2020年山东省济南市中考数学试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省济南市中考数学试题及答案
数学试卷
本卷须知:
1.本试题分第一卷和第二卷两部分,第一卷共
2页,满48分;第二卷共
6页,总分
值72分.本试题共8页,总分值120分,考试时刻为120分钟.
2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将
考点、姓名、准考证号、座号填写在试卷的密封线内.3.第一卷为选择题,每题选出答案后,用
2B 铅笔把答题卡上对应题目的正确答案标
号涂黑.如需改动,用橡皮擦洁净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用运算器;考试终止,应将本试卷和答题卡一并交回.
第一卷〔选择题
共48分〕
一、选择题〔本大题共
12个小题,每题4分,共48分.在每题给出的四个选项中,只有
一项为哪一项符合题目要求的〕
1.
3的相反数是〔〕
A .3
B .3
C .13
D .
13
2.图中几何体的主视图是〔〕
3.如图,
AB CD ∥,直线EF 与AB 、CD 分不相交于G 、H .60AGE ∠,那么EHD ∠的度数是〔〕A .30B .60C .120D .1504.估量20的算术平方根的大小在〔〕
A .2与3之间
B .3与4之间
C .4与5之间
D .5与6之间
5.2009年10月11日,第十一届全运会将在漂亮的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,
呈〝三足鼎立〞、〝东荷西柳〞布局.建
筑面积约为359800平方米,请用科学记数法表示建筑面积是〔保留三个有效数字〕〔
〕
A .5
35.910平方米B .5
3.6010平方米C .53.5910平方米
D .4
35.910平方米
A
C
E B F
D
H
G
〔第3题图〕
正面〔第2题图〕
A .
B .
C .
D .
6.假设12x x ,是一元二次方程2
560x
x 的两个根,那么
12x x +的值是〔
〕
A .1
B .
5
C .
5
D .6
7.〝只要人人都献出一点爱,世界将变成美好的人间〞.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情形进
行了统计,并绘制成了统计图.
依照右图提
供的信息,捐款金额..的众数和中位数分不是
〔
〕
A .20、20
B .30、20
C .30、30
D .20、30
8.不等式组
213351
x x ≤的解集在数轴上表
示正确的选项是〔〕
9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如下图,它的底面半径
6cm OB
,高8cm OC .
那么那个圆锥漏斗的侧面积是〔〕
A .2
30cm B .2
30cm
C .2
60cm
D .2
120cm 10.如图,矩形ABCD 中,35AB
BC ,.过对角线交点O 作OE AC 交AD 于E ,那
么
AE 的长是〔
〕
A .1.6
B .2.5
C .3
D .3.4
11.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,假设
a b Rt GEF
∥,△从如下图的位置动身,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积〔S 〕随时刻〔t 〕变化的图象大致是〔
〕1 2 0
A .
B .
1 2
C .
1 2
D .
1 2
〔第9题图〕
B
A
C
O A
B
C
D
O
E
〔第10题图〕
捐款人数金额〔元〕
5 10
15 20 6
13
20
8
3
20 30
50
100
〔第7题图〕
10
12.在平面直角坐标系中,关于平面内任一点
a b ,,假设规定以下三种变换:
1313;f a b a b f 如①,=,.,,,1331;g a b b a g 如②,=,.,,,1313h a b a b h 如③,=
,.,,,.按照以上变换有:23
3232f g f
,,,,那么53f h ,等于〔〕
A .
53,B .
53,C .
53
,D .
53
,G
D
C
E
F
A B
b
a
〔第11题图〕
s
t
O
A .
s
t
O
B .
C .
s
t
O
D .
s
t
O
本卷须知:
1.第二卷共6页.用蓝、黑钢笔或圆珠笔直截了当答在考试卷上.
2.答卷前将密封线内的项目填写清晰.考试时刻,一律不得使用运算器.
第二卷〔非选择题
共72分〕
二、填空题〔本大题共5个小题,每题
3分,共15分.把答案填在题中横线上〕
13.分解因式:2
9
x
.
