数学三角形的边课件(人教版八年级)上册

合集下载

三角形的边 课件 2023-2024学年人教版八年级数学上册

三角形的边  课件   2023-2024学年人教版八年级数学上册

D
A
△ABC、△ABE;
E
(3)以E为顶点的三角形有哪些?
△ ABE 、△BCE、 △CDE.
B
C
三角形:
由_____同一条直线上的三条线段
不在
首尾顺次
_________相接所组成的图形.
三角形组
成元素

顶点
三角形 ABC
记作△ABC
A
边 AB,边 BC,边 AC
或 边 c,边 a, 边 b
点 A、点 B、点 C
牛刀小试
1.现有两根长度分别是40和50的木棒,若要钉成一个三角形框架(不
计接头处的损失),则在下列四根木棒中应该选取( B )
A.长度为10的木棒
B.长度为40的木棒
C.长度为90的木棒
D.长度为100的木棒
解析:另外两边的差<任意边<另外两边的和
设另一根木棒长度为x,则有50 − 40 < < 50 + 40
人教版八年级数学上册
11.1.1 三角形的边
学习目标
1.认识三角形并会用几何语言表示三角形,了解三角形分类.
2.掌握三角形的三边关系.(难点)
3.运用三角形三边关系解决有关的问题.(重点)
情境导入
三角形是一种基本的几何图形,从古埃及的金字塔到现代的建
筑物,从巨大的钢架桥到微小的分子结构,到处都有三角形的形象.
也即10 < < 90
课堂小结
相关概念



分类
三角形两边的和大于第三边
三边关系
三角形两边的差小于第三边
课堂训练
6
1.图中有 ______个三角形,用符号表示这些三角形分别为_

人教版八年级数学上册教学课件三角形的边

人教版八年级数学上册教学课件三角形的边

人教版八年级数学上册教学课件三角 形的边
人教版八年级数学上册教学课件三角 形的边
挑战自我:用一条长为18c来自的细绳围成一个等腰三角形, (1)如果腰长是底边的2倍,那么各边的长是多少?
解: 设底边长为xcm,则腰长为2xcm.
x+2x+2x=18 解得x=3.6
所以,三边长分别是3.6cm,7.2cm,7.2cm 。
别踩我,我怕疼! 一条小路来.
5米 3米
你能不能 运用今天所学
的知识解释这 一现象?
其实我们离
B
4米
文明很近!
C
4 他只少走
步. (1米=2步)
人教版八年级数学上册教学课件三角 形的边
人教版八年级数学上册教学课件三角 形的边
小结
定义
三 表示 按角分类
角 分类 按边分类

三边关 系定理
a-b<c<a+b
如:AB-BC<CA c-a< b < c + a
c-a<b
中考链接:
填空 在△ABC中,若 a =3,b =7,则第 三边 c 的取值范围是 4 < c < 10 .
既要考虑“两边的和大于第三边”, 又要考虑“两边的差小于第三边”.
a -b < c < a + b
在△ABC中,若a =3,b=7,则其周 长 l 的取值范围是 14 < l < 20 .
(4)
(5)
人教版八年级数学上册教学课件三角 形的边
人教版八年级数学上册教学课件三角 形的边
想一想:什么叫三角形?
A
B
C
三角形的定义:由不在同一条直线上 的 三条线段 首尾顺次相接 所组成的图形 叫做三角形。记作

第十一章三角形第一课时三角形的边课件八年级数学人教版上册

第十一章三角形第一课时三角形的边课件八年级数学人教版上册

△DBE、△CBE、
( C ) 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
△ABC、△ABD、△ACE、△ADE 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
△ABC、△ABD、△ACE、△ADE 1 与三角形有关的线段 1 与三角形有关的线段 天才是由于对事业的热爱感而发展起来的,简直可以说天才。
共_4__个等腰三角形为__△__A__B_C__、__△__A__B_D__、__△__A__C_E__、__△__A__D_E__, 有__1__个等边三角形.
三角形的三边关系
【2020·徐州】若一个三角形的两边长分别为 3 cm、6 cm,
则它的第三边的长可能是( C )
A.2 cm
B.3 cm
丈夫志不大,何以佐乾坤。 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
∵a、b、c 是△ABC 的三边长,根据两边之和大于第 儿童有无抱负,这无关紧要,可成年人则不可胸无大志。
鹰爱高飞,鸦栖一枝。 鸟贵有翼,人贵有志。 有志不在年高,无志空活百岁。 困,你是人类艺术的源泉,你将伟大的灵感赐予诗人。
1△D与BE三、角△形C有BE关、的线段
天△才AB是C由、于△对AB事D业、的△热AC爱E感、而△发AD展E起来的,简直可以说天才。
儿△童DB有E、无△抱C负B,E、这无关紧要,可成年人则不可胸无大志。
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△ABD、△ABE、△ABC
△DBE、△CBE、
C.6 cm
D.9 cm
名师点评:三角形的三边关系是判断线段能否组成三角形的 依据,一般只需判断三角形的最长边是否小于其余两边之和即可, 不必每个都验证.

