB 2【分析】根据平移的性质:平移前后的图形全等,且对应点所连线段平行或在一条直线上,由此可以猜想出三角形EDC 可以看成是由三角形AOB 向右平移得到的.【详解】解:在长方形ABCD 中,AC 与BD 相交于点O ,DE△AC ,CE△BD ,那么△EDC 可以看作是△OAB 平移得到的,OE=平移的距离=BC=2cm .故答案为:△OAB ,2.【点睛】本题考查平移的基本性质:△平移不改变图形的形状和大小;△经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.4【分析】根据平移的性质可得BE =CF ,再由已知BF =2BE +EC =10,即可求得BE 的长.【详解】由平移的性质可得:BE =CF△BF =2BE +EC =10,EC =2△BE =4故答案为:4.【点睛】本题考查了平移的性质,线段的和差关系等知识,关键是掌握平移的性质. 18.20【分析】根据平移的基本性质,得出四边形ABFD 的周长22AD AB BF DF AB BC AC =+++=++++即可得出答案.【详解】解:根据题意,将周长为16的ABC ∆沿BC 方向向右平移2个单位得到DEF ∆, 2AD ∴=,2BF BC CF BC =+=+,DF AC =;又16AB BC AC ++=,∴四边形ABFD 的周长2220AD AB BF DF AB BC AC =+++=++++=.故答案为:20.【点睛】本题考查平移的基本性质,解题的关键是掌握:△平移不改变图形的形状和大小;△经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 19.504【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个长方形,再求得其面积,则购买地毯的钱数可求.【详解】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,△地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米,△买地毯至少需要16.8×30=504元,故答案为:504.【点睛】本题考查了平移,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.。

平移(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

平移(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题5.18 平移(专项练习)一、单选题1.下列现象中,属于平移现象的是( )A .方向盘的转动B .行驶的自行车的车轮的运动C .电梯的升降D .钟摆的运动2.在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A .B .C .D .3.如图,ABC 沿直线m 向右平移2cm ,得到DEF ,下列说法错误的是( )A .//AC DFB .AB DE =C .2cm CF =D .2cm DE = 4.如图,ABC 沿射线BC 方向平移到DEF (点E 在线段BC 上),如果8cm BC =,5cm EC =,那么平移距离为( )A .3cmB .5cmC .8cmD .13cm5.有以下说法:①①ABC 在平移的过程中,对应线段一定相等;①①ABC 在平移过程中,对应线段一定平行;①①ABC 在平移过程中,周长保持不变;①①ABC 在平移过程中,对应角分别相等. 正确的是( )A.①①①①B.①①①C.①①①D.①①①6.如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的弯曲小路,则改造后草地部分的面积()A.变大B.不变C.变小D.无法确定7.下列平移作图不正确的是()A.B.C.D.8.定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()A.B.C.D.9.如图所示,将边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方'''',此时阴影部分的面积为()形A B C DA .224cmB .226cmC .218cmD .220cm10.小红同学在某数学兴趣小组活动期间,用铁丝设计并制作了如图所示的三种不同的图形,请您观察甲、乙、丙三个图形,判断制作它们所用铁丝的长度关系是( )A .制作甲种图形所用铁丝最长B .制作乙种图形所用铁丝最长C .制作丙种图形所用铁丝最长D .三种图形的制作所用铁丝一样长二、填空题11.下列生活中的物体的运动情况可以看成平移的是____.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).12.如图所示是一座楼房的楼梯,高1 m ,水平距离是2.8 m .如果要在台阶上铺一种地毯,那么至少要买这种地毯________13.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到①DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__14.如图,将ABC ∆沿着射线BC 的方向平移,得到DEF ∆,若13EF =,7EC =,则平移的距离为__.15.如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若△B=55°,△C=100°,则△AB’A’的度数为_____°.16.如图,在长方形ABCD中,线段AC,BD相交于O,DE//AC,CE//BD,BC=2cm,那么三角形EDC可以看作由____平移得到的,连接OE,则OE=____cm.17.如图,在长为9m,宽为7m的矩形场地上修建两条宽度都为1m且互相垂直的道路,剩余部分进行绿化,则绿化面积共有______2m.18.如图,公园里长为20米宽为10米的长方形草地内修建了宽为1米的道路,则草地面积是________平方米.三、解答题19.如图示,每个小方格的边长为1,把三角形ABC 先向右平移5个格再向下平移2个格得到三角形DNF .(1) 在方格中画出平移后的三角形DNF .(2) 计算平移后三角形DNF 的面积.20.如图所示的正方形网格中,每个小正方形的边长都为1个单位长度,三角形ABC 的顶点都在正方形网格的格点上,将三角形ABC 向上平移m 个单位,再向右平移n 个单位,平移后得到三角形A B C ''',其中图中直线l 上的点A '是点A 的对应点。

