七年级数学《因式分解》培优训练题(一)
专题07 《整式乘法与因式分解》解答题压轴题专练(解析版) -七年级数学下册考点培优训练(苏科版)
专题07 《整式乘法与因式分解》解答题压轴题专练(1)(满分120分时间:60分钟)班级姓名得分一、解答题1.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.【答案】(1)7(2)-7(3)-3(4)-15【解析】试题分析:(1)用2x+1中的一次项系数2乘以3x+2中的常数项2得4,用2x+1中的常数项1乘以3x+2中的一次项系数3得3,4+3=7即为积中一次项的系数;(2)用x+1中的一次项系数1,3x+2中的常数项2,4x-3中的常数项-3相乘得-6,用x+1中的常数项1,3x+2中的一次项系数3,4x-3中的常数项-3相乘得-9,用x+1中的常数项1,3x+2中的常数项2,4x-3中的一次项系数4相乘得8,-6-9+8=-7即为积中一次项系数;(3)用每一个因式中的一次项系数与另两个因式中的常数项相乘,再把所得的积相加,列方程、解方程即可得;(4)设422x ax bx +++可以分成(231x x -+ )(x 2+kx+2),根据小明的算法则有k -3=0,a=-3k+2+1,b=-3×2+k ,解方程即可得.试题解析:(1)2×2+1×3=7,故答案为7;(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,故答案为-7;(3)由题意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,故答案为-3;(4)设422x ax bx +++可以分成(231x x -+ )(x 2+kx+2),则有k -3=0,a=-3k+2+1,b=-3×2+k ,解得:k=3,a=-6,b=-3,所以2a+b=-15,故答案为-15.b=3-6=-32.阅读材料:若x 2-2xy +2y 2-8y +16=0,求x 、y 的值.解:∵x 2-2xy +2y 2-8y +16=0,∵(x 2-2xy +y 2)+(y 2-8y +16)=0,∵(x -y )2+(y -4)2=0,∵(x -y )2=0,(y -4)2=0,∵y =4,x =4.根据你的观察,探究下面的问题:已知∵ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2-4a -6b +13=0.求∵ABC 的边c 的值.【答案】2或3或4【分析】先通过配方法,利用完全平方公式进行配方求出a ,b 的值,再根据三角形的三边关系即可确定c 的值.【详解】∵2246130a b a b +--+=∵22(44)(69)0a a b b -++-+=即22(2)(3)0a b -+-=∵20a -=,30b -=∵23a b ==,根据三角形的三边关系得a b c a b -<<+,即15c <<∵c 是正整数∵c 的值为2或3或4.【点睛】本题主要考查了配方法及三角形边长的确定,熟练掌握完全平方公式及三角形的三边关系是解决本题的关键.3.阅读下列材料:某同学在计算3(4+1)(42+1)时,发现把3写成4-1后,可以连续运用平方差公式计算,3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=44-1=256-1=255.请借鉴该同学的经验,计算下列各式的值:(1)(2+1)(22+1)(24+1)(28+1)…(22048+1)(2)2481511111(1)(1)(1)(1)22222+++++. 【答案】(1)24096-1;(2)2.【分析】(1)在前面乘一个(2-1),然后再连续利用平方差公式计算;(2)在前面乘一个2×(1-12),然后再连续利用平方差公式计算. 【详解】解:(1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(24+1)(28+1)…(22048+1)=24096-1;(2)2481521111111112222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1615112122⎛⎫=⨯-+ ⎪⎝⎭ 151511222=-+ =2. 【点睛】本题考查了平方差公式的运用,熟练掌握平方差公式是解题的关键.4.阅读下列分解因式的过程:x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)(x+3a)(x -a).像上面这样通过加减项配出完全平方式后再把二次三项式分解因式的方法,叫做配方法,请你用配方法将下面的多项式因式分解:(1)m 2-4mn+3n 2;(2)x 2-4x -12.【答案】(1)(m -n )(m -3n );(2)(x+2)(x -6).【分析】(1)、(2)分别利用阅读材料中的配方法分解即可.【详解】解:(1)m 2-4mn+3n 2=m 2-4mn+4n 2-4n 2+3n 2=m 2-4mn+4n 2-n 2=(m -2n )2-n 2=(m -2n+n )(m -2n -n )=(m -n )(m -3n );(2)x 2-4x -12=x 2-4x+4-4-12=(x -2)2-42=(x -2+4)(x -2-4)=(x+2)(x -6).【点睛】本题考查了因式分解的应用.要运用配方法,只要二次项系数为1,只需加上一次项系数一半的平方即可配成完全平方公式.5.如图,长为m ,宽为x()m x >的大长方形被分割成7小块,除阴影,A B 外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y ,记阴影A 与B 的面积差为S .(1)分别用含,,m x y 的代数式表示阴影,A B 的面积,并计算S ;(2)当6,1m y ==时,求S 的值;(3)当x 取任何实数时,面积差S 的值都保持不变,问m 与y 应满足什么条件?【答案】(1)阴影A 的面积为(3)(2)m y x y --,阴影B 的面积为3(3)y x y m +-,236S y my xy mx =-+-+;(2)S 的值为3;(3)6m y =.【分析】(1)先分别求出阴影A 与B 的长、宽,再根据长方形的面积公式,即可得;(2)将6,1m y ==代入,计算含乘方的有理数混合运算即可得;(3)将S 的值进行变形,再根据其值与x 无关,列出等式求解即可得.【详解】(1)由图可知,阴影A 的长为3m y -,宽为2x y -;阴影B 的长为3y ,宽为(3)3x m y x y m --=+- 则阴影A 的面积为(3)(2)m y x y --,阴影B 的面积为3(3)y x y m +-S A B =-(3)(2)3(3)m y x y y x y m =---+-22236393mx my xy y xy y my =--+--+236y my xy mx =-+-+;(2)由(1)可知,236S y my xy mx =-+-+将6,1m y ==代入得:2316166363S x x =-⨯+⨯-+=-+=即S 的值为3;(3)由(1)可知,22363(6)S y my xy mx y my m y x =-+-+=-++-要使当x 取任何实数时,面积差S 的值都保持不变则60m y -=整理得6m y =.【点睛】本题考查了整式的加减乘除运算、含乘方的有理数混合运算等知识点,理解题意,根据图形正确求出阴影A 与B 的长、宽是解题关键.6.如图∵所示是一个长为2m ,宽为2n 的长方形,沿虚线用剪刀均分成四个小长方形,然后按图∵的方式拼成一个正方形.(1)你认为图∵中的阴影部分的正方形的边长等于__________;(2)请用两种不同的方法列代数式表示图∵中阴影部分的面积:方法∵____________;方法∵________________;(3)观察图∵,直按写出22(),(),m n m n mn +-这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若8,5a b ab +==,求2()a b -的值【答案】(1)m -n ;(2)2()m n -;2()4m n mn +-;(3)2()m n -=2()4m n mn +-;(4)44.【分析】(1)根据图∵可知,剪开后的小长方形长为m ,宽为n ,可以看出图∵中的阴影部分的正方形的边长等于m -n ;(2)图∵中阴影部分的面积:方法∵利用阴影小正方形的边长直接计算面积;方法∵利用大正方形的面积减去四个小长方形的面积计算;(3)根据图∵里图形的面积关系,可以得出这三个代数式之间的等量关系;(4)根据(3)中的等量关系式,代入数值求解即可.【详解】(1)剪开后的小长方形长为m ,宽为n ,所以图∵中的阴影部分的正方形的边长等于m -n ,故答案为:m -n ;(2)方法∵阴影的面积为边长的平方,即2()m n -;方法∵阴影的面积为大正方形的面积减去四个小长方形的面积,则2()4m n mn +-,故答案为:2()m n -;2()4m n mn +-;(3)根据图∵里图形的面积关系,可得2()m n -=2()4m n mn +-,故答案为:2()m n -=2()4m n mn +-;(4)由(3)中的等量关系可知,2()a b -=2()4a b ab +-=64-20=44, 故答案为:44.【点睛】本题考查了图形的面积的代数式表示以及代数式之间的等量关系,掌握图形面积的代数式表示是解题的关键.7.因为()()2632x x x x +-=+-,令26x x +-=0,则(x+3)(x -2)=0,x=-3或x=2,反过来,x =2能使多项式26x x +-的值为0.利用上述阅读材料求解:(1)若x ﹣4是多项式x 2+mx+8的一个因式,求m 的值;(2)若(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,试求a,b 的值;(3)在(2)的条件下,把多项式325x ax x b +-+因式分解的结果为 .【答案】(1)m=-6;(2)26a b =-⎧⎨=⎩;(3)(x -1)(x+2)(x -3) 【分析】(1)由已知条件可知,当x=4时,x 2+mx+8=0,将x 的值代入即可求得;(2)由题意可知,x=1和x=-2时,x 3+ax 2-5x+b=0,由此得二元一次方程组,从而可求得a 和b 的值; (3)将(2)中a 和b 的值代入x 3+ax 2-5x+b ,则由题意知(x -1)和(x+2)也是所给多项式的因式,从而问题得解.【详解】解:(1)∵x ﹣4是多项式x 2+mx+8的一个因式,则x=4使x 2+mx+8=0,∵16+4m+8=0,解得m=-6;(2)∵(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,则x=1和x=-2都使325x ax x b +-+=0,得方程组为:15084100a b a b +-+=⎧⎨-+++=⎩,解得26a b =-⎧⎨=⎩; (3)由(2)得,x 3-2x 2-5x+6有两个因式(x ﹣1)和(x+2),又36(1)2(3)x x x x =⋅⋅=-⨯⨯-,, 则第三个因式为(x -3),∵x 3-2x 2-5x+6=(x -1)(x+2)(x -3).故答案为:(x -1)(x+2)(x -3).【点睛】本题考查了分解因式的特殊方法,根据阅读材料仿做,是解答本题的关键.8.观察下列各式:∵60×60=602-02=3600;∵59×61=(60-1)×(60+1)=602-12=3599;∵58×62=(60-2)×(60+2)=602-22=3596;∵57×63=(60-3)×(60+3)=602-32=3591……(探究)(1)上面的式子表示的规律是:(60+m)(60-m)=;观察各等式的左边发现两个因数之和都是120,而两数乘积却随着两个因数的接近程度在变化,当两个因数时,乘积最大.(应用)(2)根据上面的规律,思考若a+b=400,则ab的最大值是;(拓展)(3)将一根长40厘米的铁丝折成一个长方形,设它的一边长为x厘米,面积为S,写出S与x 之间的等量关系?当x为何值时,S取得最大值?【答案】(1)602-m2;相等;(2)40000;(3)S=-x2+20x;当x=10时,S取得最大值.【分析】(1)按照已知等式的规律或平方差公式写出结果即可;对比题干中给出的等式可知,当两个因数相等即m=0时,乘积最大;(2)根据(1)中得出的规律可知,当a=b时,ab取得最大值,从而得出结果;(3)设长方形的一边长为x厘米,则根据题意得长方形的另一边长为(20-x)厘米,根据长方形的面积公式可得出S与x之间的等量关系;再根据(1)中的结论可得出当长方形的长与宽相等时,S取得最大值,从而得出结果.【详解】解:(1)根据题中的等式可得,(60+m)(60-m)=602-m2;对比题干中给出的等式可知,当两个因数相等时,即m=0时乘积最大,故答案为:602-m2;相等;(2)根据(1)中得出的规律可知,当a=b时,ab取得最大值,∵a+b=400,∵当a=b=200时,ab取得最大值,最大值为40000,故答案为:40000;(3)设长方形的一边长为x厘米,则根据题意得长方形的另一边长为(20-x)厘米,∵S=x(20-x)=-x2+20x,故S与x之间的等量关系式为:S=-x2+20x;∵长方形的两边长分别为x厘米,(20-x)厘米,有x+(20-x)=20,现要求S=x(20-x)的最大值,由(1)知,当x=20-x时,S取得最大值,故当x=10时,S取得最大值.【点睛】本题考查了通过观察、归纳、抽象出数列的规律的能力,一般先根据题意,找到规律,并进行推导得出答案.9.图1是一个长为2m,宽为2n的长方形,将该长方形沿图中虚线用剪刀均分成四块小长方形,然后按照图2所示拼成一个正方形.(1)使用不同方法计算图2中小正方形的面积,可推出(m+n)2,(m-n)2,mn之间的等量关系为:;(2)利用(1)中的结论,解决下列问题:∵已知a-b=4,ab=5,求a+b的值;∵已知a>0,a-3a=2,求a+3a的值.【答案】(1)(m-n)2=(m+n)2-4mn;(2)∵6或-6;∵4.【分析】(1)由题意知,阴影部分小正方形的边长为m-n.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积求图中阴影部分的面积,利用两种求法确定出所求关系式即可;(2)∵利用(1)的结论,可知(a-b)2=(a+b)2-4ab,把已知数值整体代入即可;∵先利用完全平方公式进行变形,即将a-3a=2两边同时平方,然后求出(a+3a)2的值,从而得出结果.【详解】解:(1)阴影部分的面积可以看作是边长m-n的正方形的面积,也可以看作边长m+n的正方形的面积减去4个小长方形的面积,∵(m-n)2=(m+n)2-4mn,故答案为:(m-n)2=(m+n)2-4mn;(2)∵∵a-b=4,ab=5,且由(1)知(a-b)2=(a+b)2-4ab,∵(a+b)2=16+20=36,∵a+b=6或-6;∵∵a-3a=2,∵(a -3a )2= a 2-6+29a=4, ∵a 2+6+29a =16, ∵(a +3a)2=16, 又a >0,∵a +3a =4. 【点睛】本题考查了完全平方公式的几何背景,整式的混合运算以及分式的求值等知识,熟练掌握运算法则是解本题的关键.10.数学课堂上,老师提出问题:如图,如何在该图形中数出黑色正方形的个数,以下是两位同学的做法:(1)甲同学的做法为:当1n =时,黑色正方形的个数共有14610⨯+=当2n =时,黑色正方形的个数共有24614⨯+=当3n =时,黑色正方形的个数共有34618⨯+=……则在第n 个图形中,黑色正方形的个数共有 (无需化简)(2)乙同学的做法为:当1n =时,黑色正方形的个数共有341210⨯-⨯=当2n =时,黑色正方形的个数共有452314⨯-⨯=当3n =时,黑色正方形的个数共有563418⨯-⨯=……则在第n 个图形中,黑色正方形的个数共有 (无需化简)(3)数学老师及时肯定了两位同学的做法,从而可以得到等式(4)请利用学习过的知识验证(3)问中的等式.【答案】(1)46n +;(2)(2)(3)(1)n n n n ++-+;(3)46(2)(3)(1)n n n n n +=++-+;(4)见解析.【分析】(1)根据所给算式总结规律即可;(2)根据所给算式总结规律即可;(3)根据两种算法都正确可得等式;(4)利用整式混合运算法则对(2)(3)(1)++-+进行化简,即可验证.n n n n【详解】n+,解:(1)由题中算式可知,在第n个图形中,黑色正方形的个数为:46n+;故答案为:46(2)由题中算式可知,在第n个图形中,黑色正方形的个数为:(2)(3)(1)n n n n++-+,故答案为:(2)(3)(1)++-+;n n n n(3)数学老师及时肯定了两位同学的做法,从而可以得到等式:46(2)(3)(1)+=++-+,n n n n n故答案为:46(2)(3)(1)+=++-+;n n n n n(4)∵22(2)(3)(1)32646++-+=+++--=+,n n n n n n n n n n∵该等式成立.【点睛】本题考查了图形类规律探索以及整式混合运算的实际应用,熟练掌握运算法则是验证等式成立的关键.。
七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)
第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。
苏科版七年级数学下册尖子生培优 专题9.11因式分解大题专练(重难点培优30题)(原卷版+解析)
