1.3.4利用函数的单调性证明不等式
高等数学《函数单调性与凸性的判别法》
图形上任意弧段位 于所张弦的上方
定义 设f (x)在区间I上连续,若对任意两点
x1, x2 I (x1 x2 ), 恒有 :
f
x1
2
x2
1
2
f
(x1)
f
(x2 )
则称曲线y=f (x)在I内是下凸的(或称凹弧);如果恒有
f
x1
2
x2
1
2
f
(x1)
f
(x2 )
则称曲线y=f (x)在I内是上凸的(或称凸弧)。
在[a, b]上单调增加; (2)如果 x (a,b) , 有f ( x) 0 , 则函数 f ( x)
在[a, b]上单调减少 .
备注 如果 把区间[a,b] 换成其他各种类型的区间 (包括无穷区间) , 定理结论仍成立.
证 在 [a,b] 上任取两点 x1, x2 ,且 x1 x2 ,
在 [ x1, x2 ] 上应用拉格朗日中值定理 , 得
f ( x)
不存在
y f (x) 下凸
0
上凸
曲线在区间(,0]向下凸 , 在区间[0,]向上凸 , 点 (0,0) 为曲线的拐点.
注意: 若 f ( x0 ) 不存在 , 点 ( x0 , f ( x0 )) 也可能
是连续曲线 y f ( x) 的拐点.
结论:
若曲线 y=f (x) 在点 x0 连续 ,
y 注意 拐点处若存在切线,
则必在拐点处穿过曲线. o
x
2) 拐点的求法
定理 2 如果 f ( x)在( x0 , x0 )内存在二阶导
数,则点x0 , f ( x0 )是拐点的必要条件是 f "( x0 ) 0.
求拐点的方法:
2022考研数学:不等式证明的7种方法总结
2022考研数学:不等式证明的7种方法总结
不等式证明的7种方法总结
1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;
2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;
3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;
4. 利用函数最大值、最小值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;
5. 利用函数取到唯一的极值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;
6. 用柯西中值定理证明不等式;
7. 利用曲线的凹凸性证明不等式。
几个常用不等式证明不等式方法辛
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
高考数学复习:函数与导数热点问题
@《创新设计》
当 x∈-21a,+∞时,f′(x)<0. 故 f(x)在0,-21a上单调递增,在-21a,+∞上单调递减. (2)证明 由(1)知,当 a<0 时,f(x)在 x=-21a处取得最大值,最大值为
f-21a=ln-21a-1-41a, 所以 f(x)≤-43a-2 等价于 ln-21a-1-41a≤-43a-2, 即 ln-21a+21a+1≤0,
@《创新设计》
8
设 g(x)=ln x-x+1,则 g′(x)=1x-1. 当x∈(0,1)时,g′(x)>0;x∈(1,+∞)时,g′(x)<0. 所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x=1时,g(x)取得最大值,最大值为g(1)=0. 所以当x>0时,g(x)≤0, 从而当 a<0 时,ln-21a+21a+1≤0, 故 f(x)≤-43a-2.
f′(x)=x-x 1+ln x-1=ln x-1x. 因为 y=ln x 在(0,+∞)上单调递增,y=1x在(0,+∞)上单调递减, 所以f′(x)在(0,+∞)上单调递增. 又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一x0∈(1,2),使得f′(x0)=0.
14
(ⅱ)若a>2,令f′(x)=0得,
x=a-
2a2-4或 x=a+
a2-4 2.
当 x∈0,a- 2a2-4∪a+ 2a2-4,+∞时,f′(x)<0;
当 x∈a- 2a2-4,a+ 2a2-4时,f′(x)>0. 所以 f(x)在0,a- 2a2-4,a+ 2a2-4,+∞上单调递减, 在a- 2a2-4,a+ 2a2-4上单调递增.
利用函数的单调性解方程或解(证)不等式
龙源期刊网
利用函数的单调性解方程或解(证)不等式作者:吴厚荣
来源:《中国新技术新产品》2009年第15期
摘要: 函数的单调性是中学数学教材中介绍函数的一种重要性质,函数的单调性在解决方程,不等式问题时扮演着重要角色。
关键词: 单调性;解方程;解(证)不等式
我们知道函数,方程,不等式三者之间是互相联系的,函数的单调性是中学数学教材中介绍函数的一种重要性质,函数的单调性在解决方程,不等式问题时扮演着重要角色,本文介绍利用函数的单调性解方程或解(证)不等式。
数学分析中几类证明不等式的方法
㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
高等数学中不等式的证明方法
1 。 2 1
2. 利用函数单调性证明不等式
函数不等式是判断函数之间的大小关系 , 基于这种思想 , 可以利用函数单调性证明不等式 。 其基本思想是 :(1 ) 将不等 式 两 边 的 函 数 移 到 同 一 端 , 并 作 辅 助 函 数 f (x );(2 ) 利 用 函 数 f (x ) 一阶导数的符号判断函数在所给区间上的单调性 ;(3 ) 根 据函数 f (x ) 的单调性 , 得到所求不等式 。 例 3 : 证明定理 : 设 (1 ) 函数 φ (x ) 及 ψ (x ) 可微分 n 次 ; (2 )φ (x0 )=ψ (x0 ),(k=0 ,1 ,2 ,…,n-1 ); (3 ) 当时 x>x0 ,φ (x )=ψ (x )。 则当 x>x0 时 , 有不等式 φ (x )>ψ (x )。 证 明 : 设 F (x ) =φ (x ) -ψ (x ), 则 由 于 φ
复数 z=x+iy圳 坐标平面上的点 p (x ,y )。 这样学生会将复数 z 、R 中 的 有 序 实 数 对 (x ,y )、 坐 标 平 面 上 的 点 p (x ,y ) 视 为 同 义 语 ,
2
把复数集 、 平面点集 、 二维空间 R 的子集看成一回事 。 由 z 圮 (x ,y ), 复 变 函 数 f (z ) 可 看 成 关 于 x 和 y 的 函 数 , 其 极 限定义可与实二元函数的极限定义比较 , 而实二元函数又是 在 多 元 微 分 学 中 讲 过 ,学 生 较 为 熟 悉 ,这 样 进 行 比 较 ,可 加 深 学生对复变函数极限念的进一步认识和理解 。 通过比较 , 可以发现复变函数的极限定义与实二元函数 极限定义相似成分较之实一元函数要多一些 , 似乎完全相似 , 不同的地方主要是一个复变函数确定两个实二元函数 , 复变 函数的极限存在与否取决于两个实二元函数极限的存在与 否 。 两个实二元函数的极限都存在才称复变函数的极限存在 。 2. 导数概念的类比 在微分学中 , 对一元函数的导数是这样定义的 : 设函数 y= f (x ) 在点 x0 的某一邻域内有定义 ( 包括 x0 点 ), 当自变量 x 在 x0 处 有增量 Δx 时 , 相应的 , 函数有增量 ,Δy=f (x0+Δx )-f (x0 ), 当 Δx→
数学论文【不等式的证明方法】(汉)
黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。
其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。
1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。
主要依据是实数的运算性质与大小顺序关系。
即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。
(1)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。
(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。
所以222(2)5a b a b +≥--成立。
例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。
定积分不等式证明方法
f x dx 表示由曲线 y f x ,x
b a b a
轴及直线
x a , x b 所围成的曲边梯形的面积的相反数.