人教版七年级下册数学平移同步测试题(含答案)

人教版七年级下册数学平移同步测试题(含答案)

5.4平移1.在以下现象中:①温度计中液面上升或下降,②用打气筒打气时活塞的移动,③钟摆的摆动,④传送带带着瓶装饮料的移动.其中是平移的有()A.①②④B.①③C.②③D.②④2.某个图形经过平移能得到另一个图形,它们的对应点所连成的线段的关系是()A.平行B.相等C.平行(或在同一条直线上)且相等D.不能确定3.在5×5方格纸中,将图形N平移后的位置如图所示,那么正确的平移方法是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格4.下列现象中属于平移的是 ()A.转动的风扇B.开关推拉门C.转方向盘D.转动陀螺5.图形平移改变的是图形的 ()A.大小B.形状C.位置D.大小、形状和位置6.在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一拼图向下运动,为了使所有图案消失,你必须()A.向右平移1格B.向左平移1格C.向右平移2格D.向右平移3格7.关于图形平移,下列结论错误的是()A.对应线段相等B.对应角相等C.对应点所连的线段互相平分D.对应点所连的线段相等8.欣赏并说出下列各图案,是利用平移来设计的有()A.2个B.3个C.5个D.6个9.如图所示,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为 () A.16 cm B.18 cm C.20 cm D.22 cm10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长11.如图所示,由△ABC平移得到的三角形的个数是 .12.如图所示,这群小鸟的图形是以为基本图形平移得到的.13.如图所示,方格中有一条美丽可爱的小鱼.(1)若每个小方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)14.如图所示,四边形ABCD中,AD∥BC,且AD<BC,△ABC 平移到△DEF的位置.(1)指出平移的方向和平移的距离;(2)试说明AD+BC=BF.15.有两个村庄A和B被一条河隔开,现要架一座桥(桥与河岸垂直),请你在图中找出建桥的位置(用线段MN表示),使得由A到B的路程最短.【答案与解析】1.D解析:根据平移的性质可知.①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移.故选D.2.C解析:根据平移的性质解答.因为平移变换过程中的各点的平移方向相同,平移距离相等,所以平移前后的两个图形的对应点所连成的线段的关系是平行(或在同一条直线上)且相等.故选C.3.解析:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选C.4.B(解析:根据平移的概念和性质可知开关推拉门属于平移现象.故选B.)5.C(解析:平移只改变图形的位置.故选C.)6.C(解析:上面的图案的最右边需向右平移2格才能与下面所缺图案的最右边在一条直线上.故选C.)7.C(解析:根据平移的性质,对选项进行一一分析,选择正确答案.A.将图形平移,对应线段平行(或在同一条直线上)且相等,故正确;B.将图形平移,对应角相等,故正确;C.将图形平移,对应点所连接的线段平行(或在同一条直线上)且相等,故错误;D.将图形平移,对应点所连接的线段平行(或在同一条直线上)且相等,故正确.故选C.)8.B(解析:根据平移变换对各选项分析判断后求解.故选B.)9.C(解析:根据题意,将周长为16 cm的△ABC沿BC向右平移2 cm得到△DEF,所以AD=2 cm,BF=BC+CF=BC+2 cm,DF=AC.因为AB+BC+AC=16 cm,所以四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20(cm).故选C.)10.D(解析:分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.由图形可得出:甲所用铁丝的长度为2a+2b,乙所用铁丝的长度为2a+2b,丙所用铁丝的长度为2a+2b,故三种方案所用铁丝一样长.)11.5(解析:平移变换不改变图形的形状、大小和方向,因此由△ABC平移得到的三角形有5个.)12.一只小鸟(解析:这群小鸟的图形是以一只小鸟为基本图形平移得到的.)13.解:(1)16(2)如图所示.14.解:(1)平移的方向是点A到点D的方向,平移的距离是线段AD的长度. (2)因为△ABC平移到△DEF的位置,所以CF=AD.因为CF+BC=BF,所以AD+BC=BF.15.解:如图所示,过点B作BC⊥n,且BC等于河宽,连接AC交直线m于M,作MN∥BC,MN交n于N即可.理由如下:两点之间线段最短.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.4 平移