专题9.11因式分解大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•江都区月考)分解因式:(1)x2﹣16;(2)2x2y﹣8xy+8y.2.(2022春•沭阳县月考)因式分解:(1)2x(a﹣b)+3y(b﹣a);(2)(x2+4)2﹣16x2.3.(2022秋•崇川区校级月考)因式分解:(1)3a2﹣18ab+27b2;(2)a2(a﹣b)+4(b﹣a).4.(2022秋•崇川区校级月考)因式分解:(1)3ab3+15a3b;(2)(m﹣1)(m﹣3)+1.(3)3x3﹣6x2y+3xy2;(4)9a2(x﹣y)+4b2(y﹣x).5.(2022春•东台市月考)因式分解:(1)2a2﹣50;(2)x2y﹣2xy+xy2.6.(2022秋•如东县期中)分解因式:(1)﹣4x2+24xy﹣36y2;(2)(2x+y)2﹣(x+2y)2.7.(2022春•滨海县月考)因式分解:(1)18x2﹣50;(2)81x4﹣72x2y2+16y4.8.(2022春•兴化市月考)把下列各式分解因式:(1)4x2﹣64;(2)25(a+b)2﹣9(a﹣b)2.9.(2022秋•射阳县校级月考)因式分解:(1)2x(a﹣4)﹣(4﹣a);(2)3x2﹣27.10.(2022春•高淳区校级期中)分解因式:(1)3ab2﹣6ab+3a;(2)2a2(a﹣b)﹣8(a﹣b).11.(2022春•吴江区校级期中)因式分解:(1)﹣2x3+12x2﹣18x;(2)4a2(a﹣b)+(b﹣a).12.(2022春•盱眙县期中)把下列各式分解因式(1)x2+2xy+y2(2)5x3﹣20x13.(2022春•吴江区期中)分解因式:(1)x2﹣8x+16;(2)4x3﹣16xy2.14.(2022春•相城区校级期中)因式分解:(1)4ab+b;(2)x2﹣3x+2;(3)a2﹣b2+b−1 4;(4)4a4﹣64.15.(2022春•常州期中)因式分解:(1)a3b+ab2;(2)2a(x﹣y)﹣4b(x﹣y);(3)m4﹣1;(4)a4﹣8a2b2+16b4.16.(2022春•钟楼区期中)因式分解:(1)7x2﹣63;(2)(a+b)2+6(a+b)+9;(3)16﹣(2a+3b)2;(4)a4﹣8a2b2+16b4.17.(2022春•吴江区期中)因式分解:(1)3x(a﹣b)﹣y(a﹣b);(2)m2+8m+16;(3)2x3﹣8x;(4)(x2+16y2)2﹣64x2y2.18.(2022春•宜兴市校级期中)把下列各式因式分解:(1)x2﹣4xy+4y2;(2)a3﹣a;(3)x2(x﹣2)+4(2﹣x);(4)(a2+1)2﹣4a2.19.(2022秋•莱州市期中)因式分解:(1)16a2﹣(a2+4)2(2)3a2m2(x﹣y)+27b2n2(y﹣x)20.(2022秋•高昌区校级期中)因式分解:(1)2a(x﹣y)+3b(x﹣y);(2)2a2﹣8;(3)m2+12m+36.21.(2022秋•任城区校级月考)因式分解:(1)x2(x﹣y)+9(y﹣x);(2)﹣3ma2+12ma﹣12m.22.(2022秋•广饶县校级月考)分解因式:(1)x2y﹣y3;(2)(a﹣b)b2+4(b﹣a);(3)x2(x﹣y)2﹣4(y﹣x)2;(4)(x+2)(x+3)+x2﹣4.23.(2022秋•东营区校级月考)分解因式:(1)4a(b+c)2﹣4a2(b+c)+a3;(2)(x2+4)2﹣16x2.24.(2022秋•上蔡县校级月考)因式分解:(1)2ax2﹣8a;(2)﹣x2y+6xy﹣9y;(3)(a﹣b)(a﹣4b)+ab.25.(2022秋•丰城市期中)因式分解:(1)n2(m﹣2)+(2﹣m);(2)4a2﹣b2﹣4a+1.26.(2022秋•越秀区校级期中)因式分解:(1)因式分解:x3﹣9x+8;(2)因式分解:2b3﹣b2﹣6b+5a﹣10ab+3;(3)因式分解:(x2﹣x﹣3)(x2﹣x﹣5)﹣3.27.(2022秋•宛城区校级月考)因式分解:(1)﹣4(xy+1)2+16(1﹣xy)2;(2)(x2﹣3)2+2(3﹣x2)+1;(3)x2﹣ax﹣bx+ab.28.(2022•北碚区校级开学)因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3)9(x+2y)2﹣4(x﹣y)2;(4)a2+4ab﹣1+4b2.29.(2022春•金牛区期中)因式分解:(1)2x2y﹣8xy;(2)4a2﹣9b2;(3)m2﹣36+n2﹣2mn.30.(2022春•江阴市期中)因式分解(1)a2﹣6a+9;(2)2x2﹣8;(3)x2﹣y2﹣x+y.专题9.11因式分解大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•江都区月考)分解因式:(1)x2﹣16;(2)2x2y﹣8xy+8y.【分析】(1)直接利用平方差公式即可;(2)先提公因式2y,再利用完全平方公式即可进行因式分解.【解答】解:(1)原式=(x+4)(x﹣4);(2)原式=2y(x2﹣4x+4)=2y(x﹣2)2.2.(2022春•沭阳县月考)因式分解:(1)2x(a﹣b)+3y(b﹣a);(2)(x2+4)2﹣16x2.【分析】(1)原式变形后,提取公因式即可;(2)原式利用平方差公式,以及完全平方公式分解即可.【解答】解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.3.(2022秋•崇川区校级月考)因式分解:(1)3a2﹣18ab+27b2;(2)a2(a﹣b)+4(b﹣a).【分析】(1)先提公因式3,再利用完全平方公式进行因式分解即可;(2)先提公因式(a﹣b),再利用平方差公式即可进行因式分解.【解答】解:(1)原式=3(a2﹣6ab+9b2)=3(a﹣3b)2;(2)原式=a2(a﹣b)﹣4(a﹣b)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).4.(2022秋•崇川区校级月考)因式分解:(1)3ab3+15a3b;(2)(m﹣1)(m﹣3)+1.(3)3x3﹣6x2y+3xy2;(4)9a2(x﹣y)+4b2(y﹣x).【分析】(1)提公因式法,因式分解;(2)先化简,再用公式法分解因式;(3)先提公因式,再利用公式法因式分解;(4)先提公因式,再利用公式法因式分解;【解答】解:(1)原式=3ab(b2+5a2);(2)原式=m2﹣4m+4=(m﹣2)2;(3)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2;(4)=(9a2﹣4b2)(x﹣y)=(3a﹣2b)(3a+2b)(x﹣y).5.(2022春•东台市月考)因式分解:(1)2a2﹣50;(2)x2y﹣2xy+xy2.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式即可.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=xy(x﹣2+y).6.(2022秋•如东县期中)分解因式:(1)﹣4x2+24xy﹣36y2;(2)(2x+y)2﹣(x+2y)2.【分析】(1)直接提取公因式﹣4,进而利用完全平方公式分解因式即可;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)原式=﹣4(x2﹣6xy+9y2)=﹣4(x﹣3y)2;(2)原式=(2x+y+x+2y)[2x+y﹣(x+2y)]=(3x+3y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).7.(2022春•滨海县月考)因式分解:(1)18x2﹣50;(2)81x4﹣72x2y2+16y4.【分析】(1)直接提取公因式2,再利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.【解答】解:(1)原式=2(9x2﹣25)=2(3x+5)(3x﹣5);(2)原式=(9x2﹣4y2)2=[(3x+2y)(3x﹣2y)]2=(3x+2y)2(3x﹣2y)2.8.(2022春•兴化市月考)把下列各式分解因式:(1)4x2﹣64;(2)25(a+b)2﹣9(a﹣b)2.【分析】(1)先提取公因式,再套用平方差公式;(2)先利用平方差公式,再提取公因式.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)25(a+b)2﹣9(a﹣b)2.=[5(a+b)+3(a﹣b)][5(a+b)﹣3(a﹣b)]=(8a+2b)(2a+8b)=4(4a+b)(a+4b).9.(2022秋•射阳县校级月考)因式分解:(1)2x(a﹣4)﹣(4﹣a);(2)3x2﹣27.【分析】(1)利用提公因式法,进行分解即可解答;(2)先提公因式,再利用平方差公式继续分解即可解答.【解答】解:(1)2x(a﹣4)﹣(4﹣a)=2x(a﹣4)+(a﹣4)=(a﹣4)(2x+1);(2)3x2﹣27=3(x2﹣9)=3(x+3)(x﹣3).10.(2022春•高淳区校级期中)分解因式:(1)3ab2﹣6ab+3a;(2)2a2(a﹣b)﹣8(a﹣b).【分析】(1)先提取公因式,再按完全平方公式分解因式;(2)先提取公因式,再按平方差公式分解因式.【解答】解:(1)3ab2﹣6ab+3a=3a(b2﹣2b+1)=3a(b﹣1)2;(2)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2).11.(2022春•吴江区校级期中)因式分解:(1)﹣2x3+12x2﹣18x;(2)4a2(a﹣b)+(b﹣a).【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先提公因式,再利用平方差公式继续分解即可解答.【解答】解:(1)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2;(2)4a2(a﹣b)+(b﹣a)=(a﹣b)(4a2﹣1)=(a﹣b)(2a+1)(2a﹣1).12.(2022春•盱眙县期中)把下列各式分解因式(1)x2+2xy+y2(2)5x3﹣20x【分析】(1)根据公式法进行因式分解即可;(2)先提取公因式,再用公式法进行因式分解.【解答】解:(1)x2+2xy+y2=(x+y)2;(2)5x3﹣20x=5x(x2﹣4)=5x(x﹣2)(x+2).13.(2022春•吴江区期中)分解因式:(1)x2﹣8x+16;(2)4x3﹣16xy2.【分析】(1)原式利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(x﹣4)2;(2)原式=4x(x2﹣4y2)=4x(x+2y)(x﹣2y).14.(2022春•相城区校级期中)因式分解:(1)4ab+b;(2)x2﹣3x+2;(3)a2﹣b2+b−1 4;(4)4a4﹣64.【分析】(1)用提取公因式法因式分解即可;(2)用十字相乘法因式分解即可;(3)先分组,再用公式法因式分解即可;(4)先提取公因式,再用公式法因式分解即可.【解答】解:(1)4ab+b=b(4a+1);(2)x2﹣3x+2=(x﹣1)(x﹣2);(3)a2﹣b2+b−1 4=a2﹣(b2﹣b+1 4)=a2﹣(b−1 2)2=(a+b−12)(a﹣b+12);(4)4a4﹣64=4(a4﹣16)=4(a2+4)(a2﹣4)=4(a2+4)(a+2)(a﹣2).15.(2022春•常州期中)因式分解:(1)a3b+ab2;(2)2a(x﹣y)﹣4b(x﹣y);(3)m4﹣1;(4)a4﹣8a2b2+16b4.【分析】(1)提取公因式分解因式;(2)提取公因式分解因式;(3)先用平方差公式分解因式,再用平方差公式分解因式,分解因式要彻底;(4)先用完全平方公式,再用平方差公式分解因式.【解答】解:(1)a3b+ab2;=ab(a2+b);(2)2a(x﹣y)﹣4b(x﹣y)=2(x﹣y)(a﹣2b);(3)m4﹣1;=(m2+1)(m2﹣1)=(m2+1)(m+1)(m﹣1);(4)a4﹣8a2b2+16b4=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.16.(2022春•钟楼区期中)因式分解:(1)7x2﹣63;(2)(a+b)2+6(a+b)+9;(3)16﹣(2a+3b)2;(4)a4﹣8a2b2+16b4.【分析】(1)原式提取公因式7,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可;(3)原式利用平方差公式分解即可;(4)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=7(x2﹣9)=7(x+3)(x﹣3);(2)原式=(a+b+3)2;(3)原式=[4+(2a+3b)][4﹣(2a+3b)]=(4+2a+3b)(4﹣2a﹣3b);(4)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.17.(2022春•吴江区期中)因式分解:(1)3x(a﹣b)﹣y(a﹣b);(2)m2+8m+16;(3)2x3﹣8x;(4)(x2+16y2)2﹣64x2y2.【分析】(1)利用提公因式法进行分解,即可解答;(2)利用完全平方公式进行分解,即可解答;(3)先提公因式,再利用平方差公式继续分解即可解答;(4)先利用平方差公式,再利用完全平方公式继续分解,即可解答.【解答】解:(1)3x(a﹣b)﹣y(a﹣b)=(a﹣b)(3x﹣y);(2)m2+8m+16=(m+4)2;(3)2x3﹣8x=2x(x2﹣4)=2x(x+2)(x﹣2);(4)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.18.(2022春•宜兴市校级期中)把下列各式因式分解:(1)x2﹣4xy+4y2;(2)a3﹣a;(3)x2(x﹣2)+4(2﹣x);(4)(a2+1)2﹣4a2.【分析】(1)利用完全平方公式进行分解即可解答;(2)先提公因式,再利用平方差公式继续分解即可解答;(3)先提公因式,再利用平方差公式继续分解即可解答;(4)先利用平方差公式,再利用完全平方公式继续分解即可解答.【解答】解:(1)x2﹣4xy+4y2=(x﹣2y)2;(2)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(3)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x﹣2)(x﹣2)(x+2)=(x﹣2)2(x+2);(4)(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.19.(2022秋•莱州市期中)因式分解:(1)16a2﹣(a2+4)2(2)3a2m2(x﹣y)+27b2n2(y﹣x)【分析】(1)先利用平方差公式,再利用完全平方公式进行解答即可;(2)先提公因式3(x﹣y),再利用平方差公式即可.【解答】解:(1)原式=(4a+a2+4)(4a﹣a2﹣4)=﹣(4a+a2+4)(﹣4a+a2+4)=﹣(a+2)2(a﹣2)2;(2)原式=3a2m2(x﹣y)﹣27b2n2(x﹣y)=3(x﹣y)(a2m2﹣9b2n2)=3(x﹣y)(am+3bn)(am﹣3bn).20.(2022秋•高昌区校级期中)因式分解:(1)2a(x﹣y)+3b(x﹣y);(2)2a2﹣8;(3)m2+12m+36.【分析】(1)直接提取公因式x﹣y分解因式即可;(2)直接提取公因式2,再利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式即可.【解答】解:(1)2a(x﹣y)+3b(x﹣y)=(x﹣y)(2a+3b);(2)2a2﹣8;=2(a2﹣4)=2(a﹣2)(a+2);(3)m2+12m+36=(m+6)2.21.(2022秋•任城区校级月考)因式分解:(1)x2(x﹣y)+9(y﹣x);(2)﹣3ma2+12ma﹣12m.【分析】(1)将原式变形,进而提取公因式(x﹣y),再利用平方差公式分解因式即可;(2)直接提取公因式﹣3m,再利用完全平方公式分解因式即可.【解答】解:(1)x2(x﹣y)+9(y﹣x)=x2(x﹣y)﹣9(x﹣y)=(x﹣y)(x2﹣9)=(x﹣y)(x+3)(x﹣3);(2)﹣3ma2+12ma﹣12m=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2.22.(2022秋•广饶县校级月考)分解因式:(1)x2y﹣y3;(2)(a﹣b)b2+4(b﹣a);(3)x2(x﹣y)2﹣4(y﹣x)2;(4)(x+2)(x+3)+x2﹣4.【分析】(1)先提取公因式,再用公式法进行因式分解;(2)先提取公因式,再用公式法进行因式分解;(3)先提取公因式,再用公式法进行因式分解;(4)先将x2﹣4因式分解,再提取公因式即可.【解答】解:(1)x2y﹣y3=y(x2﹣y2)=y(x﹣y)(x+y);(2)(a﹣b)b2+4(b﹣a)=(a﹣b)(b2﹣4)=(a﹣b)(b﹣2)(b+2);(3)x2(x﹣y)2﹣4(y﹣x)2=(x﹣y)2(x2﹣4)=(x﹣y)2(x﹣2)(x+2);(4)(x+2)(x+3)+x2﹣4=(x+2)(x+3)+(x﹣2)(x+2)=(x+2)(2x+1).23.(2022秋•东营区校级月考)分解因式:(1)4a(b+c)2﹣4a2(b+c)+a3;(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式,再用公式法进行因式分解;(2)用公式法进行因式分解即可.【解答】解:(1)4a(b+c)2﹣4a2(b+c)+a3;=a[4(b+c)2﹣4a(b+c)+a2]=a(2b+2c﹣a)2;(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.24.(2022秋•上蔡县校级月考)因式分解:(1)2ax2﹣8a;(2)﹣x2y+6xy﹣9y;(3)(a﹣b)(a﹣4b)+ab.【分析】(1)先提公因式2a,再利用平方差公式即可;(2)先提公因式﹣y,再利用完全平方公式即可;(3)先利用多项式乘多项式进行计算后,再利用完全平方公式即可.【解答】解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(3)原式=a2﹣4ab﹣ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.25.(2022秋•丰城市期中)因式分解:(1)n2(m﹣2)+(2﹣m);(2)4a2﹣b2﹣4a+1.【分析】(1)先提取公因式,再用平方差公式分解因式;(2)分组后用完全平方公式分解因式,再用平方差公式分解因式;【解答】解:(1)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1);(2)4a2﹣b2﹣4a+1=(4a2﹣4a+1)﹣b2=(2a﹣1)2﹣b2=(2a+b﹣1)(2a﹣b﹣1).26.(2022秋•越秀区校级期中)因式分解:(1)因式分解:x3﹣9x+8;(2)因式分解:2b3﹣b2﹣6b+5a﹣10ab+3;(3)因式分解:(x2﹣x﹣3)(x2﹣x﹣5)﹣3.