(3) 如果连续函数 f x 正负不定, 则
f x dx 表示由曲线 y f x ,x 轴及直
线 xa , xb 所 围 成 的 一 些 小 曲 边 梯 形 的 面 积 的 代 数 和 , 有
a c a
性质 5
d
[1]
若
f x 在 a, b 上可积,且 f x 0 , c, d a, b ,则
b
f x dx f x dx .
c a
性质 6
[1]
若
f x 在 a, b 上可积, x a, b ,则
b
b a i f a ,即 n
定积分
f x dx 为一序列和的极限,这样我们可由一些序列和的不等式得到积分不
[3]
等式,下面首先给出著名的 Jensen 不等式 ,即 设 f x 为 a , b 上 的 连 续 下 凸 函 数 , 证 明 对 于 任 意 xi a, b 和 i 0 , (i=1,2,……,n),
1.2 利用泰勒公式
定理 1
[2]
(泰勒定理)
若函数 f x 在 a , b 上存在直至 n 阶的连续导函数,在 x, x0 a, b ,至少存在一点 a, b ,
a, b 内存在{n+1}阶导函数,则对任意给定的
使得
f x f x0 f ' x0 x x0
f n x0 n!
f '' x0 2!
高数考研不等式的证明
12
–
, 注意到 f (0) = f (1),
3、利用极值、最值证明不等式 、利用极值、 例5. 证明当 0 < x < 2时, 4xlnx – x2 – 2x + 4 > 0. 时 证: 令 f (x) = 4xlnx – x2 – 2x + 4 , 则 f ′(x) = 4lnx – 2x + 2 ,
2(2 − x ) ,f ′′(1) = 2 > 0, 这是唯一驻点. 这是唯一驻点 而 f ′′( x ) = x 的极小值点. 故 x = 1是 f (x)的极小值点 是 的极小值点 又当0 又当 < x < 2时, f ′′ > 0, 故曲线 y = f (x)在(0, 2)内 时 ′′(x) 在 内 是凹的, 既是极小值点, 是凹的 故 x = 1既是极小值点 又是最小值点 从而在 既是极小值点 又是最小值点, 0 < x < 2中, 有 中 f (x) > f (1) = 1 > 0, , 4xlnx – x2 – 2x + 4 > 0. 从而
(0 < ξ1 < c )
f ′(a ) − f ′(c ) = f ′′(ξ 2 ) ⋅ ( a − c ) (c < ξ 2 < a )
≤ M (c + a − c ) = Ma
7
⇒| f ′(0) | + | f ′(a ) |=| f ′′(ξ1 ) | ⋅c + | f ′′(ξ 2 ) | (a − c )
不等式的几种证明方法及其应用
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
例谈高观点证明不等式的若干途径
证明 由于函数八戈):{在区间[后,七+1](矗 ox =l,2,3,…,n)上的定积分满足
去=去.1>』∥去如,对后进行求和可得
砉=2(扣丽一护1》).州+1》_[2船“
(收稿日期:20070728)
万方数据
例谈高观点证明不等式的若干途径
其中f在戈与兰譬之间,
令戈:n则有g(。):g(掣)+g,(半).
(字)+扣~1)(字)2,其%小,字)
再令石:6则有g(6):g(与竽)+g”(与竽)
(字)+扣纠(字)2.其%∈(半'6)
两式相加可得 g(o)+g(6)
=29(字)+丢(字)2[g,,(¨+g『,(纠],
从而有g(o)+g(6)一29(}警)
8
中。?般’7(2007年第9期)
·教学论坛·
例谈高观点证明不等式的若干途径
163316大庆实验中学毕明黎
众所周知,不等式的证明以其变形复杂、方法多 样成为学习的难点,为此人们始终在苦苦寻求运用数 学的其它分支来证明不等式,过去人们十分重视利用 高中教材内部的横向、纵向的有机联系寻求不等式的 证明,新教材引入之后我们也理应探索新旧教材之间 的联系,运用高等数学的观点来实现不等式的证明, 本文将在这一方面进行总结,旨在为不等式的证明探 索出一套新的证明途径,仅供参考. 1 向量方法的应用
√726+1),贝0有zi·z2= ̄/72n+1+ ̄/26+1, 再由n+6=1,可知Izl I=以,Iz2|_2,又zl·z2
≤Iz.I·Iz,I可得√20+1+ ̄/26+l≤2√2. 2极限思想的应用
2.1 利用无穷递缩等比数列求和公式S=
#L其中(o<I gI<1)证明不等式.其实质是将有
不等式的证明方法和应用的推广
不等式的证明方法和应用的推广摘要:不等式是数学中一个基础性的概念,其证明方法具有很强的技巧性,灵活多变,是对知识的综合性灵活运用,本文将对文献出现的不等式的证明方法进行综述,最后提出一些仍然值得去研究和探讨的问题。
关健词:不等式;方法;归纳一. 引言长久以来,不等式的证明都是数学界的热门研究课题。
不等式的证明方法灵活多变,应注重常用方法的训练,其中比较法、分析法、综合法、放缩法证明不等式的最基本方法,尤其要加强分析法的训练。
在应用平均值不等式来证明不等式时,一要验证条件,二要考虑等号能否取到。
但是往往用上述方法在解决一些不等式的证明时是很困难的,或者说根本证不出来。
近年来,在数学研究工作中涌现了很多关于不等式证明的方法的相关论文,本文收集了的若干文献,对不等式证明的方法进行综述,并且也涉及到不等式证明方法的一些应用的思考。
二、不等式证明方法的发展现状不等式在数学中占有非常重要的地位,由于其本身的完美性及其证明的困难性,使不等式成为近几年来各类考试中的热门试题。
文[1]不等式证明之初探对常见不等式证明的方法做了一个比较详细的总结,包括比较法、分析法、综合法、反正法。
不等式的证明都离不开不等式的性质,基本不等式的应用和一些函数。
但对于一些特殊的问题,应用以上常见方法证明可能会显得比较困难,甚至根本证不出来。
而赵会娟等在文[2]给出了不等式证明的几种特殊方法,包括数学归纳法、用函数的单调性、转化成数列、利用拉格朗日中值定理、利用导函数的增减性和向量法,让我们在证明一些特殊的不等式时有“盾”可循。
文[3]更是给出了一些高等数学中不等式证明的一些方法,涉及的知识点越来越广。
文[4]分别对一些多项式不等式的证明和对两个新不等式的证明进行了研究并且进行推广,研究的方向越来越深。
下面便专题来探讨下以上对于不等式证明方法的重要文献,将对文献中出现的不等式证明的方法进行总结归纳。
1、利用函数的单调性证明不等式函数不等式是函数之间的大小关系,应用函数单调性的判别法可证明一些函数的不等式例题1:例题1:已知求证:。
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】