人教版数学八年级上册《11.1.1 三角形的边》课件精品

人教版数学八年级上册《11.1.1 三角形的边》课件精品
∴ x + 2x + 2x = 18,解得 x = 3.6. ∴ 三边长分别为 3.6 cm、7.2 cm、7.2 cm. (2) ∵ 长为 4 cm 的边可能是腰,也可能是底边, ∴ 需要分情况讨论:
① 若底边长为 4 cm,设腰长为 x cm,则有 4 + 2x = 18,解得 x = 7.
②若腰长为 4 cm,设底边长为 x cm,则有 2×4 + x = 18,解得 x = 10. ∵ 4 + 4<10,不符合三角形三边关系, ∴ 该情况不存在. 综上可知,可以围成底边长是 4 cm,腰长是 7 cm 的 等腰三角形.
解:设第三根木棒长为 x,则应有 7 - 2 < x < 7 + 2, 即 5 < x < 9. 则用长度为 4 或 11 的木棒都不能和它们拼成三 角形. 第三根木棒长的范围为 5 < x < 9.
归纳 三角形的第三边长 x 满足两边之差<x<两边之和.
例2 用一条长为 18 cm 的细绳围成一个等腰三角形. (1) 如果腰长是底边长的 2 倍,那么各边的长是多少? (2) 能围成有一边的长是 4 cm 的等腰三角形吗?为什么? 解:(1) 设底边长为 x cm,则腰长为 2x cm,
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1 下列长度的三条线段能否拼成三角形?为什么? (1)3 cm、8 cm、4 cm;(2)5 cm、6 cm、11 cm; (3)5 cm、6 cm、10 cm. 解:(1)不能,因为 3 cm + 4 cm < 8 cm.
人教版数学八年级上册教学课件
第十一章 三角形
11.1 与三角形有关的线段 11.1.1 三角形的边

人教版八年级数学上册数学课件:11.1.1三角形的边(共16张PPT)

人教版八年级数学上册数学课件:11.1.1三角形的边(共16张PPT)

A.9
B.12
C.15
D.12或15
3.已知三角形的三边长为连续整数,且周长为12cm,则它的最
短边长为( B )
A.2cm
B.3cm
C.4cm D.5cm
2020/7/14
13
二、填空题:
5.若五条线段的长分别是2cm,3cm,4cm,5cm,则以其中三
条线段为边可构成___3___个三角形。
6.若等腰三角形的两边长分别为3和7,则它的周长为_1_7_____; 若等腰三角形的两边长分别是3和4,则它的周长为 10或11 。
11、如图,点P是⊿ABC内一点,试证明: AB+AC>PB+PC.
2020/7/14
15
作业:
课本P8,第1,2题
2020/7/14
16
2.已知等腰三角形两边长分别为5和6,则这个三角 形的周长为( )
A.11 或17
B.16
C.17
D.16
2020/7/14
11
当堂训练题
3.一个等腰三角形的一边长为6cm,周长为20cm,求其他两 边的长. 4.已知等腰三角形的一边长为5,一边长为6,求它的周长. 拓展题: 若a,b,c表示ΔABC的三边长,则
第十一章 三角形
2020/7/14
1
11.1.1 三角形的边
2020/7/14
2
学习目标
1.理解、识记三角形的概念及分类; 2.理解并能正确运用“三角形两边的和大于第
三边”的性质.
2020/7/14
3
自学指导
认真看课本(第十一章引言--P4练习前)要求:
1.什么是三角形,思考“首尾顺次相接”是什么含义;