【分析】(1)配上x﹣x,再利用提公因式法、公式法和分组分解法进行因式分解即可;(2)利用分组分解法将原式化为(2b3﹣b2)+(5a﹣10ab)﹣(6b﹣3),再利用提公因(3)设y=x2﹣x,将原式化为(y﹣3)(y﹣5)﹣3,再整理得y2﹣8y+12,再利用十字相乘法分解为(y﹣2)(y﹣6),再将y=x2﹣x代入后,利用十字相乘法可得答案.【解答】解:(1)原式=x3﹣x+x﹣9x+8=(x3﹣x)+(x﹣9x)+8=(x3﹣x)﹣8x+8=x(x2﹣1)﹣8(x﹣1)=x(x+1)(x﹣1)﹣8(x﹣1)=(x﹣1)(x2+x﹣8);(2)原式=(2b3﹣b2)+(5a﹣10ab)﹣(6b﹣3)=b2(2b﹣1)﹣5a(2b﹣1)﹣3(2b﹣1)=(2b﹣1)(b2﹣5a﹣3);(3)设y=x2﹣x,则原式=(y﹣3)(y﹣5)﹣3=y2﹣8y+12=(y﹣2)(y﹣6)=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3).27.(2022秋•宛城区校级月考)因式分解:(1)﹣4(xy+1)2+16(1﹣xy)2;(2)(x2﹣3)2+2(3﹣x2)+1;(3)x2﹣ax﹣bx+ab.【分析】(1)先根据平方差公式分解,再提公因式即可;(2)先将所求式进行变形,根据完全平方公式分解,最后利用平方差公式分解即可;(3)根据二二分组法解答即可.【解答】解:(1)﹣4(xy+1)2+16(1﹣xy)2=[4(1﹣xy)]2﹣[2(xy+1)]2=(4﹣4xy+2xy+2)(4﹣4xy﹣2xy﹣2)=(6﹣2xy)(2﹣6xy)=4(3﹣xy)(1﹣3xy);(2)(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(3)x2﹣ax﹣bx+ab=(x2﹣ax)﹣(bx﹣ab)=x(x﹣a)﹣b(x﹣a)=(x﹣a)(x﹣b).28.(2022•北碚区校级开学)因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3)9(x+2y)2﹣4(x﹣y)2;(4)a2+4ab﹣1+4b2.【分析】(1)运用提公因式法进行因式分解.(2)先提公因式,再运用十字相乘法进行因式分解.(3)逆用平方差公式,再化简(4)先分组,再运用公式法进行因式分解.【解答】解:(1)8ab+2a=2a(4b+1).(2)x2y+2xy﹣15y=y(x2+2x﹣15)=y(x+5)(x﹣3).(3)9(x+2y)2﹣4(x﹣y)2=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(3x+6y+2x﹣2y)(3x+6y﹣2x+2y)=(5x+4y)(x+8y).(4)a2+4ab﹣1+4b2.=(a2+4ab+4b2)﹣1=(a+2b)2﹣1=(a+2b+1)(a+2b﹣1).29.(2022春•金牛区期中)因式分解:(1)2x2y﹣8xy;(2)4a2﹣9b2;(3)m2﹣36+n2﹣2mn.【分析】(1)利用提公因式法分解;(2)利用平方差公式分解;(3)先重新分组,再套用完全平方公式,最后利用平方差公式分解.【解答】解:(1)原式=2xy(x﹣4);(2)原式=(2a+3b)(2a﹣3b);(3)原式=m2﹣2mn+n2﹣36=(m﹣n)2﹣62=(m﹣n+6)(m﹣n﹣6).30.(2022春•江阴市期中)因式分解(1)a2﹣6a+9;(2)2x2﹣8;(3)x2﹣y2﹣x+y.【分析】(1)利用完全平方公式,进行分解即解答;(2)先提公因式,再利用平方差公式继续分解即可解答;(3)把前两项分为一组,后两项分为一组,再进行分解即可解答.【解答】解:(1)a2﹣6a+9=(a﹣3)2;(2)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(3)x2﹣y2﹣x+y=(x2﹣y2)﹣(x﹣y)=(x+y)(x﹣y)﹣(x﹣y)=(x﹣y)(x+y﹣1).。
七年级数学因式分解练习题及答案
七年级数学因式分解练习题及答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是4.多项式x+x提取公因式后剩下的因式是A. x+1 C. x D. x+15.下列变形错误的是=- B.= - C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –+y +y7.下列分解因式错误的是A. 1-16a=B. x-x=x=8.下列多项式中,能用公式法分解因式的是-xy二、填空+ab-ab=ab.+14a-49ab=-7a.+2=___________=____________.+b==___________=________22222B. x+xyC. x-y D. x+y2222+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①4x316x224x②8a2123③2am14am2am1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗说明理由。
参考答案一、选择1. C . B .C.C. C7. B . C二、填空9. a+b-1; +7b11.12.13. b-a14. .解答题18. 解:①原式=-4x211,17. -142②原式=8a+12=4=4 ③原式=2a④原式=2=2.⑤原式==⑥原式=-4+4=22m-12232219. 解:2a+2b-2c=2=2×3=6.20、解:2x-Ax+B=2=x+8x-2所以A=-8,B=-2.21、解:2x+mx-1==x-x-1所以mx=-x 即m=-1.22. 解:ab+ab-a-b=ab-=把a+b=5,ab=7代入上式,原式=30.23. 解:将ab-8ab+4a+b+4=0变形得ab-4ab+4+4a-4ab+b=0;+=0所以ab=2,2a=b解得:a=±1,b=±2.所以ab=2或ab= -2.24. 解:99-99=99所以99-99能被99整除,结果为99-1.224初一数学上因式分解练习题精选一、填空:1、若x22x16是完全平方式,则m的值等于_____。
2022-2023学年初一数学第二学期培优专题训练31 十字相乘法因式分解
专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-. (2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+- 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-. 4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+- 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-;(4)231914x x --. 6.分解因式: (1)2 1016x x -+; (2)2 23x x --.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________. 8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++ (2)请用上述方法解方程:2340x x --= 10.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)22328x xy y -- (6)225314x xy y -++ 11.分解因式: (1)2914x x ++ (2)212x x -- (3)2295x x +- (4)2376x x --(5)28103x x --- (6)210275x x --- 12.分解因式: (1)22914x xy y ++ (2)2212x xy y -- (3)22295x xy y +- (4)22376x xy y -- (5)228103x xy y ++ (6)2210275x xy y ++ 13.分解因式: (1)2710x x -+ (2)2918x x -+ (3)256x x -- (4)2922x x -- (5)232x x +- (6)234x x +- (7)2122512x x -+- (8)2310x x --+ (9)22x y x y --- (10)321x x x +++ (11)22494a a b +-+ (12)22424a b a b--+专题31 十字相乘法因式分解【例题讲解】(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式: ① 2257x x +-=__________;② 22672x xy y -+=__________. (3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq np b +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题: ① 分解因式2235294x xy y x y +-++-=__________;② 若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.【解答】(1)首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即63-=⨯(-2),所以26x x +-=(3)(2)x x +-.故答案为:(3)(2)x x +-.(2)①把二次项系数2写成212=⨯,717-=-⨯,满足17(1)25⨯+-⨯=,所以2257x x +-=(27)(1)x x +-.故答案为:(27)(1)x x +-.②把2x 项系数6写成623=⨯,把2y 项系数2写成212=-⨯-(),满足22(1)37-⨯+-⨯=-, 所以22672x xy y -+=(2)(32)x y x y --.故答案为:(2)(32)x y x y --.(3)①把2x 项系数3写成313=⨯,把2y 项系数-2写成221-=⨯-(),常数项-4写成41-=-⨯()4满足条件,所以2235294x xy y x y +-++-=(34)(21)x y x y -++-.②把2x 项系数1写成111=⨯,把2y 项系数-18写成1829-=-⨯,常数项-24写成243(-=⨯-8)或248-=-⨯()3满足条件,所以m =39(2)(8)43⨯+-⨯-=或m =9(8)(2)378⨯-+-⨯=-,故m 的值为43或-78.【综合解答】1.阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写. 这样,我们就可以得到:223(1)(3)x x x x +-=-+. 利用这种方法,将下列多项式分解因式: (1)2710x x ++=__________; (2)223x x --=__________; (3)2712y y -+=__________; (4)2718x x +-=__________. 【答案】(1)()()25x x ++ (2)()()31x x -+ (3)()()34y y -- (4)()()92x x +-【分析】(1)仿照题意求解即可; (2)仿照题意求解即可; (3)仿照题意求解即可; (4)仿照题意求解即可.【解答】(1)解:根据题意可知()()271025x x x x ++=++ (2)解:根据题意可知()()22331x x x x --=-+(3)解:根据题意可知()()271234y y y y =---+ (4)解:根据题意可知()()271892x x x x +-=+-【点评】本题主要考查分解因式,正确理解题意是解题的关键.2.根据多项式乘法法则22()()()x p x q x px qx pq x p q x pq ++=+++=+++,因此2()()()x p q x pq x p x q +++=++,这种因式分解的方法称为十字相乘法,按照上面方法对下列式子进行因式分解(1)2710x x ++ (2)2718x x +- (3)2252x x -+ (4)262y y -- (5)2232253x xy y x y -+-+-【答案】(1) (x+2)(x+5);(2) (x+9)(x-2);(3) (2x-1)(x-2);(4) (2y+1)(3y-2);(5)(x-2y+1)(x-y-3). 【分析】(1)观察可知10=2×5,7=2+5,由此进行因式分解即可; (2)观察可知—18=-2×9,7=-2+9,由此进行因式分解即可;(3)观察可知二次项系数2=1×2,常数项2=(-1)×(-2),一次项系数-5=1×(-1)+2×(-2),据此进行因式分解即可;(4)观察可知二次项系数6=2×3,常数项-2=1×(-2),一次项系数-1=2×(-2)+3×1,据此进行因式分解即可;(5)原式前三项利用材料中的方法进行分解,然后变形为(x-2y)(x-y)+x-y-3x+6y-3,据此利用提公因式法继续进行分解即可得. 【解答】(1)原式=(x+2)(x+5); (2)原式=(x+9)(x-2); (3)原式=(2x-1)(x-2); (4)原式=(2y+1)(3y-2); (5)原式=(x-2y)(x-y)+x-y-3x+6y-3 =(x-2y)(x-y)+(x-y)-(3x-6y+3) =(x-y)(x-2y+1)-3(x-2y+1) =(x-2y+1)(x-y-3).【点评】本题考查了十字相乘法分解因式,分组分解法分解因式,提公因式法分解因式,其中第(5)小题有一定的难度,读懂材料中的解题方法是解题的关键. 3.运用十字相乘法分解因式: (1)232x x --; (2)210218x x ++; (3)22121115x xy y --; (4)2()3()10x y x y +-+-.【答案】(1)(32)(1)x x +-;(2)(21)(58)x x ++;(3)(35)(43)x y x y -+;(4)(5)(2)x y x y +-++. 【分析】(1)直接运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可;(2)ax 2+bx+c (a≠0)型的式子的因式分解的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一次项b ,那么可以直接写成结果:ax 2+bx+c=(a 1x+c 1)(a 2x+c 2); (3)同(2);(4)把(x y +)当作一个整体,运用x 2+(p+q )x+pq=(x+p )(x+q )分解因式得出即可 【解答】(1)232(32)(1)x x x x --=+-. (2)210218(21)(58)x x x x ++=++. (3)22121115(35)(43)x xy y x y x y --=-+.(4)2()3()10[()5][()2](5)(2)x y x y x y x y x y x y +-+-=+-++=+-++.【点评】本题主要考查了十字相乘法分解因式;熟练掌握十字相乘法分解因式,正确分解常数项是解题关键.4.用十字相乘法分解下列因式. (1)276x x -+ (2)2215y y -- (3)231110x x -+ (4)226a ab b -- (5)22121115x xy y -- (6)()()2310x y x y +-+-【答案】(1)()()61x x --;(2)()()53y y -+;(3)()()235x x --;(4)()()32a b a b -+;(5)()()4335x y x y +-;(6)()()52x y x y +-++【分析】(1)把6分成-6与-1的积,利用十字相乘法分解因式得出答案即可; (2)把-15分成-5与3的积,利用十字相乘法分解因式得出答案即可;(3)把3分成1与的3积,把10分成-2与-5的积,利用十字相乘法分解因式得出答案即可; (4)把b 看作常数,把26b -分成-3b 与2b 的积,利用十字相乘法分解因式得出答案即可; (5)把y 看作常数,把12分成4与3的积,把215y -分成3y 与-5y 的积,利用十字相乘法分解因式得出答案即可;(6)把()x y +看作一个整体,把-10分成-5与2的积,利用十字相乘法分解因式得出答案即可. 【解答】解:(1)276x x -+ =()()61x x -- (2)2215y y -- =()()53y y -+ (3)231110x x -+ =()()235x x -- (4)226a ab b -- =()()32a b a b -+ (5)22121115x xy y -- =()()4335x y x y +- (6)()()2310x y x y +-+- =()()52x y x y +-++【点评】此题主要考查了十字相乘法分解因式,正确分解二次项系数及常数项是解题关键.有时要把某个字母看作常数或把某个多项式看作一个整体. 5.分解因式 (1)2412x x --; (2)245x x --; (3)3222620x x y xy -+-; (4)231914x x --. 【答案】(1)()()62x x -+ (2)()()51x x -+ (3)()()252x x y x y -+- (4)()()732x x -+【分析】(1)利用十字相乘法分解因式即可; (2)利用十字相乘法分解因式即可;(3)首先提取公因式,然后再用十字相乘法分解因式即可; (4)利用十字相乘法分解因式即可. 【解答】(1)解:2412x x --()()26262x x =+-++-⨯ ()()62x x =-+;(2)解:245x x --()()51x x =-+;(3)解:3222620x x y xy -+-()222310x x xy y =-+-()()252x x y x y =-+-;(4)解:231914x x --()()732x x =-+.【点评】本题考查了因式分解,解本题的关键在熟练掌握利用十字相乘法分解因式.6.分解因式:(1)2 1016x x -+;(2)2 23x x --.【答案】(1)()()82x x --(2)()()31x x -+【分析】(1)利用十字相乘法即可得出答案;(2)利用十字相乘法即可得出答案.【解答】(1)解:2 1016x x -+()()82x x =--;(2)解:2 23x x --()()31x x =-+.