14.如图,
O 的半径5cm OA ,弦8cm AB ,点P 为弦AB 上一动点,那么点P 到圆心
O 的最短距离是
cm .
15.如图,
AOB ∠是放置在正方形网格中的一个角,那么cos AOB ∠的值是
.16.〝五一〞期间,我市某街道办事处举行了〝迎全运,促和谐〞中青年篮球友谊赛.获得
男子篮球冠军球队的五名主力队员的身高如下表:
〔单位:厘米〕
号码 4 7 9
10 23 身高
178
180
182
181
179
那么该队主力队员身高的方差是
厘米2.
17.九年级三班小亮同学学习了〝测量物体高度〞一节课后,他为了测得右图所放风筝的高度,进行了如下操作:〔1〕在放风筝的点
A 处安置测倾器,测得风筝C 的仰角
60CBD ∠;
〔2〕依照手中剩余线的长度出风筝线BC 的长度为70米;
〔3〕量出测倾器的高度
1.5AB 米.
依照测量数据,运算出风筝的高度CE 约为
米.〔精确
到0.1米,
3 1.73〕
三、解答题〔本大题共7个小题,共
57分.解承诺写出文字讲明、证明过程或演算步骤〕
18.〔本小题总分值7分〕
〔1〕运算:
2
121x x
〔2〕解分式方程:2
13
1
x
x .
19.〔本小题总分值
7分〕
O
A
P
B
〔第14题图〕
O
A
B
〔第15题图〕
A
D
B E
C
60°
〔第17题图〕
〔1〕,如图①,在
ABCD 中,E 、F 是对角线BD 上的两点,且BF
DE .
求证:AE CF .〔2〕,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的
延长线交
O 于点E .
连接BE 、BD ,30ABD ∠,求EBO ∠和C ∠的度数.20.〔本小题总分值8分〕
有3张不透亮的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀
后,第一次从中随机抽取一张,
并把这张卡片标有的数字记作一次函数表达式中的
k ,第二
次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .
〔1〕写出
k 为负数的概率;
〔2〕求一次函数
y
kx b 的图象通过二、三、四象限的概率.
〔用树状图或列表法求解〕
21.〔本小题总分值8分〕
A
E
C
D F B
〔第19题图①〕
A
C
D
B
E
O
〔第19题图②〕
1
2
3
正面
背面
自2018年爆发全球金融危机以来,部分企业受到了不同程度的阻碍,为落实〝促民生、促经济〞政策,济南市某玻璃制品销售公司今年
1月份调整了职工的月工资分配方案,
调整后
月工资由差不多保证工资和计件奖励工资两部分组成〔计件奖励工资=销售每件的奖励金额
×销售的件数〕.下表是甲、乙两位职工今年五月份的工资情形信息:
职工
甲乙月销售件数〔件〕200 180 月工资〔元〕
1800
1700
〔1〕试求工资分配方案调整后职工的月差不多保证工资和销售每件产品的奖励金额各多少
元?
〔2〕假设职工丙今年六月份的工资不低于
2000元,那么丙该月至少应销售多少件产品?22.〔本小题总分值9分〕
:如图,正比例函数
y ax 的图象与反比例函数
k y
x
的图象交于点
32A ,.
〔1〕试确定上述正比例函数和反比例函数的表达式;
〔2〕依照图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?〔3〕M m n ,是反比例函数图象上的一动点,
其中
03m ,
过点M 作直线MN x ∥轴,交
y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形
OADM 的面积为6时,请判定线段
BM 与DM 的大小关系,并讲明理由.
23.〔本小题总分值9分〕
如图,在梯形ABCD 中,354245AD BC AD
DC AB B
∥,,,,∠.动点M
从
B 点动身沿线段B
C 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点动身沿线段C
D 以每秒1个单位长度的速度向终点D 运动.设运动的时刻为t 秒.〔1〕求BC 的长.
〔2〕当MN AB ∥时,求t 的值.
