专升本高数公式大全

合集下载

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。

11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。

(完整版)专升本高数公式大全

(完整版)专升本高数公式大全

高等数学公式求导公式表:(为常数); (为实数);()0C '=C 1()x x ααα-'=α;;()ln (0,1)x x a a aa a '=>≠()x x e e '=; ;1(log )(0,1)ln x a a a x a'=>≠1(ln )x x '=;;(sin )cos x x '=(cos )sin x x '=-; ;12(tan )sec 2cos x x x'==(sec )sec tan x x x '=⋅; ;12(cot )csc 2sin x x x'=-=-(csc )csc cot x x x '=-⋅(arcsin )x '(arccos )x '; .1(arctan )21x x '=+1(arccot )21x x '=-+基本积分表:(k 为常数).特别地,当时,.d k x kx C=+⎰0k =0d x C =⎰11d 1x x C ααα+=++⎰(1)α≠-1d ln ||x x Cx =+⎰ .d ln x xa a x C a=+⎰(0,1)a a >≠.d x xe x e C =+⎰.sin d cos x x x C=-+⎰.cos d sin x x x C=+⎰.22d sec d tan cos xx x x C x==+⎰⎰.22d csc d cot sin xx x x C x==-+⎰⎰.sec tan d sec x x x x C =+⎰.csc cot d csc x x x x C=-+⎰h i narcsin x x C=+.arccos x C '=-+21d arctan 1x x Cx =++⎰.cot arc x C '=-+.tan d ln cos x x x C =-+⎰.cot d ln sin x x x C=+⎰.sec d ln sec tan x x x x C =++⎰.csc d ln csc cot x x x x C =-+. 1arctan xC a a+.1ln 2x aCa x a -++.arcsin (0)xx C a a =+>.x .21arcsin 22a x x C a =+31sec d sec tan ln sec tan 2x x x x x x C ⎡⎤=+++⎣⎦⎰三角函数的有理式积分:2222212sin cos tan1121u u xdu x x u dx u u u -====+++, , , 一些初等函数:()(0,1)log (0,1)sin ,cos ,tan ,cot ,sec ,csc arcsin ,arccos ,arctan ,arccot x a y x y a a a y x a a y x y x y x y x y x y xy x y x y x y xμμ==>≠=>≠==========幂函数:为实数指数函数:对数函数:三角函数:反三角函数::2:2:x xx xx xx xe e shx e e chx shx e e thx chx e e -----=+=-==+双曲正弦双曲余弦双曲正切ln(ln(11ln21arshx x archx x x arthx x=+=±++=-两个重要极限:sin lim 1x x x =→()11lim 1lim 10x xx e x x x ⎛⎫+=+= ⎪→∞→⎝⎭等价无穷小量替换当时,0x →~sin ~tan ~arcsin ~arctan x x x x x,~ln(1)~x +1xe -,121cos ~2x x -2~sin 2~tan 2x x x 11~2x-三角函数公式:·诱导公式:函数角A sin cos Tan cot-α-sinαcosα-tanα-cotα90°-αcosαsinαCotαtanα90°+αcosα-sinα-cotα-tanα180°-αsinα-cosα-tanα-cotα180°+α-sinα-cosαTanαcotα270°-α-cosα-sinαCotαtanα270°+α-cosαsinα-cotα-tanα360°-α-sinαcosα-tanα-cotα360°+αsinαcosαTanαcotα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=±Al l g si rga ·倍角公式:·半角公式:sincos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα==-+======+- ·正弦定理:·余弦定理:R CcB b A a 2sin sin sin ===C ab b a c cos 2222-+=·反三角函数性质:arcsin arccos arctan cot 22x x x arc xππ=-=- 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u vu C uv +++--++''-+'+==---=-∑ 中值定理与导数应用:()0()()()()()()()()()()F()f f b f a f b a f b f a f F b F a F x xξξξξ'='-=-'-='-=罗尔中值定理:拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式全集在高等数学中,有许多重要的公式需要掌握。