函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。
高等数学中不等式证明的方法示例
高等数学中不等式证明的方法示例作者:杨雪来源:《科技风》2020年第18期摘要:不等式证明问题是高等数学中的重要内容,针对不等式的证明问题,本文分析并总结了高等数学中证明不等式的主要方法及其解题思路,并辅以典型例题,使学生能够系统地掌握不等式的证明方法。
关键词:高等数学;不等式;证明不等式是研究数学问题的重要工具,也是高等数学中的重要内容。
不等式的证明也是考研试题中的重要考点,也是难点。
很多学生对不等式问题缺乏系统的思考和总结。
本文举例说明了不等式证明的常用方法及适用情况,使学生更好地掌握不等式的证明技巧。
1 利用函数的单调性利用函数的单调性证明不等式,常将不等式进行恒等变形以便于构造辅助函数f(x),在判断辅助函数f(x)的单调性时,若判断f′(x)的符号困难,则可考虑求f″(x)甚至f(x)来递推确定。
当然,若此时无法确定导数符号,则说明此方法失效,应改用其他方法。
3 利用拉格朗日中值定理利用拉格朗日中值定理证明不等式的关键在于满足定理的两个条件,通过观察不等式经过恒等变形可以化成函数值之差的形式,可考虑用拉格朗日中值定理,并合理设定f(x),再根据ξ的取值范围对f′(ξ)进行估计,进而推导出所证不等式。
4 利用泰勒公式这种方法适合于题中所给(或能推导出)条件f″(x)存在且>0(或<0)的命题,此时只能利用带拉格朗日余项的泰勒公式证明不等式,关键是在哪一个点将函数用泰勒公式展开,通常展开点一般选取已知导数信息最多的点。
然后根据题设对展开式的余项进行适当的放缩,导出所证不等式。
种方法是高等数学中证明不等式的常用方法,不等式的证法因题而异,灵活多变,我们应该具体问题具体分析。
要想熟练掌握其中的技巧,我们要多思考多总结,才能快捷地解决不等式的证明问题。
参考文献:[1]同济大学数学教研室.高等数学(第七版)[M].北京:高等教育出版社,2014.[2]夏靜.高等数学中不等式证明的常用方法[J].赤峰学院学报(自然科学版),2015(10):19-20.[3]李永乐,王式安,武忠祥,季文铎.2019考研数学复习全书[M].北京:国家行政学院出版社,2017.12.作者简介:杨雪(1982-),女,吉林长春人,长春工业大学硕士研究生,吉林工商学院助教,研究方向:最优化理论与应用。
微积分在不等式证明中的运用
1引言微积分学是微分学和积分学的总称.它是一种数学思想,无限细分就是微分,无限求和就是积分.微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,可以根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 文献[7],[10],[17] [20]介绍微积分在不等式证明中的应用,得到一些一般结论.不等式的证明在数学学习中既是一个重点也是一个难点,方法也很多,在此提出了求证不等式的几种方法,其在实际应用中具有较高的价值. 1.1 微积分的定义 1.1.1微分的定义定义1 设函数()y f x =定义在0x 的某领域0()x 内.当给0x 一个增量x ∆,0x x +∆∈0()U x 时,相应地得到函数的增量为00()()y f x x f x ∆=+∆-. 如果存在常数A ,使得y ∆能表示成0()y A x x ο∆=∆+, (1)则称函数f 在点0x 可微,并称(1)式中的第一项A x ∆为f 在点0x 的微分,记作0x x A x ==∆dy |或0x x A x ==∆df(x)|. (2)由定义可见,函数的微分与增量仅相差一个关于x ∆的高阶无穷小量,由于dy 是x ∆的线性函数,所以当0A ≠时,也说微分dy 是增量y ∆的线性主部.容易看出,函数f 在点0x 可导和可微是等价的. 1.1.2 积分的定义定义2 设f 是定义在[],a b 上的一个函数,J 是一个确定的实数.若对任何给的正数ε,总存在某一正数δ,使得对[],a b 的任何分割T ,以及在其上任意选取的点集{}i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数f 在区间[],a b 上可积或黎曼可积;数J 称为f 在[],a b 上的定积分或黎曼积分,记作()ba J f x dx =⎰.其中,f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,a 、b 分别称为这个定积分的下限和上限. 2 微积分在不等式证明中的应用 2.1微分在不等式证明中的应用 2.1.1用导数的定义例1 设12()sin sin 2f x a x a x =++…+sin ,n a nx 已知()sin ,f x x ≤证明122... 1.n a a na ++≤证明:方法1:因为(0)0,f = 由已知()(0)sin (0)0f x f xx x x -≤≠-,'0()(0)lim1(0)10x f x f f x →-∴≤⇒≤-,即122... 1.n a a na ++≤导数的定义是微积分的基础,此题还可运用两个重要极限及变形进行证明.方法2:由()sin ,f x x ≤得()sin (0),f x xx x x≤≠即12sin sin 2sin sin ...n x x nx xa a a x x x x+++≤ .两端同时取x →0 时的极限得 lim x →∞12sin sin 2sin ...n x x nxa a a x x x+++≤lim x →∞sin x x .由重要极限及其变形知:0sin limx kxk x→=. ∴122... 1.n a a na ++≤证毕.2.1.2利用微分中值定理定理1(罗尔定理):设函数f(x)满足条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b )内可导; (3)f(a)=f(b);则在(a,b )内至少存在一个点ξ,使得f'(ξ)=0.定理2(拉格朗日中值定理):设函数f(x)满足条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b )内可导;则在(a,b )内至少存在一个点ξ,使得f'(ξ)=0 .定理3(柯西中值定理):设函数f(x),g(x)满足条件: (1)在闭区间[a,b]上连续;(2)在开区间(a,b )内均可导且g'(x)≠0;则在(a,b )内至少存在一个点ξ,使得a b a f b f --)()(=)('ξf 或)()()()()()(''ξξg f a g b g a f b f =--. 例2 已知b>a>0, 证明b a b -<a b ln <aab -. 