〔3〕试探究:t 为何值时,MNC △为等腰三角形. A D
C
B
M
N
〔第23题图〕
〔第22题图〕
y x
O
A
D
M
C
B
24.〔本小题总分值9分〕
:抛物线
2
0y ax
bx c a
的对称轴为1x
,与x 轴交于A B ,两点,与y 轴交于点
C ,其中30A ,、02C ,.
〔1〕求这条抛物线的函数表达式.〔2〕在对称轴上存在一点P ,使得
PBC △的周长最小.要求出点
P 的坐标.
〔3〕假设点
D 是线段OC 上的一个动点〔不与点O 、点C 重合〕.过点D 作D
E PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试讲明S 是否存在最大值,假设存在,要求出最大值;假设不存在,请讲明理由.
济南市2018年高中时期学校招生考试
数学试题参考答案及评分标准
一、选择题〔本大题共12个小题,每题4分,共48分〕题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
A
B
C
C
B
B
C
C
C
D
B
B
二、填空题〔本大题共5个小题,每题3分,共15分〕
13.
33
x x 14.3
15.
22
16.217.62.1
三、解答题〔本大题共7个小题,共57分〕
18.〔本小题总分值
7分〕
〔1〕解:
2
1
21x x
=2
2122x x x ········································································ 2分=2
3x
··························································································· 3分
A C
x
y
B
O
〔第24题图〕
〔2〕解:去分母得:
213x x ·
····························································· 1分解得
1x
·
·················································································· 2分检验1x
是原方程的解 ································································ 3分
因此,原方程的解为1x ·
··························································· 4分19.〔本小题总分值
7分〕
〔1〕证明:∵四边形
ABCD 是平行四边形,∴AD BC AD BC ,∥.∴ADE FBC ∠∠ ···································································· 1分在ADE △和CBF △中,
∵AD BC ADE FBC DE BF ,∠∠,∴ADE CBF △≌△··································································· 2分∴AE CF ················································································ 3分
〔2〕解:∵
DE 是O 的直径∴90DBE ∠··········································································· 1分∵30
ABD ∠∴903060EBO DBE ABD ∠∠∠································· 2分∵AC 是O 的切线∴90CAO ∠··········································································· 3分又260
AOC ABD ∠∠∴180180609030C AOC CAO ∠∠∠ ·
················ 4分20.〔本小题总分值
8分〕
解:〔1〕k 为负数的概率是
2
3
··············································································· 3分〔2〕画树状图
或用列表法:
第二次
第一次
1
231〔
1,2〕
〔1,3〕2〔
2,1〕
〔
2,3〕
3
〔3,
1〕
〔3,
2〕
·························································· 5分
A
E
C
D
F
B
〔第19题图①〕
A
C
D
B
E
O
〔第19题图②〕
2
3
1 3
2
1
123开始
第一次第二次
共有6种情形,其中满足一次函数y kx b 通过第二、三、四象限,
即
00k b
,的情形有2种·
······································································· 6分因此一次函数y kx b 通过第二、三、四象限的概率为21
63 ·························· 8分
21.〔本小题总分值8分〕解:〔1〕设职工的月差不多保证工资为
x 元,销售每件产品的奖励金额为
y 元 ·
··········1分由题意得
20018001801700x y x y
······································································3分
解那个方程组得
8005
x y
·········································································4分
答:职工月差不多保证工资为800元,销售每件产品的奖励金额
5元.·······················5分
〔2〕设该公司职工丙六月份生产
z 件产品 ··························································6分
由题意得
80052000z ≥ ·
·····································································7分解那个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ·························································8分
22.解:〔1〕将
32A ,分不代入k
y
y ax x
,中,得2
323
k a ,∴2
63
k a ,·················································································2分
∴反比例函数的表达式为:6
y
x ·························································3分正比例函数的表达式为2
3y x ···························································4分
〔2〕观看图象,得在第一象限内,当0
3x 时,反比例函数的值大
于正比例函数的值.