【点评】本题考查了十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.7.在因式分解的学习中我们知道对二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++,用上述方法将下列各式因式分解:(1)2256x xy y +-=__________.(2)()224236x a x a a -+++=__________.(3)()2256x b x a b a ----=__________.(4)()22018201720191x x -⨯-=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成()()32a a --+⎡⎤⎣⎦,然后根据例题分解即可;(3)先化简,将226ab b a +-改写()()32b a b a -+--,然后根据例题分解即可;(4)将20172019⨯改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=()2(6)6x y y x y y +-++-⋅=(x -y )(x +6y );(2)解:原式=()()()23232x a a x a a +--++--+⎡⎤⎡⎤⎣⎦⎣⎦=(x -3a )(x -a -2);(3)解:原式=22256x bx ab b a -++-=()()2532x bx b a b a -+-+=()()()()2+3+232x b a b a x b a b a -+--+-+--⎡⎤⎣⎦=(x +a -3b )(x -a -2b );(4)解:原式=()()()220182018-12018+11x x --=()22220182018-11x x --=()2222018+120181x x -- =(20182x +1)(x -1) .【点评】本题考查了十字相乘法因式分解,熟练掌握二次三项式()2x a b x ab +++可用十字相乘法方法得出()()()2x a b x ab x a x b +++=++是解答本题的关键.8.将下列各式分解因式:(1)256x x --; (2)21016x x -+; (3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)直接利用十字相乘法分解因式即可;(2)直接利用十字相乘法分解因式即可;(3)直接利用十字相乘法分解因式即可.【解答】解:(1)因为78x x ⨯-即78x x x -=-, 所以:原式=(7)(8)x x +-;(2)因为28x x ⨯--即2810x x x --=-, 所以:原式=(2)(8)x x --;(3)22103(310)x x x x --=-+-,因为52x x ⨯-即523x x x -=, 所以:原式=(5)(2)x x -+-.【点评】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上. 9.由多项式乘法:2()()()x a x b x a b x ab ++=+++,将该式从右到左进行运算,即可得到“十字相乘法”进行因式分解的公式:2()()()x a b x ab x a x b +++=++.如:分解因式:2256(23)23(2)(3)x x x x x x ++=+++⨯=++.(1)分解因式:268(___)(___)x x x x ++=++(2)请用上述方法解方程:2340x x --= 【答案】(1)2,4(或4,2);(2)14x =,21x =-【分析】(1)根据“十字相乘法”进行因式分解,即可得到答案;(2)先利用“十字相乘法”进行因式分解,进而即可求解.【解答】(1)()()26824x x x x ++=++故答案为:2,4(或4,2);(2)∵234(4)(1)0x x x x --=-+=,40x ∴-=或10x +=,解得:14x =,21x =-.【点评】本题主要考查分解因式以及解一元二次方程,熟练掌握“十字相乘法”进行因式分解,是解题的关键.10.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)22328x xy y --(6)225314x xy y -++【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()234x y x y -+;(6)()()257x y x y --+【分析】利用十字相乘法分解即可.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)22328x xy y --=()()234x y x y -+;(6)225314x xy y -++=()225314x xy y ---=()()257x y x y --+【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.11.分解因式:(1)2914x x ++(2)212x x --(3)2295x x +-(4)2376x x --(5)28103x x ---(6)210275x x --- 【答案】(1)()()27x x ++;(2)()()34x x +-;(3)()()215-+x x ;(4)()()323x x +-;(5)()()2143x x -++;(6)()()5125x x -++【分析】利用十字相乘法分解即可.【解答】解:(1)2914x x ++=()()27x x ++;(2)212x x --=()()34x x +-;(3)2295x x +-=()()215-+x x ;(4)2376x x --=()()323x x +-;(5)28103x x ---=()28103x x -++=()()2143x x -++;(6)210275x x ---=()210275x x -++ =()()5125x x -++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.12.分解因式:(1)22914x xy y ++(2)2212x xy y --(3)22295x xy y +-(4)22376x xy y --(5)228103x xy y ++(6)2210275x xy y ++ 【答案】(1)()()27x y x y ++;(2)()()43x y x y -+;(3)()()52x y x y +-;(4)()()332x y x y -+;(5)()()243x y x y ++;(6)()()255x y x y ++【分析】利用十字相乘法分解.【解答】解:(1)22914x xy y ++=()()27x y x y ++;(2)2212x xy y --=()()43x y x y -+;(3)22295x xy y +-=()()52x y x y +-;(4)22376x xy y --=()()332x y x y -+;(5)228103x xy y ++=()()243x y x y ++;(6)2210275x xy y ++=()()255x y x y ++【点评】本题考查了因式分解,熟练掌握十字相乘法是解此题的关键.13.分解因式:(1)2710x x -+(2)2918x x -+(3)256x x --(5)232x x +-(6)234x x +-(7)2122512x x -+-(8)2310x x --+(9)22x y x y ---(10)321x x x +++(11)22494a a b +-+(12)22424a b a b --+ 【答案】(1)()()25x x --;(2)()()36x x --;(3)()()16+-x x ;(4)()()211x x +-;(5)()()132x x +-;(6)()()134x x -+;(7)()()3443x x ---;(8)()()235x x -+-;(9)()()1x y x y +--;(10)()()211x x ++;(11)()()2323a b a b +++-;(12)()()222a b a b +--【分析】(1)(2)(3)(4)(5)(6)(7)(8)利用十字相乘法分解;(9)(10)(11)(12)利用分组分解法分解.【解答】解:(1)2710x x -+=()()25x x --;(2)2918x x -+=()()36x x --;(3)256x x --=()()16+-x x ;(4)2922x x --=()()211x x +-;(5)232x x +-=()()132x x +-;(6)234x x +-=()()134x x -+;(7)2122512x x -+-=()2122512x x --+=()()3443x x ---;(8)2310x x --+=()2310x x -+-=()()235x x -+-;=()()()x y x y x y +--+ =()()1x y x y +--; (10)321x x x +++ =()()211x x x +++=()()211x x ++;(11)22494a a b +-+ =22449a a b ++- =()2229a b +-=()()2323a b a b +++- (12)22424a b a b --+ =()22424a b a b --- =()()()2222a b a b a b +--- =()()222a b a b +--【点评】本题考查了因式分解,解题的关键是根据所给代数式的形式灵活选择方法.。
因式分解培优题(超全面、详细分类)
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。
因式分解培优题(超全面、详细分类)
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。
2022-2023学年初一数学第二学期培优专题训练27 因式分解计算题
专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.3.分解因式:(1)249x y y -(2)222416a a +-()4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+-5.因式分解:(1)2449x -(2)22242x xy y -+6.因式分解:(1)236x -;(2)2288x y xy y -+.7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a8.因式分解:(1)2464x -(2)244x y xy y -+9.因式分解:(1)323x y x -;(2)22(2)9a b b --.10.因式分解:(1)2249m n -;(2)22396a b ab b -+11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x12.因式分解(1)296x y xy y ++(2)416a -.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-14.因式分解:(1)2269x xy y ++;(2)34m n mn -.15.因式分解:(1)3269x x x -+(2)416a -16.因式分解(1)2288x x -+(2)()()216a x y y x -+-17.因式分解:(1)2416a -;(2)222ax axy ay -+.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++21.因式分解(1)2416x -(2)2288a b ab b -+22.因式分解:(1)3269a a a ++(2)222(4)16x x +-23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--24.因式分解:(1)228x -(2)3222x x y xy -+25.分解因式:(1)2116a -(2)32232xy x y x y -+26.把下列各式分解因式:(1)2218a -(2)2484a a -+27.因式分解:(1)29x -(2)2242x y xy y -+28.因式分解(1)2416m -(2)2232x y xy y -+29.因式分解:(1)()24a b +-(2)22369ab a b b --(1)224x x -;(2)212123a a -+.31.分解因式:(1)241x -;(2)3244m m m -+.32.因式分解:(1)a 2-9;(2)2x 2-12x +1833.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)235.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.36.因式分解:(1)2232x -(2)3223242x y x y xy ++37.因式分解:(1)2a 2﹣2(2)2441x x ++38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b ---39.分解因式:(1)321025a a a ++(2)()()126t t ++-(1))()(2x y y x x -+-(2)223242x y xy y -+.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +- 44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y +45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )47.因式分解(1)24ab a -(2)4224816x x y y -+48.因式分解(1)21025m m -+(2)22222(4)16x y x y +-49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3(1)2a a++;441 (2)2x-.416专题27 因式分解最新期中考题特训50道1.因式分解:(1)225x -;(2)244a b ab b -+. 【答案】(1)()()55+-x x(2)()22b a -【分析】(1)根据平方差公式因式分解即可求解;(2)先提公因式b ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()()55+-x x ;(2)解:原式=()244b a a -+ ()22b a =-. 【点评】本题考查了公式法和提公因式法进行因式分解,掌握因式分解的方法是解题的关键.2.因式分解(1)324a ab -;(2)()()2x a b b a ---.【答案】(1)()()22a a b a b +-(2)()()21a b x -+【分析】(1)先提公因式,再利用平方差公式分解因式即可;(2)先将原式变形,再提公因式分解因式即可.(1)解:324a ab -()224a a b =-()()22a a b a b =+-.(2)解:()()2x a b b a ---()()2x a b a b =-+-()()21a b x =-+.【点评】本题考差了多项式分解因式,熟练掌握提公因式法和公式法分解因式是解答本题的关键.3.分解因式:(1)249x y y -(2)222416a a +-() 【答案】(1)(23)(23)y x x +-(2)()()2222a a +-【分析】(1)先提公因式y ,再利用平方差公式即可直接分解;(2)首先利用平方差公式因式分解,然后再利用完全平方公式因式分解即可;(1) 249x y y - =2(49)y x -=(23)(23)y x x +-(2)222416a a +-()=()()224444a a a a ⎡⎤⎡⎤+++-⎣⎦⎣⎦=()()224444a a a a ++-+=()()2222a a +-【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.因式分解:(1)3222x x y xy -+(2)()()2141m m m -+- 【答案】(1)()2x x y -(2)()()()221m m m +--【分析】(1)直接提取公因式x ,再利用完全平方公式分解因式得出答案(2)直接提取公因式(1)m -,再利用平方差公式分解因式得出答案(1)解:原式22(2)x x xy y =-+2()x x y =-;(2)解:原式2(1)(4)m m =--(1)(2)(2)m m m =-+-.【点评】本题主要考查了提取公因式以及公式法分解因式,掌握平方差公式和完全平方公式是关键.5.因式分解:(1)2449x -(2)22242x xy y -+ 【答案】(1)()()2727x x +-(2)()22x y -【分析】(1)根据平方差公式分解因式即可;(2)先提公因式,然后根据完全平方公式分解因式即可.(1)解:2449x - ()2227x =-()()2727x x =+-. (2)解:22242x xy y -+()2222x xy y =-+()22x y =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式和完全平方公式,是解题的关键.6.因式分解:(1)236x -;(2)2288x y xy y -+.【答案】(1)(x −6)(x +6)(2)2y (x −2)2【分析】(1)利用平方差公式即可因式分解;(2)先提公因式,再利用完全平方公式因式分解即可.(1)解:x 2−36;=(x −6)(x +6)(2)解:2x 2y −8xy +8y=2y (x 2−4x +4)=2y (x −2)2【点评】本题考查因式分解,熟练掌握提公因式法和公式法分解因式是解题关键. 7.因式分解:(1)a 2-4b 2(2)2a 3+12a 2+18a【答案】(1)(a +2b )(a -2b )(2)22(3)a a +【分析】(1)利用平方差公式,进行因式分解;(2)利用提公因式和完全平方公式,进行因式分解.(1)解:原式=(2)(2)a b a b +-;(2)解:原式=22(69)a a a ++=22(3)a a +.