证明:设f(x)=lnx, 它在[]b a ,(a >0)上连续且可导,,1)('xx f =又),,(b a ∈ξ根据微分中值定理的条件, 有ξ1ln ln =--a b a b ,而b 1<ξ1<a 1,因此b 1<ab a b --ln ln <a 1,即b a b -<a b ln <aab -. 例3 设- 11,≤≤y x ,证明 |arcsin arcsin x y -|≥|x-y |. 证明:设f(z)= arcsin z ,它在[ - 1 ,1 ]上连续且可导,2'11)(zz f -=,又ξ∈( - 1 ,1) ,根据微分中值定理的条件,有arcsin arcsin x yx y --,而1≥,因此|arcsin arcsin x y -|≥|x-y |.如果要证明的不等式或将要证明的不等式简单变形后,与微分中值公式的结构有相似性,就可以利用微分中值定理来证明,采用这种方法要注意的是构造一个辅助函数,然后利用公式证明. 2.1.3利用函数的单调性函数不等式是判断函数之间的大小关系.基于这种思想,可以利用函数单调性证明不等式.基本思想:将不等式两边的函数移到同一端,并作辅助函数;利用函数一阶导数的符号判断函数在所给区间的单调性;根据函数的单调性,得到所求不等式.定理4:设函数y=f(x)在[a,b]上连续,在(a,b )内可导(1)若在(a,b )内,f'(x)>0,那么函数y=f(x)在[a,b]上单调增加; (2)若在(a,b )内,f'(x)<0,那么函数y=f(x)在[a,b]上单调减少. 由定理1 我们总结出运用单调性证明不等式的一般方法与步骤:(1)移项,使不等式一端为“0”,另一端即为所作的辅助函数f(x); (2)求出f'(x),并判断f(x)在指定区间的增减性; (3)求出区间端点的函数值,作出比较即得所证.根据导数判断函数单调性的特点,直接构造一个函数,使得被证明的不等式中含有这个函数的两个端点值,然后利用单调性即可证明.例4 证明不等式1+x 21>x +1,x>0.证明:构造函数f(x)= 1+x21-x +1 (x>0), 则'1()2f x =.当x > 0 时,有11-+x >0,从而xx x f +-+=1211)('>0,,所以函数在(0 , + ∞)内单调增加,即当x > 0时,有f ( x) > f (0) ,而f (0) = 0 ,所以1+x 21-x +1(x>0), 即1+x 21>x +1,(x>0).例5 当x > 0 时,证明不等式xx+1<ln(1+x) <x.证明: (1) 令函数f(x)=ln(1+x)- x x+1,因为当x > 0 时,'()f x =x +11-2)1(1x +=2)1(x x +>0, 且f (0) = 0 ,所以函数在(0 , + ∞) 内单调增加,因此)1ln(x +-x x +1>0, 即1n (1 + x) >xx +1;(2) 设g ( x) = 1n (1 + x) - x ,类似可证明g ( x) 在区间(0 , + ∞) 内从0 开始单调减少,因此当x > 0时,有g ( x) < 0 ,即1n (1 + x) < x. 综上所述,可知xx+1 <)1ln(x +<x )0(>x . 运用函数的单调性证明不等式,关键在于构造适当的辅助函数,并研究它在指定区间内的单调性. 若在(a ,b)上总有f '(x) > 0,则f( x) 在( a ,b) 单调增加;若在( a ,b)上总有f '(x) < 0,则f(x) 在(a ,b) 单调减少.构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对( a ,b)进行分割,分别在小区间上讨论. 2.1.4利用函数的极值与最值定理5 (极值的第一充分条件)设f 在点0x 连续,在某领域0U 0(;)x δ内可导.(1)若当00(,)x x x δ∈-时'0()0f x ≤,当00(,)x x x δ∈+时'0()0f x ≥,则f 在点0x 取得极小值.(2)若当00(,)x x x δ∈-时'0()0f x ≥,当00(,)x x x δ∈+时'0()0f x ≤,则f 在点0x 取得极大值.定理6(极值的第二充分条件)设f 在点0x 的某领域U 0(;)x δ内一阶可导,在0x x =处二阶可导,且'0()0f x =,0''()0f x ≠. (1)若0''()0f x <,则f 在0x 取得极大值. (2)若0''()0f x >,则f 在0x 取得极小值.例6 设,10≤≤x ,p >1,证明不等式121-p ≤p x +p x )1(-≤1.证明:令f ( x) =p x +p x )1(-,则)('x f =p 1-p x +p 1)1(--p x (-1)=p []11)1(----p p x x , =)(''x f p(p-1)2-p x +p(p-1)2)1(--p x .令)('x f =0, 得x =21,则)21(''f =p(p-1)]22)21()21(--+⎢⎣⎡p p >0,)1(>p ; 所以f(x)在x=21处取得极小值. 因为,1)0()1(==f f =)21(f 121-p ,所以)(x f 在[]1,0上最大值为1 ,最小值为121-p . 因此121-p ≤p x +p x )1(-≤1.例7 求证:当0x ≥ 时, 1(1)10n n nx n x ----≤ (1,)n n N >∈. 证明:令()f x =1(1)1n n nx n x ----,则 '212()(1)(1)(1)(1).n n n f x n n x n n x n n x x ---=---=--令 '()0f x = 得驻点: 1(0x x ==因为是端点,所以不是驻点). 且当1x <时,'()0,f x >当1x >时,'()0,f x <(1)0f =是极大值也是最大值,所以()(1)0f x f ≤=,即当0x ≥时, 1(1)10n n nx n x ----≤.当我们构造好函数)(x f 后,如果无法得到0)('>x f (或)0)('<x f .即当函数不具有单调性时,可以考虑用极值与最值的方法进行证明,也是一种行之有效的方法. 若函数在某闭区间上连续,根据最值定理,函数必在该区间上取得最大值和最小值.令f( x) 在区间[b ,a ]上连续,则f( x) 在区间[b ,a ]存在最大值M 和最小值m ,那么: m ≤f(x)≤M. 2.1.5 利用函数的凹凸性定义3 设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数(0,1)λ∈总有1212((1))()(1)()f x x f x f x λλλλ+-≤+-, (1)则称为上的凸函数.反之,如果总有1212((1))()(1)()f x x f x f x λλλλ+-≥+-, (2)则称f 为I 上的凹函数.