····················6分
〔3〕
BM
DM ···············································································7分理由:∵1
3
2
OMB OAC S S k △△∴336
12
OMB
OAC
OBDC OADM
S S S S △△矩形四边形即12OC
OB ∵3OC ∴4OB ·························································································8分即4
n 〔第22题图〕y
x
O
A
D
M
C
B
∴632
m n ∴3
33
3
222
MB MD ,∴MB
MD ·
··················································································9分23.〔本小题总分值
9分〕
解:〔1〕如图①,过
A 、D 分不作AK BC 于K ,DH BC 于H ,那么四边形
ADHK 是矩形
∴3KH
AD .
················································································1分在
Rt ABK △中,2sin 45424
2
AK
AB .
2cos4542
42
BK AB ·························································2分
在Rt CDH △中,由勾股定理得,
2
2
543
HC ∴
43310BC
BK
KH
HC ················································3分〔2〕如图②,过D 作DG AB ∥交BC 于G 点,那么四边形
ADGB 是平行四边形∵MN
AB
∥∴MN DG ∥∴3
BG AD ∴1037GC ·············································································4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ,.∵DG MN
∥∴NMC DGC ∠∠又C C
∠∠∴MNC GDC △∽△∴CN CM
CD CG ···················································································5分
即
1025
7t t 解得,50
17
t ···················································································6分
〔3〕分三种情形讨论:①当
NC MC 时,如图③,即102t t
〔第23题图①〕
A
D
C
B
K
H
〔第23题图②〕A
D
C
B
G
M
N
∴103
t
·························································································7分②当
MN NC 时,如图④,过N 作NE
MC 于E 解法一:
由等腰三角形三线合一性质得
11102522
EC
MC
t
t
在Rt CEN △中,5cos EC t
c
NC t 又在Rt DHC △中,3
cos 5
CH c
CD ∴
535
t t 解得25
8
t ······················································································8分
解法二:∵90
C
C DHC
NEC ∠∠,∴NEC DHC △∽△∴NC EC
DC HC 即
55
3t t ∴258
t ·························································································8分
③当MN MC 时,如图⑤,过M 作MF CN 于F 点.11
22
FC NC t
解法一:〔方法同②中解法一〕
132cos 1025
t FC C
MC
t
解得
6017
t
解法二:∵90
C
C MFC
DHC ∠∠,∴MFC DHC △∽△∴
FC MC
HC DC
A
D
C
B
M
N
〔第23题图③〕
〔第23题图④〕
A
D C
B
M N
H E
〔第23题图⑤〕
A
D
C
B
H N M
F
即1102235t
t ∴6017
t
综上所述,当
103
t
、258
t
或6017
t
时,
MNC △为等腰三角形 ···············9分
24.〔本小题总分值
9分〕
解:〔1〕由题意得
1
29302
b
a
a b c
c
·····························································2分
解得
23
432
a
b c
∴此抛物线的解析式为
224233
y x x ················································3分
〔2〕连结AC 、BC .因为BC 的长度一定,因此PBC △周长最小,确实是使PC PB 最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x 的交点即为所求的
点P .
设直线
AC 的表达式为y kx b
那么
302
k b b
,
················································4分
解得
2
32
k b
∴此直线的表达式为223y x
.·························································5分
把
1x 代入得43y
∴
P 点的坐标为
41
3, ···································································6分
〔3〕
S 存在最大值·
············································································7分〔第24题图〕
O
A
C
x
y
B
E
P
D
理由:∵DE PC ∥,
即DE AC ∥.∴OED OAC △∽△.∴OD OE OC OA ,即223
m OE .∴33
3322OE m AE OE m
,,方法一:连结
OP
OED
POE
POD
OED
PDOE S
S S S S S △△△△四边形=
134113321322
2
3
222
m m m m
=2
33
42m m ··············································································8分∵
304∴当
1m
时,
3334
2
4
S 最大
····················································9分
方法二:
OAC OED AEP PCD
S
S S S S △△△△=
113134132
321
2
2
2
2
2
3
2
m
m m m =2
2
3
3331
4
24
4
m
m
m ·······················································8分
∵
30
4
∴当
1m 时,3
4
S 最大
···································································9分。