下面是一些常用的高等数学公式全集:1.点与直线公式:1)点到直线的距离公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,则点P到直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。

2)点到直线的垂足坐标公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,点Q(x1,y1)为点P到直线的垂足,则x1=(B^2*x0-A*B*y0-A*C)/(A^2+B^2),y1=(-A*B*x0+A^2*y0-B*C)/(A^2+B^2)。

2.导数的四则运算:1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'。

2)积法则:(f*g)'=f'*g+f*g'。

3)商法则:(f/g)'=(f'*g-f*g')/g^24)复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.不定积分的基本公式:1)幂函数不定积分公式:∫x^n dx = (x^(n+1)) / (n+1) + C,其中n不等于-12)指数函数不定积分公式:∫a^x dx = (a^x) / ln(a) + C,其中a为常数且a不等于13)三角函数不定积分公式:∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫sec^2 x dx = tan x + C。

4.定积分的基本公式:1)定积分的基本公式:∫[a, b]f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。

2)分部积分公式:∫[a, b]u(x)v'(x) dx = u(x)v(x)∣[a, b] -∫[a, b]u'(x)v(x) dx。

5.泰勒级数展开:若函数f(x)在x=a处具有n阶导数,则泰勒级数展开可表示为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为余项。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

专升本高等数学公式

专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。

下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。

专升本高数公式大全总结

专升本高数公式大全总结

专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。

- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。

2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。

- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。

3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。

- 余弦定理:$c^2=a^2+b^2-2abcosC$。

- 正弦二倍角公式:$sin2x=2sinxcosx$。

- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。

4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。

- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。

- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。

5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。

专升本同学必备的高等数学公式大全.

专升本同学必备的高等数学公式大全.

高等数学公式高等数学公式导数公式:(tgx)'=sec2x(ctgx)'=-csc2x(secx)'=secx⋅tgx(cscx)'=-cscx⋅ctgx(ax)'=axlna(logax)'=1xlna(arcsinx)'=1-x21(arccosx)'=--x21(arctgx)'=1+x21(arcctgx)'=-1+x基本积分表:三角函数的有理式积分:⎰tgxdx=-lncosx+C⎰ctgxdx=lnsinx+C⎰secxdx=lnsecx+tgx+C⎰cscxdx=lncscx-ctgx+Cdx1x=arctg+C⎰a2+x2aadx1x-a=ln⎰x2-a22ax+a+Cdx1a+x=ln⎰a2-x22aa-x+Cdxx=arcsin+C⎰a2-x2aπ2ndx2=sec⎰cos2x⎰xdx=tgx+Cdx2⎰sin2x=⎰cscxdx=-ctgx+C⎰secx⋅tgxdx=secx+C⎰cscx⋅ctgxdx=-cscx+Cax⎰adx=lna+Cx⎰shxdx=chx+C⎰chxdx=shx+C⎰dxx2±a2=ln(x+x2±a2)+Cπ2 In=⎰sinxdx=⎰cosnxdx=00n-1In-2n⎰⎰⎰xa222x+adx=x+a+ln(x+x2+a2)+C22xa22222x-adx=x-a-lnx+x2-a2+C22xa2x2222a-xdx=a-x+arcsin+C22a222u1-u2x2dusinx=,cosx=,u=tg,dx=2221+u1+u1+u2一些初等函数:两个重要极限:1 / 12高等数学公式ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=shxex-e-x双曲正切:thx==chxex+e-xarshx=ln(x+x+1)archx=±ln(x+x2-1)11+xarthx=ln21-x三角函数公式: ·诱导公式:limsinx=1x→0x1lim(1+)x=e=2.718281828459045...x→∞x·和差角公式: ·和差化积公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ sinαsinβtg(α±β)= tgα±tgβ1 tgα⋅tgβctgα⋅ctgβ 1ctg(α±β)=ctgβ±ctgαsinα+sinβ=2sinα+β22α+βα-βsinα-sinβ=2cossin22α+βα-βcosα+cosβ=2coscos22α+βα-βcosα-cosβ=2sinsin22cosα-β2 / 12高等数学公式 ·倍角公式:sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2αctg2α-1ctg2α=2ctgα2tgαtg2α=1-tg2α·半角公式:sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tgα-tg3αtg3α=1-3tg2αsintgα2=±=±-cosαα+cosαcos=±222-cosα1-cosαsinαα1+cosα1+cosαsinα==ctg=±==1+cosαsinα1+cosα21-cosαsinα1-cosαα2 ·正弦定理:abc===2R ·余弦定理:c2=a2+b2-2abcosC sinAsinBsinCarcsinx=·反三角函数性质:π2-arccosx arctgx=π2-arcctgx高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(n-k)(k)=∑Cnuvk=0n=u(n)v+nu(n-1)v'+中值定理与导数应用: n(n-1)(n-2)n(n-1) (n-k+1)(n-k)(k)uv''+ +uv+ +uv(n)2!k!拉格朗日中值定理:f(b)-f(a)=f'(ξ)(b-a)f(b)-f(a)f'(ξ)=F(b)-F(a)F'(ξ)曲率:当F(x)=x时,柯西中值定理就是拉格朗日中值定理。