如果(1)、(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数.定理7 设f 为区间I 上的二阶可导函数,则在I 上为凸(凹)函数的充要条 件是''()0(''()0),f x f x x I ≥≤∈.定理8 若f 为[],a b 上凸函数,则对任意[]1,,0(1,2,,),ni i i i x a b i n λλ=∈>=⋅⋅⋅∑=1,有11()()nni i i i i i f x f x λλ==≤∑∑.例8 设0,1,2,3...i x i n >=.12...nx x x n+++≤,其中的等号成立当且仅当所有的i x 全相等.证明:当所有的i x 全相等时等号显然成立,因此只需证明当i x 不全相等时上式是严格不等式. 考虑函数,ln )(x x f =x x f 1)('=>0,)(''x f =-21x<0x (>)0. 因此函数在),0(∞上是严格单调增加且是严格凸函数, 根据严格凸函数的定义,可知: 12...ln nx x x n+++ >11212ln ln ...ln ln(...)n n n x x x x x x n +++=⋅⋅⋅,又根据严格递12...nx x x n+++≤.例9 证明不等式)ln ln (y y y x +>2ln)(yx y x ++x (>y ,0>y x ≠,0). 证明: 构造函数x x x f ln )(=,),0(+∞∈x ,则=)('x f 1ln +x ,=)(''x f x1>0,),0(+∞∈x .因此,函数在),0(+∞∈x .上是凹函 数,由凹函数的定义有: 12()2x x f +<12()()2f x f x +即2ln 2y x y x ++<2ln ln y y x x +,所以)ln ln (y y y x +>2ln )(yx y x ++. 利用函数的凹凸性来证明不等式就是根据函数凹凸性定义中的不等式关系,即12()2x x f +<12()()2f x f x +或12()2x x f +>12()()2f x f x +,构造一个凸函数或凹函数来证明.2.1.6利用泰勒公式定理9 (泰勒定理) 若函数f 在[],a b 上存在直至n 阶的连续导函数,在(),a b 内存在()1n +阶导函数,则对任意给定的[]0,,x x a b ∈,至少存在一点ξ,使得'200000''()()()()()()2!f x f x f x f x x x x x =+-+-+ ()(1)1000()()()()!(1)!n n nn f x f x x x x n n ξ++⋅⋅⋅+-+-+.例10 如果f(x)在[],a b 上二阶可导,''()()f a f b ==0,则存在(,)c a b ∈使得''24()()().()f c f b f a b a ≥-- 证明:'''21()()()()()(),222!2f a b a b a b f f a f a a a ξ+++=+-+-(a<1ξ<2a b +). '''22()()()()()(),222!2f a b a b a b f f b f b b b ξ+++=+-+-(2a b +<2ξ<b ).所以''''212()()()()(),42f f b a f b f a ξξ---=, 取c 满足''''''12()max{(),()}f c f f ξξ=,2''()()()()4b a f b f a fc --≤, 即''24()()()()f c f b f a b a ≥--.在高等数学中的证明,尤其是题设中含有高阶导数二阶和二阶以上的大小或上下界的函数不等式,Taylor 公式是一个强有力的工具,而应用这一工具证明这类不等式的关键所在,就是正确地写出比题设条件低一阶的函数Taylor 的展开式,恰当选择Taylor 公式两边的x 与0x ,由给出的高阶导数的大小或上下界对展开式进行放大或缩小.泰勒展开式的证明常用的是将函数()f x 在所给区间端点或一些特定点(如区间的中点、零点) 进行展开,通过分析余项在ξ点的性质,而得出不等式,另外若余项在所给区间上不变号,也可将余项舍去而得到不等式.2.2积分在不等式证明中的应用 2.2.1 利用积分的定义主要思想:设()f x 在[],a b 上是严格增,0a x =<1x <…<n x 1,,n n b x x l +=-=则[]01()...()n l f x f x -++< ()ba f x dx ⎰<[]1()...();n l f x f x ++ (1)11()n f x dx -⎰<[]11()...()n l f x f x -++<()baf x dx ⎰, (2)适当选取()f x l 及可得各种不等式与估值例11 证明11p n p ++<12...p p pn +++<1(1),1p n p p +++>0.证明 : 对增函数()p f x x = (0x ≤< 2∞应用()):101p p p n x dx p +=+⎰<(1)...()f f n ++<110(1)1p p pn x dx p +++=+⎰. 此题还可将微分中值定理用到(1)p p k k +-来证. 2.2.2利用积分的性质性质1 若f 在[],a b 上可积,κ为常数,则f κ在[],a b 上也可积,且 ()()bbaaf x dx f x dx κκ=⎰⎰,性质2 若f 、g 都在[],a b 上可积,则f g ±在[],a b 上也可积,且 . []()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.性质3 若f 、g 都在[],a b 上可积,则f g 在[],a b 上也可积.性质4 f 在[],a b 上可积的充要条件是:任给(,),c a b f ∈在[],a b 与[],c b 上都可积.此时又有等式()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.性质5 设f 为[],a b 上的可积函数.若[]()0,,f x x a b ≥∈,则()0baf x dx ≥⎰.推论 (积分不等式性) 若f 与g 为[],a b 上的两个可积函数,且()(),f x g x ≤[],x a b ∈,则有()()bbaaf x dxg x dx ≤⎰⎰.性质6 若f 在[],a b 上可积,则f 在[],a b 上也可积,且()()bbaaf x dx f x dx ≤⎰⎰.例12 已知)(x s =0cos x t ⎰dt, ,当n 为正整数,且ππ)1(+≤≤n x n 时,证明2n≤s(x) <)1(2+n .