基础题
知识点1 认识平移现象
1.下列现象不属于平移的是(C)
A.飞机起飞前在跑道上加速滑行
B.汽车在笔直的公路上行驶
C.游乐场的过山车在翻筋斗
D.起重机将重物由地面竖直吊起到一定高度
2.(赵县期末)在A、B、C、D四个选项中,能通过如图所示的图案平移得到的是(C)
3.(北流市校级月考)如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=(A)
A.40°B.50°C.90°D.140°
4.(五峰县期中)如图所示,四幅汽车标志设计中,能通过平移得到的是(A)
,奥迪,A)) ,本田,B)) ,大众,C)) ,铃木,D))
5.(咸丰县校级月考)如图所示,△FDE经过怎样的平移可得到△ABC(A)
A.沿射线EC的方向移动DB长
B.沿射线CE的方向移动DB长
C.沿射线EC的方向移动CD长
D.沿射线BD的方向移动BD长
6.将长度为5 cm的线段向上平移10 cm所得线段长度是(B)
A.10 cm B.5 cm
C.0 cm D.无法确定
7.(台州中考)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.
8.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C=1_cm.
9.如图,三角形DEF是三角形ABC平移所得,观察图形:
(1)点A的对应点是点D,点B的对应点是点E,点C的对应点是点F;
(2)线段AD,BE,CF叫做对应点间的连线,这三条线段之间有什么关系呢?
解:AD∥BE∥CF,AD=BE=CF.
知识点2 画平移图形
10.(济南中考)如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)
图1 图2
A.向右平移2个单位,向下平移3个单位
B.向右平移1个单位,向下平移3个单位
C.向右平移1个单位,向下平移4个单位
D.向右平移2个单位,向下平移4个单位
11.请在如图所示的方格中,将“箭头”向右平移3个单位长度.
解:如图所示.
12.(甘肃模拟)如图所示,三角形ABC是通过平移三角形DEF得到的,已知ED和BA是对应线段,请在图中画出三角形DEF.
解:如图所示.
中档题
13.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线(D) A.a户最长B.b户最长
C.c户最长D.三户一样长
14.(涞水县校级月考)如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有(D)
A.0条B.1条C.2条D.3条
15.(福州校级自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是(B)
16.(海安县一模)如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.
17.如图,方格中有一条美丽可爱的小金鱼.
(1)若方格的边长为1,则小鱼的面积为16;
(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).
解:如图所示.
18.如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?
解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,
因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).
综合题
19.(1)已知图1是将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;
(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;
(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地
的面积.
解:(1)如图.
(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.
(3)10×40-10×1=390(m2).。

相关文档
最新文档