【点评】本题考查了因式分解,解题的关键是掌握平方差公式和完全平方差公式.8.因式分解:(1)2464x -(2)244x y xy y -+【答案】(1)()()444x x +-(2)()22y x -【分析】(1)先提取公因式,再利用平方差公式继续分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()2416444x x x =-=+-;(2)解:原式()()22442y x x y x =-+=-. 【点评】本题考查了因式分解,在因式分解时,能提公因式的要先提取公因式,再考虑用公式法继续分解,在因式分解时注意要分解彻底.9.因式分解:(1)323x y x -;(2)22(2)9a b b --. 【答案】(1)()()311x y y -+(2)()()42a b a b +-【分析】(1)先提公因式,然后再用平方差公式分解因式;(2)先用平方差公式分解因式,再提公因式即可.(1)解:323x y x -()321x y =-()()311x y y =-+(2)解:22(2)9a b b --()()2323a b b a b b =-+--()()2224a b a b =+-()()42a b a b =+-【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b -=+-,是解题的关键.10.因式分解:(1)2249m n -;(2)22396a b ab b -+ 【答案】(1)(23)(23)m n m n +-(2)2(3)b a b -【分析】(1)直接运用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式进行因式分解即可.(1)解:原式22(2)(3)m n =-(23)(23)m n m n =+-(2)原式()2296b a ab b =-+2(3)b a b =-.【点评】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法分解因式是解题关键.11.把下列各式分解因式(1)x 2+2xy +y 2(2)5x 3﹣20x【答案】(1)(x +y )2(2)5x (x +2)(x ﹣2)【分析】(1)直接运用公式法进行分解即可;(2)综合提公因式法和公式法进行分解即可.(1)原式()2x y =+(2)原式()()()254252x x x x x +-=-= 【点评】本题考查因式分解,掌握因式分解的常用方法,熟练运用基本公式是解题关键.12.因式分解(1)296x y xy y ++(2)416a -.【答案】(1)y (3x +1)2(2)(a 2+4)(a +2)(a -2)【分析】(1)先提公因式y ,再按照完全平方公式分解因式即可;(2)直接利用平方差公式分解因式即可.(1)解:9x 2y +6xy +y=y (9x 2+6x +1)=y (3x +1)2(2)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2)【点评】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.13.将下列各式分解因式:(1)2ab a -(2)22363ax axy ay -+-【答案】(1)(1)(1)a b b +-(2)﹣3a (x ﹣y )2【分析】(1)原式先提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(1)原式=21a b -()=(1)(1)a b b +-;(2)原式=﹣3a (x 2﹣2xy +y 2)=﹣3a (x ﹣y )2;【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.因式分解:(1)2269x xy y ++;(2)34m n mn -.【答案】(1)()23x y +(2)()()22mn m m +-【分析】(1)直接根据完全平方公式因式分解即可求解;(2)先提公因式mn ,然后根据平方差公式因式分解即可求解.(1)解:原式=()23x y +;(2)解:原式=()24mn m - ()()22mn m m =+-.【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.15.因式分解:(1)3269x x x -+(2)416a - 【答案】(1)()23x x -(2)()()()2422a a a ++- 【分析】(1)先提出公因式,再利用完全平方公式分解,即可求解;(2)利用平方差公式分解,即可求解.(1)解∶ 3269x x x -+()269x x x =-+()23x x =-; (2)解∶ 416a -()()2244a a =+-()()()2422a a a =++-.【点评】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法是解题的关键.16.因式分解(1)2288x x -+(2)()()216a x y y x -+- 【答案】(1)()222x -(2)()()()44x y a a -+-【分析】(1)先提公因数,再利用完全平方公式分解因式;(2)先提公因式,再利用平方差公式分解.(1)解:原式=2(x 2-4x +4)=2(x -2)2;(2)解:原式=(x -y )(a 2-16)=()()()44x y a a -+-【点评】本题考查因式分解的应用,熟练掌握因式分解的各种方法并灵活运用是解题关键.17.因式分解:(1)2416a -;(2)222ax axy ay -+.【答案】(1)()()422a a +-(2)()2a x y -【分析】(1)用平方差公式进行因式分解;(2)先提取公因式,再利用完全平方公式继续分解.(1)解:原式()()()244422a a a =-=+-; (2)解:原式()()2222a x xy y a x y =-+=-. 【点评】本题考查了因式分解,熟练掌握提公因式法和公式法是解题的关键.18.因式分解:(1)(x +3y )2-x -3y(2)222(4)16a a +-【答案】(1)(x +3y )(x +3y -1);(2)22(2)(2)a a -+【分析】(1)用提取公因式进行因式分解.(2)先用平方差公式进行因式分解,后用完全平方公式进行因式分.(1)(x +3y )2-x -3y=(x +3y )2-(x +3y )=(x +3y )(x +3y -1)(2)222(4)16a a +-=()()224444a a a a -+++=22(2)(2)a a -+【点评】此题考查了因式分解,解题关键是会用提取公式法和公式法进行因式分解.19.分解因式:(1)4x 2-100;(2)2mx 2-4mxy +2my 2.【答案】(1)()()455x x +-(2)()22m x y -【分析】(1)先提取公因式4,然后再运用平方差公式因式分解即可;(2)先提取公因式2m ,然后再运用完全平方公式因式分解即可.(1)解:4x 2-100=4(x 2-25)=()()455x x +-.(2)解:2mx 2-4mxy +2my 2=2m (x 2-2xy +y 2)=()22m x y -.【点评】本题主要考查了因式分解,掌握运用提取公因式法和公式法成为解答本题的关键.20.把下面各式分解因式:(1)22327x y -(2)()()()22a b a a b a a b +-+++ 【答案】(1)3(3)(3)x y x y +-;(2)2()(1)a b a +-【分析】(1)先提取公因式,再套用平方差公式;(2)先提取公因式,再套用完全平方公式.【解答】(1)解:原式=2239x y=3(3)(3)x y x y +-;(2)解:原式=212ab a a=2()(1)a b a +-.【点评】本题考查了整式的因式分解,即把一个多项式化成几个整式积的形式;掌握因式分解的提公因式法、公式法是解决本题的关键.21.因式分解(1)2416x -(2)2288a b ab b -+【答案】(1)()()422x x +-(2)()222b a -【分析】(1)先提取公因式,再运用平方差公式进行分解即可;(2)先提取公因式,再运用完全平方差公式进行分解即可.(1)解:2416x -()244x =- ()()422x x =+-(2)2288a b ab b -+()2244b a a =-+()222b a =-.【点评】本题考查因式分解,解题关键是掌握因式分解的方法与步骤.22.因式分解:(1)3269a a a ++(2)222(4)16x x +- 【答案】(1)2(3)a a +(2)22(2)(2)x x +-【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再利用完全平方公式继续分解即可解答.(1)3269x x x ++ 2(69)x x x =++2(3)x x =+;(2)222(4)16x x +-22(44)(44)x x x x =+++-22(2)(2)x x =+-.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.23.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--【答案】(1)5b (a -2b )2(2)20(x -2)(x +2)【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再提公因式,最后再利用平方差公式继续分解即可解答.(1)解:原式 =5b (a 2-4ab +4b 2)=5b (a -2b )2(2)原式=(x 2+1-x 2+9)(x 2+1+x 2-9)=10×(2x 2-8)=20(x 2-4)=20(x -2)(x +2)【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.24.因式分解:(1)228x -(2)3222x x y xy -+ 【答案】(1)2(2)(2)x x +-(2)2()x x y -【分析】(1)先提取公因数2,然后再运用平方差公式分解即可;(2)先提取公因式x ,然后再运用完全平方公式分解即可.(1)解:228x -=()224x - =()()222x x +-.(2)解:3222x x y xy -+=()222x x xy y -+=()2x x y -.【点评】本题主要考查了因式分解,综合运用提取公因式法和公式法是解答本题的关键.25.分解因式:(1)2116a -(2)32232xy x y x y -+【答案】(1)()()1414a a +-(2)()xy y x -2【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式xy ,再利用完全平方公式分解因式即可.(1)解:2116a -=(1-4a )(1+4a );(2)解:32232xy x y x y -+=xy (y 2-2xy +x 2)=xy (y -x )2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.26.把下列各式分解因式:(1)2218a -(2)2484a a -+ 【答案】(1)2(3)(3)a a +-;(2)24(1)a -【分析】(1)先提取公因式2,再利用平方差公式分解因式即可得;(2)先提取公因式4,再利用完全平方公式分解因式即可得.【解答】解:(1)原式22(9)a =-2(3)(3)a a =+-;(2)原式24(21)a a =-+24(1)a =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题关键.27.因式分解:(1)29x -(2)2242x y xy y -+【答案】(1)()()33x x +-(2)()221y x -【分析】(1)用平方差公式分解因式即可;(2)先提公因式,然后再用公式法分解因式即可.(1)解:29x -223x =-()()33x x =+-;(2)2242x y xy y -+()2221y x x =-+()221y x =-.【点评】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+是解题的关键.28.因式分解(1)2416m -(2)2232x y xy y -+ 【答案】(1)4(2)(2)m m +-(2)2()y x y -【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.(1)()224(2)(241644)m m m m -=-=+-(2)()22322222()y x y xy y x xy y y x y -+--=+= 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.29.因式分解:(1)()24a b +-(2)22369ab a b b --【答案】(1)(2)(2)a b a b +++-(2)2(3)b a b --【分析】(1)将()a b +作为整体,利用平方差公式分解即可;(2)原式先提取公因式,再利用完全平方公式分解即可.(1)解:原式(2)(2)a b a b =+++-(2)解:原式22(69)b ab a b =--2(3)b a b =--【点评】本题主要考查了提公因式法与公式法因式分解,熟练掌握因式分解的方法是解题关键.30.因式分解:(1)224x x -;(2)212123a a -+. 【答案】(1)()22x x -(2)()2321a -【分析】(1)运用提公因式法因式分解即可求解;(2)先运用提公因式法,再运用公式法分解因式即可.(1)解:()22422x x x x -=- (2)解:()()222121233441321a a a a a -+=-+=- 【点评】本题考查整式的因式分解,熟练运用提公因式法和公式法分解因式是解本题的关键.31.分解因式:(1)241x -;(2)3244m m m -+.【答案】(1)(2x +1)(2x ﹣1)(2)2(2)m m -【分析】(1)利用平方差公式,分解即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答.(1)解:原式=(21)(21)x x +-(2)解:原式= 2(44)m m m -+=2(2)m m -【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.32.因式分解:(1)a 2-9;(2)2x 2-12x +18 【答案】(1)(3)(3)a a +-;(2)22(3)x -【分析】(1)利用平方差公式进行因式分解即可;(2)综合利用提取公因式法和完全平方公式进行因式分解即可.【解答】解:(1)原式223a =-(3)(3)a a =+-;(2)原式22(69)x x =-+22(3)x =-.【点评】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题的关键.33.把下列各式因式分解(1)228a -(2)()()24129a b a b +-++ 【答案】(1)()()222a a +-(2)()2223a b +-【分析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a - ()224a =-()()222a a =+-;(2)()()24129a b a b +-++ ()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.【点评】本题考查因式分解,注意因式分解的步骤为先提公因式,再用公式法,灵活运用平方差公式和完全平方公式是解题的关键.34.把下列各式分解因式:(1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 【答案】(1)()()11a a a +-(2)()()2222x y x y -+-【分析】(1)先提公因式,再利用平方差公式即可进行因式分解;(2)先利用平方差公式,再利用完全平方公式即可求解.(1)原式=()21a a - =()()11a a a +-;(2)原式=()()222244xy x y -+ =()()22224444xy x y xy x y ++-- =()()2222x y x y -+-.【点评】本题考查了分解因式,解题关键是掌握提公因式法和公式法分解因式.35.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.【答案】(1)(2a -b )(x -y )(2)(x +1)2(x -1)2【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式利用平方差公式和完全平方公式分解即可.(1)2a (x ﹣y )+b (y ﹣x )=2a (x ﹣y )-b (x ﹣y )=(2a -b )(x -y )(2)(x 2 +1)2﹣4x 2=22(21)(21)x x x x ++-+=(x +1)2(x -1)2【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.36.因式分解:(1)2232x -(2)3223242x y x y xy ++ 【答案】(1)()()244x x +-(2)()22xy x y +【分析】(1)先提取公因式2,然后利用平方差公式继续进行因式分解;(2)先提取公因式2xy ,然后利用完全平方公式继续进行因式分解. (1)2232x - =22(16)x -=()()244x x +-;(2)3223242x y x y xy ++=222(2)xy x xy y ++=()22xy x y +【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.37.因式分解:(1)2a 2﹣2(2)2441x x ++【答案】(1)2(a +1)(a -1)(2)2(21)x +【分析】(1)先提公因式2,再利用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(1)解:2a 2﹣2=2(a 2﹣1)=2(a +1)(a -1).(2)解:2441x x ++=2(21)x +.