证明: | cos x| ≥0 且n π≤x < ( n + 1)π, ∴(1)0cos ()<cos ;n n x dx s x x dx ππ+≤⎰⎰又∵cos x 是以π为周期的函数,在每个周期上积分值相等, ∴(1)0cos cos 2;cos 2(1).n n x dx n x dx n x dx n πππ+===+⎰⎰⎰因此,当n π≤x < ( n + 1)π时,有2 n ≤s ( x ) < 2 ( n + 1) .例13 设f ( x) 在(0 ,1) 上有连续导数,且f (0) = f (1) = 0 ,证明:2112'1()().4f x dx f x dx ⎡⎤≤⎣⎦⎰⎰. 证明: 由于(0)0,f =则'0()(),xf x f x dx =⎰于是212'2220000()()1()(1)(),xx x f x f x dx dx f x dx x f x dx ⎡⎤=≤⋅≤-⎢⎥⎣⎦⎰⎰⎰⎰从而11111122222210021()()(1)()()().4f x dx xdx f x dx x dx f x dx f x dx f x dx ≤⋅+-⋅=⎰⎰⎰⎰⎰⎰ 例14证明不等式22ππ<<⎰ 证明:因为1≤≤=0,2x π⎡⎤∈⎢⎥⎣⎦,在0,2π⎡⎤⎢⎥⎣⎦上连续,且不恒等于1,所以由积分不等式2200dxππ<<⎰⎰,即22ππ<<⎰例15 设()f x在[],a b上连续,且()f x不恒等于零,证明2(())0baf x dx>⎰.证明:由()f x不恒等于零知,存在x∈[],a b,使0()0f x≠,故2()0f x>.由2()f x连续及连续函数的局部保号性,存在x的某领域00(,)x xδδ-+(当x a=或x b=时,则为右领域或左领域),使得在其中[][]220()()02f xf x≥>.由性质4和性质5,得[][][][]00002222()()()()b x x ba a x xf x dx f x dx f x dx f x dxδδδδ-+-+=++⎰⎰⎰⎰[][]22()0()02xxf xdx f xδδδ++≥+=>⎰.2.2.3利用积分中值定理定理10 (积分第一中值定理)若f在[],a b上连续,则至少存在一点ξ∈[],a b,使得()()()baf x dx f b aξ=-⎰.定理11 (积分第二中值定理)设函数f在[],a b上可积.(1)若函数g在[],a b上减,且()0g x≥,则存在[],a bξ∈,使得()()()();ba af xg x dx g a f x dxξ=⎰⎰;(2)若函数g在[],a b上增,且()0g x≥,则存在[],a bη∈,使得()()()();b baf xg x dx g b f x dxη=⎰⎰.定理12 (推广的积分第一中值定理)若f与g都在[],a b上连续,且()g x在[],a b上不变号,则至少存在一点[],a bξ∈,使得()()()();bbaaf xg x dx f g x dx ξ=⎰⎰例16 设122()sin ,()xxf x t dt f x x+=≤⎰试证 (x >0).证明: 令2,u t =则12()sin xxf x t dt +=⎰=22(1)x x+⎰. 被积函数满足第二积分中值定理的条件:()f u =单调, ()sing u u =可积,于是22(1)()sin sin x x f x udu udu ξξ+=⎰,2(1)11()sin sin 22(1)x xf x udu udu xx ξξ+≤++⎰⎰1121x x x≤+≤+ ,(x >0) 证毕. 2.2.4利用积分上限函数定义4 设()f x 在[],a b 上可积,对任何[],x a b ∈,()f x 在[],a x 上也可积.于是,由 ()(),xa x f t dt Φ=⎰ [],x ab ∈定义了一个以积分上限为自变量的函数,称为变上限的定积分.当命题中出现条件()f x 在[],a b 上连续时,可构造积分上限函数,将数值不等式或积分不等式转化为积分上限函数不等式,然后利用函数单调性或定积分性质或泰勒公式解题.例17 设函数()f x 在[],a b 上连续,在(,)a b 内可导,'()f x 单调减少.证明[]1()()()()2b a f x dx b a f a f b >-+⎰.证明: 令[]1()()()()()2x a F x f x dx x a f a f x =--+⎰,[],x a b ∈,则由已知条件,得[]11'()()()()()'()22F x f x f a f x x a f x =-+--= []11()()()'()22f x f a x a f x ---= 11()'()()()'()22x a f x a x a f x ξ----= []1()'()'()2x a f f x ξ--,其中 (,)a x ξ∈;又'()f x 单调减少,所以'()'()f f x ξ>,故[]1'()()'()'()02F x x a f f x ξ=-->,从而[]1()()()()()2xa F x f x dx x a f a f x =--+⎰在[],ab 上单调增加,又()0,F a =,故()()0F b F a >=,即[]1()()()()2b a f x dx b a f a f b >-+⎰.2.2.5 转化为重积分, 再用积分方法进行估计例18 设()(),f x a b 在连续,且f(x)>0,试证21()()()bba af x dx dx b a f x ⋅≥-⎰⎰. 证明: 左端=1()()()()b bb b aaa a f y f y dy dx dxdy f x f x =⎰⎰⎰⎰交换积分次序,左端=()()()()bbb b aaa a dyf x f x dx dxdy f y f y =⎰⎰⎰⎰ 因此,左端=221()()()()2()()2()()b b b b a a a a f y f x f y f x dxdy dxdy f x f y f x f y ⎡⎤++=⎢⎥⎣⎦⎰⎰⎰⎰2().b b a a dxdy a b ≥=-⎰⎰证毕. 2.2.6 利用Cauchy-Schwarz 不等式定理13 对于闭区间[],a b 上的可积函数(),f x g(x),有如下不等式:222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰.这就是著名的Cauchy-Schwarz 不等式,它在数学分析、高等代数等学科以及许多初等数学的问题中都经常用到.因此,学会并灵活掌握这个定理的证明方法和思想是非常重要的,下面介绍它的证法及在不等式中的运用.