(完整版)专升本数学公式大全

(完整版)专升本数学公式大全

导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。

专升本高等数学常用公式

专升本高等数学常用公式

1.偶函数关于y 轴对称。

f(-x)=f(x).奇函数关于原点对称。

f(-x)=-f(x)2.等价无穷小:sinx~x tanx~x arctanx~x arcsinx~x 1-cosx~~22x ln(1+x)~x1-x e ~x1-xa ~xlnaax x a→-+1)1(3.若)()(0~lim 0x f x f x x =称f(x)在点x 处连续。

4.若)0()0(00+≠-x f x f 时,x 为)(x f 的跳跃间断点。

)()(0lim 0x f A x f x x ≠=→或f(x)在点0x 处无定义,则点x 为可去间断点。

5.零点定理:f(a)f(b)<0,则f(ζ)=06.000)()()(limx x x f x f x f x x --='→ h x f h x f x f x x )()()(000lim-+='→7.求导公式:x x 2sec )(tan ='x x 2csc )(cot -='x x x cot csc )(csc -='x x x tan sec )(sec ='xxaa a •='ln )(xx ee =')(a x x a ln 1)(log =' 211)(arcsin x x -='211)(arccos x x --='211)(arctan x x +='211)cot (x x arc +-=' x x f x x f x f x ∆'-∆+'=''→)()(lim )(08.N 阶导数公式: 1!)1()(+-=⇒=n nna ax n x x ynn n x n y x y )1()!1()1()1ln(1+--=⇒+=-9.罗尔定理:闭连、开导、两头平 即f(a)=f(b). 10.拉格朗日中值定理:))(()()(a b f a f b f -'=-ξ11.柯西中值定理:)()()()()()(ξξg f b g a g b f a f ''=--12.泰勒公式:10100300200000)()!1()()(!)()(!3)()(!2)())(()()(++-+=⇒+-++-'''+-''+-'+=n n n n nn x x n f x R x R x x n x f x x x f x x x f x x x f x f x f ξ13.旋转体体积:以x 轴旋转:dx x f V b a2)]([⎰=π 。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式全集高等数学是专升本考试中的重要科目,掌握好相关公式是取得好成绩的关键。

以下为大家整理了一份较为全面的专升本高等数学公式,希望能对大家的学习有所帮助。

一、函数与极限1、函数的概念函数的定义:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x), x ∈ D。

函数的定义域:使函数有意义的自变量 x 的取值范围。

函数的值域:函数值的集合。

2、极限的概念数列的极限:对于数列{an},如果当 n 无限增大时,数列的项 an 无限趋近于一个常数 A,则称 A 为数列{an} 的极限,记作lim(n→∞)an = A。

函数的极限:当自变量x 趋近于某个值x0(或趋近于无穷大)时,函数 f(x) 趋近于一个常数 A,则称 A 为函数 f(x) 在该点的极限,记作lim(x→x0) f(x) = A 或lim(x→∞) f(x) = A。