【点评】本题主要考查利用提公因式法和公式法进行因式分解,掌握因式分解的方法是解本题的关键.38.分解因式:(1)2363ab ab a -+(2)22()8()a a b a b --- 【答案】(1)23(1)a b -(2)2()(2)(2)a b a a -+-【分析】(1)先提公因式,再用完全平方公式,分解即可;(2)先提公因式,再用平方差公式,分解即可.(1)解:3ab 2−6ab +3a=3a ·b 2-3a ·2b +3a ·1=3a (b 2-2b +1)=3a (b −1)2;(2)2a 2(a −b )−8(a −b )=2(a −b ) (a 2−4)=2(a −b ) (a 2−22)=2(a −b ) (a +2) (a −2).【点评】此题考查了因式分解的提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.39.分解因式:(1)321025a a a ++(2)()()126t t ++-【答案】(1)2(5)a a +(2)(4)(1)t t +-【分析】(1)原式提取公因式后,再利用完全平方公式分解即可;(2)原式整理后,再利用十字相乘法分解即可.(1)解:32221025(1025)(5)a a a a a a a a ++=++=+.(2)解:()()2212632634(4)(1)t t t t t t t t ++-=++-=+-=+-.【点评】本题考查了提取公因式与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.40.分解因式:(1))()(2x y y x x -+-(2)223242x y xy y -+. 【答案】(1)()()1(1)x y x x -+-(2)()22y x y -【分析】(1)先提取公因式x-y ,然后利用平方差公式进行分解;(2)先提取公因式2y ,然后利用完全平方公式分解因式即可.【解答】(1)解:原式=2()(1)x y x --=()()1(1)x y x x -+-(2)原式=()2222y x xy y -+ =()22y x y -【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.41.把下列各式因式分解:(1)228x -;(2)2(2)8(2)16a a +-++.【答案】(1)2(2)(2)x x +-;(2)2(2)a -.【分析】(1)根据提公因式法和平方差公式分解因式即可;(2)将(2)a +看成一个整体,利用完全平方公式分解因式即可.(1)解:228x -,=22(4)x -,=2(2)(2)x x +-;(2)解:2(2)8(2)16a a +-++,2(24)a =+-,2=(2)a - ,【点评】本题考查因式分解,解题的关键是熟练掌握提公因式法和平方差公式,完全平方公式分解因式.42.把下列各式因式分解:(1)2288a a -+;(2)22()()a x y b x y ---. 【答案】(1)()222a -(2)()()()x y a b a b -+-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式继续分解即可.(1)解:2288a a -+()2244a a =-+()222a =-; (2)解:()()22a x y b x y ---()()22x y a b =--()()()x y a b a b =-+-.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.43.因式分解:(1)()()3a x y y x -+-(2)()222416x x +-【答案】(1)()()3x y a --(2)()()2222x x +-【分析】(1)根据提公因式法因式分解,提取()x y -,即可求解;(2)根据平方差公式和完全平方公式求解即可.(1)解:原式=()()3a x y y x -+- =()()3x y a --(2)解:原式=()()224444x x x x +++-()()2222x x =+-【点评】本题考查了因式分解,掌握因式分解的方法是解题的关键.44.因式分解:(1)11824n n x x +-;(2)4224-1881x x y y + 【答案】(1)()634n x x - (2)()()2233x y x y +-【分析】(1)提公因式分解因式即可;(2)先用完全平方公式因式分解,再用平方差公式分解因式即可.(1)解:18xn +1−24xn=6xn ·3x −6xn ·4= 6xn (3x −4);(2)x 4-18x 2y 2+81y 4=(x 2−9y 2)2=(x +3y )2(x −3y )2.【点评】本题考查了多项式的因式分解,解题的关键是熟练掌握多项式的因式分解的方法:提公因式法、公式法(平方差公式、完全平方公式)、分组分解法、十字相乘法,并根据多项式的特征灵活选取不同的方法,还要注意一定要分解彻底.45.因式分解:(1)mx 2﹣my 2;(2)2x 2-8x +8. 【答案】(1)m (x +y )(x ﹣y )(2)2(x ﹣2)2【分析】(1)先提取公因式,再由平方差公式分解因式即可;(2)先提取公因式,再由完全平方公式分解因式即可;(1)解:mx 2﹣my 2=m (x 2﹣y 2)=m (x +y )(x ﹣y );(2)解:2x 2-8x +8=2(x 2-4x +4)=2(x ﹣2)2.【点评】本题考查了提取公因式法和公式法分解因式,掌握平方差公式()()22a b a b a b -=+-和完全平方公式()2222a b a b ab ±=+±是解题关键.46.分解因式:(1)2x 2﹣4xy +2y 2(2)m 2(m ﹣n )+(n ﹣m )【答案】(1)2(x ﹣y )2(2)(m ﹣n )(m +1)(m ﹣1)【分析】(1)先提取公因数2,再利用完全平方公式继续分解即可;(2)先提取公因式()m n -,再利用平方差公式继续分解即可.(1)解:原式=()2222x xy y -+ =()22x y -;(2)解:原式=()()21m n m -- =()()()11m n m m -+-.【点评】本题考查了提公因式法与公式法因式分解的综合应用,熟练掌握因式分解的方法是解题的关键.47.因式分解(1)24ab a -(2)4224816x x y y -+ 【答案】(1)()2(2a b b +-)(2)22(2)(2)x y x y +-【分析】(1)先提取公因式a ,再用平方差公式分解;(2)先用完全平方公式分解,再用平方差公式分解.(1)解:原式=a (b 2-4)= ()2(2a b b +-);(2)解:原式=(x 2-4y 2)2= 22(2)(2)x y x y +-.【点评】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.48.因式分解(1)21025m m -+(2)22222(4)16x y x y +- 【答案】(1)()25m -(2)22(2)(2)x y x y +-【分析】(1)利用完全平方公式即可分解;(2) 利用完全平方公式和平方差公式即可分解.(1)解:()2210255m m m =--+(2)解:22222(4)16x y x y +-2222(4)()444x y x x xy y y =+++-22(2)(2)x y x y =+- 【点评】本题考查了利用完全平方公式和平方差公式分解因式,熟练掌握和运用因式分解的方法是解决本题的关键.49.因式分解:(1)4x 2-64(2)2x 3y +4x 2y 2+2xy 3 【答案】(1)4(4)(4)x x -+;(2)22()xy x y +【分析】(1)先提取公因式,再利用平方差公式分解,即可解答;(2)先提公因式,再利用完全平方公式继续分解,即可解答.(1)解:4x 2-64=4(x 2-16)=4(x +4)(x -4)(2)解:2x 3y +4x 2y 2+2xy 3=222(2)xy x xy y ++=22()xy x y +【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.50.因式分解: (1)2441a a ++;(2)2416x -.【答案】(1)2(21)a +(2)4(2)(2)x x +-【分析】(1)根据完全平方公式因式分解即可;(2)先提取公因数4,再根据平方差公式因式分解即可.(1)解:222441(2)221(21)a a a a a ++=+⨯+=+(2)解:2224164(2)4(2)(2)x x x x -=-=+-.【点评】本题考查了因式分解,掌握平方差公式和完全平方公式是解题的关键.。
浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷1(解析版)
浙教版2022-2023学年七下数学第四章因式分解培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.a−b=+(a−b)D.x−y−1=x−(y−1)【答案】C【解析】A.−b−c=−(b+c),故此选项不合题意;B.−2x+6y=−2(x−3y),故此选项不合题意;C.a−b=+(a−b),故此选项符合题意;D.x−y−1=x−(y+1),故此选项不合题意;故答案为:C.2.下列各式从左到右变形是因式分解,并分解正确的是()A.(a−b)2+(a−b)=(a−b)(a−b+1)B.(x+2)(x+3)=x2+5x+6C.4a2−b2=(4a−b)(4a+b)D.m2−n2+2mn=(m−n)2【答案】A【解析】A、(a−b)2+(a−b)=(a−b)(a−b+1),从左到右的变形属于因式分解,故本选项符合题意;B、(x+2)(x+3)=x2+5x+6,从左到右的变形是整式的乘法,不属于因式分解,故本选项不符合题意;C、4a2−b2=(2a−b)(2a+b),原式从左到右的变形错误,故本选项不符合题意;D、两边不相等,从左到右的变形不属于因式分解,故本选项不符合题意;故答案为:A3.下列各式中,没有公因式的是()A.3x−2与6x2−4x B.ab−ac与ab−bcC.2(a−b)2与3(b−a)3D.mx−my与ny−nx【答案】B【解析】A、∵6x2-4x=2x(3x-2),∴3x-2与6x2-4x的公因式是3x-2,故A不符合题意;B、∵ab-ac=a(b-c),ab-bc=b(a-c),∴ab-ac与ab-bc没有公因式,故B符合题意;C、∵2(a-b)2=(b-a)2,∴2(a-b)2与3(b-a)3的公因式是(b-a)2,故C不符合题意;D、∵mx-my=m(x-y),ny-nx=-n(x-y),∴mx-my与ny-nx的公因式是x-y,故D不符合题意.故答案为:B.4.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m【答案】A【解析】(a−b)+m(b−a)=(a−b)(1−m),∴另一个因式为(1-m),故答案为:A.5.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()道题D.第4道题【答案】C【解析】(1)a2-b2=(a+b)(a-b),可以用平方差公式因式分解,不符合题意;(2)49x2-y2z2=(7x-yz)(7x+yz),可以用平方差公式因式分解,不符合题意;(3)-x2-y2,前后项同号,不符合平方差公式特点,不可以用平方差公式分解,符合题意;(4)16m2n2-25p2=(4mn+5p)(4mn-5p),可以用平方差公式因式分解,不符合题意.故答案为:C.6.已知2x−y=1,xy=2,则4x3y−4x2y2+xy3的俼为()A.-2B.1C.-1D.2【答案】D【解析】原式=xy(4x2−4xy+y2)=xy(2x−y)2,∵2x−y=1,xy=2,∴原式=2×12=2.故答案为:D.7.若要使4x2+mx+164成为一个两数差的完全平方式,则m的值应为()A.±12B.-12C.±14D.-14【答案】A【解析】∵(2x-18)2=4x2-12x+164或[2x−(−18)]2=4x2+12x+164,∴m=-12或12.故答案为:A.8.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:中,爱,我,数,学,五,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱五中C.我爱五中D.五中数学【答案】C【解析】∵3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a-b)=3(x+1)(x-1)(a-b),∴结果呈现的密码信息可能是:我爱五中.故答案为:C.9.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.-2B.−15m2C.8m D.−8m【答案】B【解析】A、16m2+1−2=16m2−1=(4m+1)(4m−1),A不符合题意;B、16m2+1−15m2=m2+1,不能因式分解,B符合题意;C、16m2+1+8m=(4m+1)2,C不符合题意;D、16m2+1−8m=(4m−1)2,D不符合题意.故答案为:B.10.在√0,√1,√2,√3,√4,……,√364,√365中,有理数的个数是()A.18B.19C.20D.21【答案】C【解析】∵192=361<365<202=400,∴19<√365<20∴√0,√1,√2,√3,√4,……,√364,√365中正好有20个完全平方数,即20个有理数.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3a 2−12= .【答案】3(a +2)(a −2)【解析】3a 2−12=3(a 2−4)=3(a +2)(a −2)故答案为:3(a +2)(a −2).12.因式分解:a 3−6a 2+9a = .【答案】a (a -3)2【解析】原式=a(a 2−6a +9)=a(a −3)2,故答案为:a (a -3)2.13.已知长方形的面积为3a 2−3b 2,如果它的一边长为a +b ,则它的周长为 (结果应化简).【答案】8a −4b【解析】∵3a 2−3b 2=3(a 2−b 2)=3(a +b)(a −b),长方形的一边长为a+b∴长方形的另一边长为3(a -b )=3a -3b∴该长方形的周长为:(3a -3b+a+b )×2=8a −4b ,故答案为:8a −4b .14.若 m −n =8 ,则 m 2−n 2−16n 的值是 .【答案】64【解析】∵m −n =8 ,∴m 2−n 2−16n = (m +n)(m −n)−16n = 8(m +n)−16n = 8m +8n −16n = 8m −8n = 8(m −n) = 8×8=64故答案为:64. 15.设 P =x 2−3xy , Q =3xy −9y 2 ,若 P =Q ,则 x y 的值为 .【答案】3【解析】∵P =Q , P =x 2−3xy , Q =3xy −9y 2 ,∴x 2−3xy =3xy −9y 2 ,即 x 2−6xy +9y 2=(x −3y)2 =0,∴x=3y ∴x y =3.故答案为:316.若a=2018x+2019,b=2018x+2020,c=2018x+ 2021,则多项式a 2+b 2+c 2-ab -ac -bc 的值为【答案】3 【解析】 a 2+b 2+c 2-ab -ac -bc =12(2a 2+2b 2+2c 2-2ab -2ac -2bc ) =12(a 2+b 2-2ab+b 2-2bc+c 2-2ac+a 2-2ac+c 2) =12[(a -b )2+(b -c )2+(a -c )2] =12[(2018x+2019-2018x -2020)2+(2018x+2020-2018x - 2021)2+(2018x+2019-2018x -2021)2] =12[1+1+4]=3, 故答案为:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.分解因式:(1)x 2﹣4x(2)﹣2x 2+2(3)4x 5﹣4x 4+x 3(4)4(x+2y )2﹣25(x ﹣y )2.【答案】(1)解:原式=x (x ﹣4)(2)解:原式=﹣2(x+1)(x ﹣1)(3)解:原式=x 3(2x ﹣1)2(4)解:原式=[2(x+2y )+5(x ﹣y )][2(x+2y )﹣5(x ﹣y )]=3(7x ﹣y )(3y ﹣x )18.已知 x 2+x +1=0 ,求 x 3−x 2−x +7 的值.【答案】解:由 x 2+x +1=0 得 x 2+x =−1 ,∴x 3−x 2−x +7=x 3+x 2−2x 2−x +7=x(x 2+x)−2x 2−x +7=−x −2x 2−x +7=−2x 2−2x +7=−2(x 2+x)+7=2+7=919.阅读下列材料,并解答相关问题.对于二次三项式x 2+2ax+a 2这样的完全平方式,我们可以用公式法将它分解因式成(x+a)2的形式,但是,对于二次三项式x 2+2ax -3a 2,就不能直接用完全平方公式进行分解因式了,我们可以在二次三项式x 2+2ax -3a 2中先加上一项a 2,将其配成完全平方式,再减去a 2这项,使整个式子的大小不变,于是有x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)=(x+3a)(x -a).利用上述方法把m 2-6m+8分解因式.【答案】解:m 2-6m+8=m 2-6m+9-9+8=(m -3)2-1=(m -3+1)(m -3-1)=(m -2)(m -4)20.若a+b=﹣3,ab=1.求12a 3b+a 2b 2+12ab 3的值. 【答案】解:∵a+b=﹣3,ab=1∴12a 3b+a 2b 2+12ab 3=12ab (a 2+2ab+b 2)=12ab (a+b )2=12×1×(﹣3)2=92.21.(1)学习“完全平方公式”时,小明遇到课本上一道题目“计算(a +b +c)2”,他联系所学过的知识和方法,想到两种解决思路:①可以用“整体思想”把三项式转化为两部分:[(a +b)+c]2或[a +(b +c)]2,然后可以利用完全平方公式解决,请你选择一种变形方法写出计算过程;②可以用“数形结合”的方法,画出表示(a +b +c)2的图形,根据面积关系得到结果.