证明: 由微积分学基本定理知:()ta f x dx ⎰是()f t 在[],ab ]上的一个原函数,不妨设222()()()()(),tttaa a F t f x dx g x dx f x g x dx ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰ [],t a b ∈则有'2222()()()()()2()()()()ttbaaaF t f t g x dx g t f x dx f t g t f x g x dx =+-⎰⎰⎰=[]2()()()()0taf tg x g t f x dx -≥⎰.因为[],,t a b ∈所以t a ≥, 又[]2()()()()0f t g x g t f x -≥,所以'()0,F t ≥从而()F t 是[],a b 上的增函数. 故()().F b F a ≥而()0,F a =所以()0,F b ≥ 即222()()()()()0,bbba aa Fb f x dx g x dx f x g x ⎡⎤=-≥⎢⎥⎣⎦⎰⎰⎰故. 222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰2.2.6.1Cauchy-Schwarz 不等式的运用定理14 设111,1,1p qp q >>+=,如果()f x 为[],a b 上的p 次可积函数,()g x 为[],a b 上的q 次可积函数,那么()()f x g x 在[],a b 上可积,且有11()()()()pqbbbpaa a f x g x dx f x dx g x dx ⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰.为证上述定理,先证如下引理:引理 对任意非负实数A ,B ,都有11q P A B A p B q ≤+成立,其中1,1,p q >>11 1.p q +=证明: 设()(0)y x x φ=≥是严格增加的连续函数,且(0)0,()(0)x y y φϕ==≥是φ的逆函数①()a b φ= , ②()a b φ>, ③()a b φ<.不论()a φ与b 的关系如何,都成立着不等式()()abx dx y dy ab φϕ+≥⎰⎰.其中当且仅当()b a φ=时等号成立. 在上式中取1111(),(),,,q Pp q x xy y a A b B φϕ--====就得到11p q A B A p B q ≤+. 从而引理得证.下证定理.当11(),()pqbbpqa a f x dx g x dx ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰,之中有一个是零时,不等式显然成立.不妨设1()0pbpa f x dx ⎡⎤>⎢⎥⎣⎦⎰,1()0qbqa g x dx ⎡⎤>⎢⎥⎣⎦⎰.作辅助函数1()(),()pbpa f x x f x dx φ=⎡⎤⎢⎥⎣⎦⎰1()()()qbqa g x x g x dx ϕ=⎡⎤⎢⎥⎣⎦⎰.令 (),()p qA xB x φϕ==, 由引理得()()()()pqx x x x pqφϕφϕ=+, (1)因为(),()pqx x φϕ为[],a b 上的可积函数,由上述不等式知()()x x φϕ为[],a b 上的可积函数,因此()()f x g x 为[],a b 上的可积函数,且对(1)式两端积分得 ()()()()pqbbba aax x x x dx dx dx pqφϕφϕ≤+⎰⎰⎰=()()111()()b b pqaabbpqaaf x dxg x dx p qp f x dxq g x dx+=+=⎰⎰⎰⎰. (2)而11()()()()()()pqbbaabbpqa a f x g x dxx x x f x dx g x dx φϕ=⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰,将它代入(2)式即得 11()()()()pq b b b p q aa a f x g x dx f x dx g x dx ⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰. 即为所要证的不等式.证毕.例19 利用施瓦茨不等式证明:若f 在[],a b 上可积,且()0f x m ≥>,则 21()()()bbaaf x dx dx b a f x ⋅≥-⎰⎰; 证明: 由()f x 可积,且()0f x m ≥>知,1()f x1()f x ,可积,于是根据Schwarz 不等式,有 1()()bb a af x dx dx f x ⋅⎰⎰222()()()b a adx b a ≥==-⎰⎰.致谢在完成论文的过程中,得到了x xx老师的精心指导和大力帮助,在此,衷心感谢x老师的悉心指导!参考文献【l】李大华, 胡适耕, 林益.高等数学典型问题100类[M].华中理工大学出版社1987.【2】钱吉林.数学分析解题精粹[M].崇文书局,2009.【3】裘卓明、葛钟美、于秀源.研究生人学考试指导. 数学分析[M].山东科学技术出版社,1985.【4】陈纪修,於崇华,金路.数学分析[M].高等教育出版社,2004.【5】华东师范数学系.数学分析[M].高等教育出版社,2001.【6】同济大学应用数学系,高等数学( 上册) [M] .高等教育出版社,2000. 【7】刘玉琏,傅沛仁. 数学分析讲义[M].人民教育出版社,1981.【8】吉米多维奇.数学分析习题集题解[M].山东科学技术出版社,2003.【9】菲赫金哥尔茨. 微积分学教程( 第一卷) ( 第8 版) [M].高等教育出版社,2001.【10】罗幼芝.微积分在不等式中的应用[J].泰山学院学报,2004,第6期:20~21.【11】同济大学数学教研室.高等数学:上册[M].上海人民教育出版社,1979. 【12】裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,1993. 【13】寇业富. 不等式的证明[J ] . 数学的实践与认识,2003,第6期:112~116. 【14】萧树铁. 大学数学[M] . 高等教育出版社,2003.【15】徐荣贵,叶红. 微积分的基本思想[J ]. 四川工程职业技术学院学报, 2008,第4~5期,54~55.【16】李以渝. 高等数学(新编本) [M ]. 北京邮电大学出版社, 2006.【17】李光英. 用辅助函数证明不等式[J ] . 安庆师范学院学报(自然科学版) ,1999,第5期:63~64.【18】高汝熹.高等数学一微积分[M ].高等教育出版社,1992.【19】复旦大学数学系. 数学分析(第二版) [M ]. 北京:高等教育出版社, 1983.【20】韩宝燕.应用微积分理论证明不等式[J].中国新科技新产品,2009,第08期:203.【21】L.A.zadeh.“Fuzzy sets,”Information and control,vol.3,no.8, 1965.【22】Lin,T.Y.,Neighborhood systems and approximation in relational databases and knowledge bases,proceedings of the 4th Internationnal symposium on Methodologies of Intelligent systems 1988.。