3、极限的运算四则运算:若lim(x→x0) f(x) = A,lim(x→x0) g(x) = B,则lim(x→x0) f(x) ± g(x) = A ± Blim(x→x0) f(x) × g(x) = A × Blim(x→x0) f(x) / g(x) = A / B (B ≠ 0)无穷小量与无穷大量:无穷小量:以 0 为极限的变量。

若lim(x→x0) f(x) = 0,则称 f(x) 是x → x0 时的无穷小量。

无穷大量:绝对值无限增大的变量。

若lim(x→x0) f(x) =∞,则称f(x) 是x → x0 时的无穷大量。

无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。

无穷小量与无穷大量的关系:在自变量的同一变化过程中,无穷大量的倒数是无穷小量,无穷小量的倒数是无穷大量。

高数专升本公式汇总

高数专升本公式汇总

高数专升本公式汇总以下是一些高数专升本常用的公式汇总:1. 三角函数相关公式:- 数学常数:π≈3.14159;- 三角函数关系:sin(θ)=cos(90°−θ); cos(θ)=sin(90°−θ);- 三角函数的基本关系式:sin^2(θ)+cos^2(θ)=1;- 三角函数的和差倍角公式:sin(α±β)=sinαcosβ±cosαsinβ;cos(α±β)=cosαcosβ∓sinαsinβ;- 二倍角公式:sin2θ=2sinθcosθ;cos2θ=cos^2(θ)−sin^2(θ)=2cos^2(θ)−1=1−2sin^2(θ);- 半角公式:sin(θ/2)=±√[(1−cosθ)/2]; cos(θ/2)=±√[(1+cosθ)/2];2. 导数的基本公式:- 基本导数公式:(a^n)'=n×a^(n−1); (sinx)'=cosx; (cosx)'=−sinx; (ex)'=ex; (lnx)'=1/x;- 基本求导法则:- 乘法法则:(u×v)'=u'v+uv';- 除法法则:(u/v)'=(u'v−uv')/v^2;- 链式法则:(f(g(x)))'=f'(g(x))g'(x);3. 微分中值定理:- 罗尔定理:若f(x)在[a,b]内连续,在(a,b)内可导,且f(a)=f(b),则必存在ξ∈(a,b),使得f(ξ)=0;- 拉格朗日中值定理:若函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少有一点ξ,使得f'(ξ)=(f(b)−f(a))/(b−a); - 柯西中值定理:若函数f(x)和g(x)在区间[a,b]上连续,在(a,b)内可导且g'(x)≠0,则在(a,b)内至少有一点ξ,使得(f(b)−f(a))/(g(b)−g(a))=(f'(ξ))/(g'(ξ));4. 不定积分公式:- 基本积分表:∫kdx=kx+C; ∫x^n dx=(x^(n+1))/(n+1)+C (其中n≠−1);- 基本积分法则:- 基本积分公式:∫f'(x)dx=f(x)+C;- 代换法则:若∫f(g(x))g'(x)dx=F(g(x))+C,则∫f(u)du=F(u)+C (其中u=g(x));- 分部积分法则:∫u'vdx=uv−∫uv'dx;希望以上的公式对您有所帮助!。