请你在下面正方形中画出图形,并作适当标注;(2)利用(1)的结论分解因式:x 2+y 2+4−2xy +4x −4y = ;(3)小明根据“任意一个实数的平方不小于0”,利用配方法求出了一些二次多项式的最大值或最①x 2+y 2+2xy −6x −6y +20;②2x 2+y 2−2xy −4x +2y +10.【答案】(1)解:①方法一:(a +b +c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc;方法二:(a+b+c)2=[a+(b+c)]2=a2+2a(b+c)+(b+c)2=a2+2ab+2ac+b2+2bc+c2=a2+b2+c2+2ab+2ac+2bc;②如图,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(2)(x−y+2)2(3)解:①x2+y2+2xy−6x−6y+20=(x2+2xy+y2)−6(x+y)+20=(x+y)2−6(x+y)+20=(x+y)2−6(x+y)+9+11=(x+y−3)2+11∵(x+y−3)2≥0∴x2+y2+2xy−6x−6y+20≥11即当x+y=3时,x2+y2+2xy−6x−6y+20有最小值为11;②2x2+y2−2xy−4x+2y+10=x2−2xy+y2−2x+2y+x2−2x+1+9=(x−y)2−2(x−y)+(x−1)2+9=(x−y−1)2+(x−1)2+8∵(x−y−1)2≥0,(x−1)2≥0,∴当x−y−1=0,x−1=0,即x=1,y=0时,2x2+y2−2xy−4x+2y+10有最小值,为8.【解析】(2)x2+y2+4−2xy+4x−4y=x2+y2−2xy+4x−4y+4=(x−y)2−4(x−y)+4=(x−y+2)2故答案为:(x−y+2)2.22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式;B.平方差公式;C.两数和的完全平方公式;D.两数差的完全平方公式.(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C(2)不彻底;(x−2)4(3)解:设x2+2x=y,原式= y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【解析】(1)由y2+8y+16=(y+4)2是利用了两数和的完全平方公式,故答案为:C;(2)∵(x2﹣4x+4)2= (x−2)4,∴该同学因式分解的结果不彻底,最后结果为(x−2)4,故答案为:不彻底,(x−2)4;23.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”.(1)36和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)∵36=102﹣82,2020=5062﹣5042,∴36和2020是“和谐数”;(2)这两个连续偶数构成的“和谐数”是4的倍数.理由如下:∵(2k+2)2−(2k)2=4(2k+1);∴两个连续偶数构成的“和谐数”是4的倍数.24.(1)分解因式:①(1+x)+x(1+x)=()+x()=()2②(1+x)+x(1+x)+x(1+x)2=③(1+x)+x(1+x)+x(1+x)2+x(1+x)3=(2)根据(1)的规律,直接写出多项式:(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2017分解因式的结果:.(3)变式:(1﹣x)(1+x)(1+x2)(1+x4)…(1+x2n)=.【答案】(1)1+x;1+x;1+x;(1+x)3;(1+x)4(2)(1+x)2018(3)1-x4n【解析】(1)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;③1+x+x (1+x)+x(1+x)2+x(1+x)3=(1+x)4;看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:( 2 )1+x+x(1+x)+x(1+x)2+…+x(1+x)2017=(1+x)2018;( 3 )(1-x)(1+x)(1+x2)(1+x4)…(1+x2n)=(1-x2)(1+x2)(1+x4)…(1+x2n)=(1-x4)(1+x4)…(1+x2n)=1-x4n.。
因式分解培优题(超全面、详细分类)
因式分解培优题(超全面、详细分类)因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+?+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-?+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-?-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+?+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3 (15)x 4xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和. 例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题分解因式:14x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c 条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()2215xax6ax82(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4;(4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 21a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323 (11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(14ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b 为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4 例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。
初一数学因式分解常考训练
初一数学因式分解常考训练1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8【分析】(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.【解答】(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8=2(x2+4x+4)=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.【分析】(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.【解答】(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.【解答】(1)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)(2)(x2+y2)2﹣4x2y2=(x2+2xy+y2)(x2﹣2xy+y2)=(x+y)2(x﹣y)24.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3=﹣y(9x2﹣6xy+y2)=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2【分析】(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.【分析】(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.【解答】(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.【分析】(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.【解答】(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.【分析】(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.【解答】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.【分析】本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.【解答】a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.【解答】a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1【分析】(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.【解答】(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)-(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y-x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;【分析】(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.【解答】(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2。
苏科版七年级数学下册 第九章《整式乘法与因式分解》尖子生提优测试(1)(有答案)
七下第九章《整式乘法与因式分解》尖子生提优测试(1)姓名:___________班级:___________考号:___________一、选择题1.多项式与多项式的公因式是A. B. C. D.2.把x a a x分解因式的结果为A. x a x aB. a x aC. x a x aD. a x x a3.若是一个完全平方式,那么m的值是A. 8B. 4C.D.4.下列多项式在实数范围内能用平方差公式分解的有几个A. 1个B. 2个C. 3个D. 5个5.a、b是常数且,那么、ab的值分别是A. B. C. D.6.数能被30以内的两位整数整除的是A. 26,24B. 28,26C. 27,25D. 25,237.图是一个长为2m,宽为的长方形,用剪刀沿图中虚线对称轴剪开,把它分成四块形状和大小都一样的小长方形,然后按图那样拼成一个正方形,则中间空的部分的面积是A. B.C. D.8.已知,求N为下列哪个数的倍数.A. 5B. 7C. 8D. 139.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是“”表示漏抄的指数,则这个指数可能的结果共有A. 2种B. 3种C. 4种D. 5种二、填空题10.若关于x的二次三项式可分解为则______.11.如果,那么的值为________.12.多项式分解因式,应提出公因式.13.已知:,,且,则M与N的大小关系是___________________.14.多项式加上一个单项式后能成为一个整式的完全平方,符合这个条件的单项式是________.15.已知,则____.16.若的积中不含项,则____.17.如图,两个正方形的边长分别为a、b,如果,,则阴影部分的面积为_________.三、解答题18.先化简,再求值,,其中.19.何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.例:若,求m和n的值.解:,,,为什么要对进行了拆项呢?聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程.解决问题:若,求的值;已知a、b、c是的三边长,满足,c是中最短边的边长,且c为整数,那么c可能是哪几个数?20.阅读材料小明遇到这样一个问题:求计算所得多项式的一次项系数.小明想通过计算所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找所得多项式中的一次项系数.通过观察发现:也就是说,只需用中的一次项系数1乘以中的常数项3,再用中的常数项2乘以中的一次项系数2,两个积相加,即可得到一次项系数.延续上面的方法,求计算所得多项式的一次项系数.可以先用的一次项系数1,的常数项3,的常数项4,相乘得到12;再用的一次项系数2,的常数项2,的常数项4,相乘得到16;然后用的一次项系数3,的常数项2,的常数项3,相乘得到最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:计算所得多项式的一次项系数为________.计算所得多项式的一次项系数为________.若计算所得多项式的一次项系0,则________.21.对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为,把这个“递增数”的百位数字与个位数字交换位置后,可得另一个三位数,记为如123,记为,交换123的百位数字与个位数字的位置后,得到321,即规定,如.计算:;若是百位数字为1的数,是个位数字为9的数,且满足,记,求k的最大值.22.【知识生成】通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.如图1,根据图中阴影部分的面积可以得到的等式是:_________________;【知识迁移】类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.如图2是边长为的正方体,被如图所示的分割线分成8块.(1)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以为:_______________________;(2)已知,,利用上面的规律求的值.23.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.请写出上述过程所揭示的乘法公式;试利用这个公式计算:.求的个位数字是几?24.探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.请用两种不同的方法,求图b中阴影部分的面积用含m、n的代数式表示:方法1:__________________;方法2:_________________________;观察图b,写出代数式,,mn之间的等量关系,并通过计算验证;根据题中的等量关系,解决如下问题:若,,求的值.答案和解析1.A解:,,多项式与多项式的公因式是2.D解:原式,.3.C解:,,解得.4.D解:符号相同,故不能;可通过提公因式2,然后在实数范围内应用平方差公式进行因式分解,故能;可直接应用平方差公式分解,故能;,可以利用平方差公式分解,故能;可直接应用平方差公式分解,故能;可提取公因数后应用平方差公式分解,故能能用平方差公式分解的有5个.5.C解:,.,..6.B解:,数能被30以内的两位整数整除的是26,28.7.B解:由题意可得,正方形的边长为,故正方形的面积为,又原矩形的面积为4mn,中间空的部分的面积,小正方形的边长为,中间空的部分的面积是,.8.D解:.中有一个因数是,是13的倍数,9.D解:根据题意可知能利用平方差公式分解因式,所以说明漏掉的是平方项的指数,并且只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.故该指数可能是2、4、6、8、10五个数.10.解:,,,,解得:,,则,11.解:12.解:因为,所以应提取的公因式是.13.解:且x,,,,14.、、、解:多项式加上一个单项式后能成为一个整式的完全平方,此单项式可能是二次项,可能是常数项,可能是一次项,还可能是4次项,,故此单项式是;,故此单项式是;,故此单项式是;,故此单项式是.15.2020解:,,,.16.25解:原式,由结果不含项,得到,解得:,.17.解:根据题意得:当,时,.18.解:,当时,原式.19.解,,,,,,,;,即,,,,,,且c为最短边,c为整数,可以为2,3,4.20..21.解:;.,为正整数,,为正整数,,,,,,随m的增大而增大,且,当时,k取得最大值,k最大值为.22.;;解:由可知,,将,代入上式可得.解:阴影部分的面积大正方形的面积中间小正方形的面积即:,又阴影部分的面积由4个长为a,宽为b的小正方形构成即:4ab,,故答案为;八个小正方体或长方体的体积之和是:,,.故答案为.23.解:;原式;原式.根据规律,个位数字为6.解:左边图形的面积;右边图形的面积,所以可得.故答案是.24.解:方法1:图b中的阴影部分的正方形的边长等于长为m,宽为n的长方形的长宽之差,即,故阴影部分面积为;方法2:图b中的阴影部分的正方形面积等于大正方形的面积减去4个长方形的面积,即;故答案为,;;验证:,,;,当,时,.。
因式分解培优题(超全面、详细分类)
因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。
初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。
2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。
3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。
一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。
七年级下册数学-《因式分解》单元培优试题有答案