利用函数的单调性证明不等式
利用函数的单调性证明不等式1、利用导数研究函数的单调性,再由单调性来证明不等式(函数、导数、不等式综合)2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
一、利用题目所给函数证明例:x>0时,求证;x 2x 2--ln(1+x)<0证明:设f(x)= x 2x 2--ln(1+x) (x ≥0),则f '(x)=2x 1x -+∵x>0时,∴f '(x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)<f(0)=0,即x 2x 2--ln(1+x)<0成立。
例、求证:n ∈N *,n ≥3时,2n >2n+1证明:要证原式,即需证:2n -2n -1>0,n ≥3时成立 设f(x)=2x -2x -1(x ≥3),则f '(x)=2x ln2-2(x ≥3), ∵x ≥3,∴f '(x)≥23ln3-2>0 ∴f(x)在[3,+∞ )上是增函数,∴f(x)的最小值为f(3)=23-2×3-1=1>0所以,n ∈N *,n ≥3时,f(n)≥f(3)>0, 即n ≥3时,2n -2n -1>0成立,例:f(x)=13x 3-x, x 1,x 2∈[-1,1]时,求证:|f(x 1)-f(x 2)|≤43证明:∵f '(x)=x 2-1, x ∈[-1,1]时,f '(x)≤0,∴f(x)在[-1,1]上递减.故f(x)在[-1,1]上的最大值为f(-1)=23最小值为f(1)=23-,即f(x)在 [-1,1]上的值域为22[,]33-;所以x 1,x 2∈[-1,1]时,|f(x 1)|23≤, |f(x 2)|23≤,即有 |f(x 1)-f(x 2)|≤|f(x 1)|+ |f(x 2)|224333≤+=【例1】求证:当1->x 时,恒有11ln(1)1x x -≤++分析:构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
[全]高等数学之微积分中不等式的证明方法总结[下载全]
高等数学之微积分中不等式的证明方法总结
不等式的证明题作为微分的应用经常出现在考研题中。
利用函数的单调性证明不等式是不等式证明的基本方法。
有时需要两次甚至三次连续使用该方法,其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。
证明方法总结:
(1)利用函数单调性证明不等式
若在(a,b)上总有f(x)的导数大于零,则函数f(x)在区间(a,b)上单调增加;若在(a,b)上总有f(x)的导数小于零,则函数f(x)在区间(a,b)上单调减少。
(2)利用拉格朗日中值定理证明不等式
对于不等式中含有f(b)-f(a)的因子,可考虑用拉格朗日中值定理先处理一下。
(3)利用函数的最值证明不等式
若函数f(x)在闭区间[a,b]上连续,则f(x)在区间[a,b]上存在最大值M和最小值m.
(4)利用泰勒公式证明不等式
如果要证明的不等式中,含有函数的二阶或二阶以上的导数,一般通过泰勒公式证明不等式。
不等式证明的难点也是辅助函数的构造,一般可以通过要证明的不等式分析得出要构造的辅助函数。
题型一:利用函数的单调性证明不等式
分析:对要证明的不等式进行如下化简:
解:
备注:构造适当的辅助函数是解决问题的基础,有时需要两次利用函数的单调性证明不等式,有时需要对区间(a,b)进行分割,分别在小区间上讨论。
题型二:利用拉格朗日中值定理证明不等式
例2:
分析:
解:
备注:对于不等式中含有f(b)-f(a)的因子,可以考虑使用拉格朗日公式先处理一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 已知函数 f ( x) ax ln x , (a 0且为常数) e 求证:方程 f ( x) 0 没有实数根.
2
1、变式构造函数 g ( x) h( x) 2、若能证 g ( x)max h( x)min 则 g ( x) h( x) 成立. 成立;
3、不等式得证.
法一:用不等式两边
“作差”构造辅助函数
法二:变形不等式,转换为求两个函数的 最值
例题:求证
1、变式构造函数 g ( x) h( x) 2、若能证 g ( x)max h( x)min 则 g ( x) h( x) 成立. 成立;
法二:变形不等式,转换为求两个函数的 最值
极大值
(1, )
↘
f ( x ) f ( x)
由上表得 f ( x)max f (1) 1 0
f ( x) f ( x)max 0
即ln x x.
例题(课本第32页习题1.3 B式:
(1)sin x x, x (0, )
证明: 设 f(x)=x-sinx,则 f′(x)=1-cosx > 0 ∴f(x)=x-sinx是增函数 ∴f(x)> f(0)=0 ∴f(x)>0 即 x-sinx>0 即x>sinx. 方法:移项作差,构造函数,然后用导数证明 该函数的单调性;再利自变量越大,函数值 越大(或小),来证明不等式成立.
利用函数的单调性,证明下列不等式:
x ln x x e ,x 0 (4 )
解: 设f ( x) ln x x 1 f ( x) 1 令 f ( x) 0 ,解得x=1. x 当x变化时, f ( x), f ( x) 的变化情况如下表: x (0,1) + ↗ 1 0
1.3.4利用函数的单调性 证明不等式
例题(课本第32页习题1.3 B 组第1题)
1.利用函数的单调性,证明下列不等式: (1)sin x x, x (0, )
2 x x 0, x (0,1) (2)
(3) e x 1, x 0
x
x ln x x e ,x 0 (4)
2 x x 0, x (0,1) (2)
求证g ( x) h( x)
xD
一般步骤: 1、构造函数 f ( x) g ( x) h( x) 2、判断f ( x) 的单调性或求最值
(3) e x 1, x 0
x
(4) ln x x e , x 0
x
f ( x) f ( x)max 0 或f ( x) f ( x)max 0