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。

(完整版)专升本高数公式大全

(完整版)专升本高数公式大全

高等数学公式求导公式表:()0C '= (C 为常数); 1()x x ααα-'=(α为实数); ()ln (0,1)x x a a aa a '=>≠; ()x x e e '=;1(log )(0,1)ln x a a a x a'=>≠; 1(ln )x x '=;(sin )cos x x '=;(cos )sin x x '=-;12(tan )sec 2cos x x x'==; (sec )sec tan x x x '=⋅;12(cot )csc 2sin x x x'=-=-; (csc )csc cot x x x '=-⋅;(arcsin )x ';(arccos )x ';1(arctan )21x x '=+; 1(arccot )21x x '=-+.基本积分表:d k x kx C=+⎰ (k 为常数).特别地,当0k =时,0d x C=⎰.11d 1x x x C ααα+=++⎰ (1)α≠- 1d ln ||x x Cx =+⎰ d ln x xa a x Ca =+⎰ (0,1)a a >≠. d x x e x e C =+⎰.sin d cos x x x C=-+⎰. cos d sin x x x C=+⎰.22d sec d tan cos xx x x C x==+⎰⎰. 22d csc d cot sin xx x x C x==-+⎰⎰. sec tan d sec x x x x C =+⎰.csc cot d csc x x x x C =-+⎰.arcsinx x C=+arccos x C'=-+.21d arctan1x x Cx=++⎰cotarc x C'=-+.tan d ln cosx x x C=-+⎰.cot d ln sinx x x C=+⎰.sec d ln sec tanx x x x C=++⎰.csc d ln csc cotx x x x C=-+⎰.2211d arctanxx Ca x a a=++⎰.2211d ln2x ax Cx a a x a-=+-+⎰.arcsin(0)xx C aa=+>.lnx x C=+.21arcsin22a xx Ca=+.31sec d sec tan ln sec tan2x x x x x x C⎡⎤=+++⎣⎦⎰三角函数的有理式积分:2222212sin cos tan1121u u x du x x u dxu u u-====+++, , , 一些初等函数:()(0,1)log(0,1)sin,cos,tan,cot,sec,cscarcsin,arccos,arctan,arccotxay xy a a ay x a ay x y x y x y x y x y xy x y x y x y xμμ==>≠=>≠==========幂函数:为实数指数函数:对数函数:三角函数:反三角函数::2:2:x xx xx xx xe eshxe echxshx e ethxchx e e-----=+=-==+双曲正弦双曲余弦双曲正切ln(ln(11ln21arshx x archx x xarthx x==±++=-两个重要极限:sin lim 1x x x =→ ()11lim 1lim 10x xx ex x x ⎛⎫+=+= ⎪→∞→⎝⎭等价无穷小量替换当0x →时,~sin ~tan ~arcsin ~arctan x x x x x~ln(1)~x +1xe -,121cos ~2x x -,2~sin 2~tan 2x x x11~2x三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=±·倍角公式:·半角公式:sin cos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα==-+======+- ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcsin arccos arctan cot 22x x x arc x ππ=-=- 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:()0()()()()()()()()()()F()f f b f a f b a f b f a f F b F a F x x ξξξξ'='-=-'-='-=罗尔中值定理:拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.初等函数的性质- 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。

- 二次函数的表达式:y = ax² + bx + c,其中a、b、c为常数。

-绝对值函数的表达式:y=,x。

2.导数与微分的基本公式- 函数极限的定义:lim(x→a) f(x) = L。

- 导数的定义:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx。

-基本导数公式:- (1) 若f(x) = xⁿ,则f'(x) = nxⁿ⁻¹。

-(2)若f(x)=eˣ,则f'(x)=eˣ。

- (3) 若f(x) = sin(x),则f'(x) = cos(x)。

- (4) 若f(x) = cos(x),则f'(x) = -sin(x)。

- (5) 若f(x) = ln(x),则f'(x) = 1/x。

3.极限的基本性质-极限的四则运算:- (1) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)±g(x)] = A±B。

- (2) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)g(x)] = AB。

- (3) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x)/g(x)] = A/B。

- (4) 若lim(x→a) f(x) = A,则lim(x→a) [c·f(x)] = c·A。

4.函数的极值与最值-函数的极值:设f(x)在x₀处有定义,称f(x)在x₀处有极小值,如果存在εₒ>0,使得当0<,x-x₀,<εₒ时,恒有f(x)≥f(x₀)。

-函数的最值:设f(x)在区间I上有定义,x₀∈I,如果对于任意x∈I,恒有f(x)≥f(x₀),则称f(x)在x₀处有最小值。

专升本高数公式大全

专升本高数公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本高等数学必备公式(修订版)

专升本高等数学必备公式(修订版)