人教版八年级上册三角形的边课件

人教版八年级上册三角形的边课件

小明有两根长为10cm和3cm的木条,他要钉一 个三角形像框,并且使所选择的第三根木条 长度是6的整数倍.聪明的你帮他想想,第三根 木条应取多长?
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和 即10-3 < x < 10+3(7 < x < 13) 符合条件的数是12 ∴第三根木条应取12cm
(B)5cm,6cm,12cm (D)6cm,11cm,12cm
通过动手发现: (C) (D) 可以摆成三角形, (A) (B) 不能摆成三角形。
两边之差<第三边<两边之和
通过本课时的学习需要我们掌握
△ABC
概念 NN N三o 角N形ooo 表示方法
1.三条线段 Im IIm m Im aaagaggegeee
C
3、以∠D为角的三角形有哪些?
△ BCD、 △DEC
4、你能找到几个三角形?分别是哪几个呢? 5个,△ABE、△ ABC、△DEC、△DBC、△BEC
1、请思考,以下是什么三角形?课本第2-3页
按角分:
直角三角形 锐角三角形 钝角三角形
按边为:
三边各不相等 腰与底边不相等 腰与底边相等 的三角形 的等腰三角形 的等等边腰三三角角形形
C
_点__D_、__点__B_、__点__C___
其中顶点C的对边是:___D_B_____
∠D是由__D_B__和___D_C__两边组成的内角,
∠BEC是△BCD的内角吗? 不是
2、小晶有两根长度为5cm、8cm的木条,她 想钉一个三角形的木框,现在有长度分别为 2cm 、3cm、 8cm 、15cm的木条供她选择,
志不真则心不热,心不热则功不贤。 器大者声必闳,志高者意必远。 有志不在年高,无志空活百岁。 志当存高远。 壮志与毅力是事业的双翼。

人教版八年级数学上册 《三角形的边》三角形PPT课件

人教版八年级数学上册 《三角形的边》三角形PPT课件

A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个; 直角三角形有3个;
钝角三角形有1个。 25 第二十五页,共二十六页。
忆一忆
今天我们学了哪些内容?
1.三角形的有关概念(边、角、顶点)
2.会用符号表示一个三角形.
3.通过实践了解三角形的三边不等关系.
26
第二十六页,共二十六页。
电线杆
自行车
5
第五页,共二十六页。
读一读 阅读课本P1~2,并回答以下问题:
(1)什么叫三角形? (2)三角形有几条边?有几个内角?有几个顶点? (3)三角形ABC用符号表示________. (4)三角形ABC的边AB、AC和△BAC可BC用小写字 母分别表示为________.
c、b、a
6
第六页,共二十六页。
A
B D
E
C
13
第十三页,共二十六页。
下面图形中一共有多少个三角形?锐角三角 形、直角三角形、钝角三角形各有多少个?
A
B D
E
C
14
第十四页,共二十六页。
下面图形中一共有多少个三角形?锐角三角
形、直角三角形、钝角三角形各有多少个?
A
3
B D
E
C
15
第十五页,共二十六页。
下面图形中一共有多少个三角形?锐角三角形、 直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
21
第二十一页,共二十六页。
下面图形中一共有多少个三角形?锐角三角形、 直角三角形、钝角三角形各有多少个?

《三角形的边》PPT优质课件

《三角形的边》PPT优质课件
由题意得:x+2x+2x=18 解得x=3.6 , 所以三边长分别为3.6厘米,7.2厘米,7.2厘米.
探究新知
例2 用一根长为18厘米的细铁丝围成一个等腰三角形.
(2)能围成有一边的长为4厘米的等腰三角形吗?为什么?
解 :因为长为4厘米的边可能是腰,也可能是底边,所以需要分情况讨 论.
(a) 如果4厘米长为底边,设腰长为x厘米,则4+2x=18,解得x=7. (b) 如果4厘米长为腰,设底边长为x厘米,则2×4+x=18, 解得x=10.
A
概念
(直角、 锐角、钝
c
b