(3)
1 x2
dx
1 x
C
(5)
1dx x
ln
x
C
指数函数:(6)
a
x dx
ax ln a
C
1)
(4) x 1 2x
(6) (e x ) e x (8) (ln x) 1
x (10) (cos x) sin x
(12) (cot x) csc2 x
(14) (csc x) csc x cot x
(6)1 tan 2 x sec2 x
(7) 1 cot 2 x csc2 x
(8) sin x 1 csc x
(10) tan x 1 cot x
(9) cos x 1 sec x
4、等价无穷小(11 个):
当 0时: sin~
arcsin~
tan~
e 1 ~
ln(1) ~
1 cos~ 2 2
(16) sec xdx ln sec x tan x C
(17) csc xdx ln csc x cot x C
(18) 1 dx arcsin x C
1 x2
(20)
1
1 x
2
dx
arctan
x
C
(19)
1 dx arcsin x C
a2 x2
a
(21)
a2
1
x2 dx
1 a
arctan
x a
C
(22)
1 dx ln x x2 a2 C x2 a2
(23)
1 dx ln x x2 a2 C x2 a2
(24)
x2
1
a2
dx
1 ln 2a

专升本高等数学公式大全

专升本高等数学公式大全

专升本高等数学公式大全函数的导数公式:1.常数函数的导数为0:(k)'=0;2. 幂函数的导数公式:(x^n)' = nx^(n-1);3. 指数函数的导数公式:(a^x)' = a^x * ln(a);4. 对数函数的导数公式:(loga^x)' = 1/(x * ln(a));5.三角函数的导数公式:- (sinx)' = cosx;- (cosx)' = -sinx;- (tanx)' = sec^2(x);- (cotx)' = -csc^2(x);- (secx)' = secx * tanx;- (cscx)' = -cscx * cotx;极限公式:1. 常数的极限是它本身:lim (c) = c;2.极限的线性性质:- lim (f(x) ± g(x)) = lim (f(x)) ± lim (g(x));- lim (k * f(x)) = k * lim (f(x));3.极限的乘法法则:- lim (f(x) * g(x)) = lim (f(x)) * lim (g(x));4.极限的除法法则:- lim (f(x) / g(x)) = lim (f(x)) / lim (g(x));5.无穷的极限:- lim (x -> ±∞) (1/x) = 0;- lim (x -> ±∞) (a^x) = 0 (a > 1);- lim (x -> ±∞) (ln(x)) = ±∞;- lim (x -> ±∞) (e^x) = ±∞;一元函数的微分公式:1.常数函数的微分为0:d(c)=0;2. 幂函数的微分公式:d(x^n) = nx^(n-1)dx;3. 指数函数的微分公式:d(a^x) = a^xdx * ln(a);4. 对数函数的微分公式:d(loga^x) = (1/x)dx / ln(a);5.三角函数的微分公式:- d(sinx) = cosxdx;- d(cosx) = -sinxdx;- d(tanx) = sec^2(x)dx;- d(cotx) = -csc^2(x)dx;- d(secx) = secxtanxdx;- d(cscx) = -cscxcotxdx;不定积分的公式:1. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C;2. 指数函数的不定积分:∫a^x dx = (a^x)/ln(a) + C;3. 对数函数的不定积分:∫(1/x) dx = ln,x, + C;4.三角函数的不定积分:- ∫sinx dx = -cosx + C;- ∫cosx dx = sinx + C;- ∫tanx dx = -ln,cosx, + C;- ∫cotx dx = ln,sinx, + C;- ∫secx dx = ln,secx + tanx, + C;- ∫cscx dx = ln,cscx - cotx, + C;以上仅是高等数学中的一部分公式,通过掌握和运用这些公式,可以更好地应对专升本考试中的数学相关题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
·反三角函数性质:
中值定理与导数应用:
曲率:
ﻬ空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
重积分及其应用:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
微分方程的相关概念:
一阶线性微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
专升本高数公式大全
———————————————————————————————— 作者:
———————————————————————————————— 日期:

导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式:
·诱导公式:
函数
角A
sin
cos
tg
ctg

-sinα
α
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
相关文档
最新文档