按角分 角)三角

分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
巩固练习
如果等腰三角形的一边长是4cm,另一边长是9cm, 则这个等腰三角形的周长=_2_2_c_m__________. 三边长 4,4,9 × 4,9,9 √ 4+9+9=22 如果等腰三角形的一边长是5cm,另一边长是8cm, 则这个等腰三角形的周长=__1_8_c_m__或__2_1_cm___. 三边长 5, 5, 8 √ 5, 8, 8 √
2. 理解“三角形中任意两边的和大于第三边” 的含义,并能运用它解决简单的实际问题.
1. 掌握三角形的有关概念,会用符号表示三 角形,会对三角形进行分类.
探究新知 知识点 1 三角形的有关概念
三角形是我们熟悉的图形,观察下列图片Biblioteka 你能说一 说三角形是怎样的图形吗?
探究新知
三角形的定义
由不在同一条直线上的三条线段首尾顺次连接所组成 的图形,叫做三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.如图,在△ACE中,∠CEA的对边是 AC

A
B C D EF
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
(2)因为长为4cm的边可能是腰,也可能是底边,所以需要分情 况讨论. ①若底边长为4cm,设腰长为xcm,则有 4+2x=18. 解得x=7. ②若腰长为4cm,设底边长为xcm,则有 2×4+x=18. 解得x=10. 因为4+4<10,不符合三角形两边的和大于第三边,所以不能 围成腰长是4cm的等腰三角形. 由以上讨论可知,可以围成底边长是4cm的等腰三角形.
示为_c_,__a_,__b_.
顶点A

边c
边b
角 顶点B

边a
顶点C
辨一辨:下列图形符合三角形的定义吗?
不符合
不符合
不符合
要点提醒
三角形应满足以下两个条件: ①位置关系:不在同一直线上;②联接方式:首尾顺次.
表示方法: 三角形用符号“△”表示;记作“△ABC”,读作“三角形 ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
当堂练习
1.三角形是指(C ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成
的图形 C.由不在同一直线上的三条线段首尾顺次相接组成
的图形 D.由三条线段首尾顺次相接组成的图形
2.判断:
(1)一个钝角三角形一定不是等腰三角形.( × ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
7-2<x<7+2, 即5<x<9. 则用长度为4的木棒不能和它们拼成三角形,长度为11的 木棒也不能和它们拼成三角形.第三边长的范围为5<x<9.
归纳 设x为三角形第三条边的长,则有两边之差<x<两边之和.
例2 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
2.在同一个三角形中,任意两边之差与第三边有什么大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到微小 的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例。
讲授新课
一 三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm; (3)能,因为5cm+6cm>10cm.
归纳 判断三条线段是否可以组成三角形,只需说明两条较短 线段之和大于第三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4 的木棒能和它们拼成三角形吗?长度为11的木棒呢?若不能拼 成,则第三条边应在什么范围呢? 解:设第三边长为x,则应有
等腰三角形两边相等,等边三角形三边相等. (2)从边上来说,除了等腰三角形和等边三角形还有什么样 的三角形?
三边都不相等的三角形. (3)根据上面的内容思考:怎样对三角形进行分类?
顶角

腰 底角 底边
底角
等边三角形
等腰三角形
按是否有边相等分
三角形
不等边 三角形
等腰 三角形
底和腰不相等 的等腰三角形
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示_△__A_B__C__.
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
二 三角形的分类
问题1:按照三角形内角的大小,三角形可以分为哪几类? 锐角三角形、直角三角形、钝角三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类呢? (1)等腰三角形和等边三角形的区别是什么?
第十一章
八年级数学上(RJ) 教学课件
三角形
11.1.1三角形的边
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.认识三角形并会用几何语言表示三角形,了解三角形分类。
2.掌握三角形的三边关系。(难点)
3.运用三角形三边关系解决有关的问题。(重点)
导入新课
埃及金字塔
水 分 子 结 构 示 意 图 飞机机翼
基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
特别规定: 三角形ABC的三边,一般的顶点A所对的边记作a,顶点 B所对的边记作b,顶点C所对的边记作c.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
D
(3)以E为顶点的三角形有哪些? A
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
E
△ BCD、 △DEC.
B
C
(5)说出△BCD的三个角和三个顶点所对的边.
等边三角形
不等边三角形 按内角大小分
锐角三角形 Байду номын сангаас角形 直角三角形
钝角三角形
三 三角形的三边关系
做一做 画出一个△ABC,假设有一只小虫要从B点出发,沿三
角形的边爬到C,它有几种路线可以选择?各条路线的长一 样吗?
A
B
C
AB+AC>BC(两点之间线段最短)
议一议 1.在同一个三角形中,任意两边之和与第三边有什么大小关系?
相关文档
最新文档