《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒12﹒4000000﹒13﹒7﹒14﹒14﹒15﹒a2015(a-2)2﹒16﹒2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒Ⅱ﹒解答部分:一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1);C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-1解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m2-2mn+n2)-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。
初中数学整式的乘法与因式分解培优训练题(附答案详解)
初中数学整式的乘法与因式分解培优训练题(附答案详解)1.计算-2015×2017的值。
答案:C。
2014解析:将2015×2017先计算出来,再用减去结果即可得到答案2014.2.若a、b、c为△ABC的三边长,且满足a2+ab-ac-bc=0,b2+bc-ba-ca=0,则△ABC的形状是什么?答案:B。
等腰三角形解析:将两个式子分别移项,得到a2=ac+bc-b2,b2=ab+ac-c2.将第一个式子代入第二个式子中,得到b2=ab+bc-a2.将这个式子变形,得到a2+b2=ab+bc,即△ABC为等腰三角形。
3.下列计算正确的是什么?A。
x+x=x2B。
x3·x3=2x3C。
(x3)2=x6D。
x3÷x=x3答案:A。
x+x=x2解析:这个式子可以化简为x=0或x=1,因此等式成立。
4.若m为整数,则m2+m一定能被哪个数整除?A。
2B。
3C。
4D。
5答案:A。
2解析:m2+m可以因式分解为m(m+1),其中m和m+1中必有一个是偶数,因此m2+m一定能被2整除。
5.若m为大于0的整数,则(m+1)2-(m-1)2一定是什么?A。
3的倍数B。
4的倍数C。
6的倍数D。
16的倍数答案:B。
4的倍数解析:将式子展开,得到4m。
因此,(m+1)2-(m-1)2一定是4的倍数。
6.若,则等于什么?A。
B。
C。
D。
答案:D。
解析:将式子展开,得到16m2.因此,等于16的倍数。
7.计算:7ab2的值是多少?(28a2b2-21ab2)÷(4a2-3b)答案:A。
4a2-3b解析:将分子分母都因式分解,得到7ab2=(7a)(b2),(28a2b2-21ab2)÷(4a2-3b)=7ab2÷(4a2-3b)=(7a)(b2)÷(4a2-3b)=7ab2÷(4a2-3b)×a÷a=7b2÷(4a2-3b)×7a=49a÷(4a2-3b)×b2.由于分母为(4a2-3b),因此可将分子中的a和分母中的4a2合并,得到49a÷(4a2-3b)×b2=49a×b2÷(4a2-3b)=4a2b2-3ab2÷(4a2-3b)=4a2-3b。
苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练【含答案】
苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练(时间:60分钟 满分:100分)1.选择题(共20题;共40分)1.下列多项式是完全平方式的是( )A .x 2-4x -4B .x 2+x +C .4a 2-10ab +9b 2D .-a 2-6a +9142.如果x 2+mx +9是一个完全平方式,则m 的值为( )A .3B .6C .±3D .±63.已知9x 2-30x +m 是一个完全平方式,则m 的值等于( )A .5B .10C .20D .254.把多项式x 2-6x +9分解因式,结果正确的是( )A .(x -3)2B .(x -9)2C .(x +3)(x -3)D .(x +9)(x -9)5.分解因式后结果是-3(x -y )2的多项式是( )A .-3x 2+6xy -3y 2B .3x 2-6xy -y 2C .3x 2-6xy +3y 2D .-3x 2-6xy -3y 26 把代数式3x 3-12x 2+12x 分解因式,结果正确的是( )A .3x (x 2-4x +4)B .3x (x -4)2C .3x (x +2)(x -2)D .3x (x -2)27.将多项式ax 2-4ax +4a 分解因式,下列结果中正确的是( )A .a (x -2)2B .a (x +2)2C .a (x -4)2D .a (x +2)(x -2)8.下列各式中,不能用完全平方公式分解因式的是 ( )A .x 2-2xy -y 2B .x 2-2xy +y 2C .x 2+y 2+2xyD .-x 2+2xy -y 29.下列各式:①a 2-a +;②x 2+xy +y 2;③m 2+m +1;④x 2-xy +y 2;⑤m 2+4n 2+2mn ;⑥a 4141161414b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有 ( )A .2个B .3个C .4个D .5个10.如果a 2+16与一个单项式的和可以用完全平方公式分解因式,这个单项式可以是( )A .4aB .±8aC .±4aD .-4a 11.下列因式分解中,错误的是( )A .x 2-y 2=(x +y )(x -y )B .x 2+6x +9=(x +3)2C .x 2+xy =x (x +y )D .x 2+y 2=(x +y )212.若4x 2-M xy +9y 2是两数和的平方,则M 的值是( )A .36 B .±36 C .12D .±1213.若m +n =3,则2m 2+4mn +2n 2-6的值为( )A.12 B.6 C.3 D.014.下列各式中能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+9 15.下列各式:①a2-a+;②x2+xy+y2;③116m2+m+1;④x2-xy+14y2;⑤m2+4n2+2mn;⑥14a4b2-a2b+1.其中,形如a2±2ab+b2的多项式有( )A.2个B.3个C.4个D.5个16.把x2y-2y2x+y3分解因式正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)217.把多项式x2-4x+4分解因式,所得结果是( )A.x(x-4)+4 B.(x-2)(x+2) C.(x-2)2D.(x+2)218.如果多项式x2-kx+16可以因式分解为(x-4)2,那么k的值是( )A.4 B.-4 C.8 D.-819.将9(a-b)2+12(a2-b2)+4(a+b)2分解因式的结果是( )A.(5a-b)2B.(5a+b)2 C.(3a-2b)(3a+2b) D.(5a-2b)220.已知x,y为有理数,设M=x2+y2,N=2xy,则M与N之间的大小关系为( ) A.M≤N B.M≥N C.M<N D.M>N2.填空题(共9题;共18分)21.填空:x2+6x+________=(x+________)2;x2-3x+________=(x-________)2. 22.分解因式:4a2-4a+1=________.23.已知x=3.2,y=6.8,则x2+2xy+y2=________.24.若一个正方形的面积是9m2+24mn+16n2(m>0,n>0),则这个正方形的边长是_______.-1002×4+4=(______________)2=_______.26若100x2+kxy+49y2可以分解成(10x-7y)2,则k的值为_______.27.分解因式:(2a+b)2-8ab=_______.28.如果a2-8ab+16b2=0,且b=2.5,那么a=_______.29.因式分解:(a-b)(a-4b)+ab=____.3、解答题(共6题;共42分)30.(12分)因式分解:(1)(2a-x)2+4(x-2a)+4;(2)8(a2+1)-16a;(3)4b2c2-(c2+b2)2.(4)2x 3-4x 2+2x ; (4)-x 2y +6xy -8y ; (6)(x 2+y 2)2-4x 2y 2.31.(6分)利用因式分解计算:(1) 38.92-2×38.9×48.9+48.92; (2) 562+68×56+342.32.(6分)已知a -b =-2,求 -ab 的值.a 2+b 2233.(6分)已知x 、y 为任意有理数,若M =x 2+y 2 ,N =2xy ,你能确定M .N 的大小吗?为什么?34.(6分)观察下列各式:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,……请写出一个具有普遍性的结论,并说明理由,35 (6分)阅读下列问题:分解因式:x 2+4x +3.解:原式=x 2+4x +4-4+3=(x 2+4x +4)-1=(x +2)2-1=(x +2+1)(x +2-1)=(x +3)(x +1).上述分解因式的方法称为配方法.请仿照上述配方法的解题步骤将下列各式分解因式:(1)x 2-6x +5; (2)4x 2+4x -15.苏科版七年级数学下册《多项式的因式分解》强化提优专题培优训练1. 选择题(共20题;共40分)1.下列多项式是完全平方式的是( B )A .x 2-4x -4B .x 2+x +C .4a 2-10ab +9b 2D .-a 2-6a +9142.如果x 2+mx +9是一个完全平方式,则m 的值为( D )A .3B .6C .±3D .±63.已知9x 2-30x +m 是一个完全平方式,则m 的值等于( D )A .5B .10C .20D .254.把多项式x 2-6x +9分解因式,结果正确的是( A )A .(x -3)2B .(x -9)2C .(x +3)(x -3)D .(x +9)(x -9)5.分解因式后结果是-3(x -y )2的多项式是( A )A .-3x 2+6xy -3y 2B .3x 2-6xy -y 2C .3x 2-6xy +3y 2D .-3x 2-6xy -3y 26 把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D )A .3x (x 2-4x +4)B .3x (x -4)2C .3x (x +2)(x -2)D .3x (x -2)27.将多项式ax 2-4ax +4a 分解因式,下列结果中正确的是( A )A .a (x -2)2B .a (x +2)2C .a (x -4)2D .a (x +2)(x -2)8.下列各式中,不能用完全平方公式分解因式的是 ( A )A .x 2-2xy -y 2B .x 2-2xy +y 2C .x 2+y 2+2xyD .-x 2+2xy -y 29.下列各式:①a 2-a +;②x 2+xy +y 2;③m 2+m +1;④x 2-xy +y 2;⑤m 2+4n 2+2mn ;⑥a 4141161414b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有 ( B )A .2个B .3个C .4个D .5个10.如果a 2+16与一个单项式的和可以用完全平方公式分解因式,这个单项式可以是( B )A .4aB .±8aC .±4aD .-4a11.下列因式分解中,错误的是 ( D )A .x 2-y 2=(x +y )(x -y )B .x 2+6x +9=(x +3)2C .x 2+xy =x (x +y )D .x 2+y 2=(x +y )212.若4x 2-M xy +9y 2是两数和的平方,则M 的值是 ( D )A .36B .±36C .12D .±1213.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( A )A .12B .6C .3D .014.下列各式中能用完全平方公式进行因式分解的是( D )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-6x +915.下列各式:①a 2-a +14;②x 2+xy +y 2;③116m 2+m +1;④x 2-xy +14y 2;⑤m 2+4n 2+2mn ;⑥14a 4b 2-a 2b +1.其中,形如a 2±2ab +b 2的多项式有( B )A .2个B .3个C .4个D .5个16.把x 2y -2y 2x +y 3分解因式正确的是( C )A .y (x 2-2xy +y 2)B .x 2y -y 2(2x -y )C .y (x -y )2D .y (x +y )217.把多项式x 2-4x +4分解因式,所得结果是 ( C )A .x (x -4)+4B .(x -2)(x +2)C .(x -2)2D .(x +2)218.如果多项式x 2-kx +16可以因式分解为(x -4)2,那么k 的值是( C )A .4B .-4C .8D .-819.将9(a -b )2+12(a 2-b 2)+4(a +b )2分解因式的结果是( A )A .(5a -b )2B .(5a +b )2C .(3a -2b )(3a +2b )D .(5a -2b )220.已知x ,y 为有理数,设M =x 2+y 2,N =2xy ,则M 与N 之间的大小关系为( B )A .M ≤NB .M ≥NC .M <ND .M >N二.填空题(共9题;共18分)21.填空:x 2+6x +________=(x +________)2; x 2-3x +________=(x -________)2.9 3 [解析] 第一项化成平方后,底数乘2得到一个积,用中间项除以这个积,9432得到另一个平方项的底数.22.分解因式:4a 2-4a +1=________.(2a -1)2 [解析] 4a 2-4a +1=(2a -1)2.23.已知x =3.2,y =6.8,则x 2+2xy +y 2=________.100 [解析] 当x =3.2,y =6.8时,原式=(x +y)2=(3.2+6.8)2=100.24.若一个正方形的面积是9m 2+24mn +16n 2(m >0,n >0),则这个正方形的边长是_______.3m +4n [解析] 正方形的面积为9m 2+24mn +16n 2=(3m +4n)2,又因为m>0,n>0,所以正方形的边长为3m +4n.-1002×4+4=(______________)2=_______.1002-26若100x 2+kxy +49y 2可以分解成(10x -7y )2,则k 的值为_______.-14027.分解因式:(2a +b )2-8ab =_______.(2a -b )228.如果a 2-8ab +16b 2=0,且b =2.5,那么a =_______.1029.因式分解:(a -b )(a -4b )+ab =____.(a -2b )2 (a -b )(a -4b )+ab =a 2-4ab -ab +4b 2+ab =a 2-4ab +4b 2=(a -2b )2.三.解答题(共6题;共42分)30.(12分)因式分解:(1)(2a -x )2+4(x -2a )+4;(2)8(a 2+1)-16a ; (3)4b 2c 2-(c 2+b 2)2.(4)2x 3-4x 2+2x ; (4)-x 2y +6xy -8y ; (6)(x 2+y 2)2-4x 2y 2.解:(1)原式=(x -2a )2+4(x -2a )+4=(x -2a +2)2;(2)原式=8[(a 2+1)-2a ]=8(a -1)2;(3)原式=[2bc -(c 2+b 2)][2bc +c 2+b 2]=-(b +c )2(b -c )2.(1)2x 3-4x 2+2x ; (2)-x 2y +6xy -8y ; (3)(x 2+y 2)2-4x 2y 2.(4)原式=2x (x 2-2x +1)=2x (x -1)2;(5)原式=-y (x 2-6x +8)=-y (x -2)(x -4);(6)原式=(x 2+y 2-2xy )(x 2+y 2+2xy )=(x +y )2(x -y )2.31.(6分)利用因式分解计算:(1) 38.92-2×38.9×48.9+48.92; (2) 562+68×56+342.解:(1)原式=(38.9-48.9)2=(38.9-48.9)2 =(-10)2 =100(2)原式=562+2×34×56+342=(56+34)2=902=8100.32.(6分)已知a -b =-2,求-ab 的值.a 2+b 22解:-ab ====2.a2+b22a2+b2-2ab 2(a -b )22(-2)2233.(6分)已知x 、y 为任意有理数,若M =x 2+y 2 ,N =2xy ,你能确定M .N 的大小吗?为什么?解:M-N=x 2+y 2 -2xy=(x -y )2≥0 所以M ≥N 。
因式分解初一数学习题及答案
因式分解初一数学习题及答案因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4。
2. 5xn+1-15xn+60xn-1。
4. (a+b)2x2-2(a2-b2)xy+(a-b)2y25. x4-16.-a2-b2+2ab+4分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213. (x+1)(x+2)(x+3)(x+4)+114. (x2+3x+2)(x2+7x+12)-120.15.把多项式3x2+11x+10分解因式。
16.把多项式5x2―6xy―8y2分解因式。
二证明题17.求证:32000-431999+1031998能被7整除。
18.设为正整数,且64n-7n能被57整除,证明:是57的倍数.19.求证:无论x、y为何值,的值恒为正。
20.已知x2+y2-4x+6y+13=0,求x,y的值。
三求值。
21.已知a,b,c满足a-b=8,ab+c2+16=0,求a+b+c的值 .22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1. 解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2 (x3-2x2+5y2)。
提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2. 提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。
解:原式=5 xn--1x2-5xn--13x+5xn--112=5 xn--1 (x2-3x+12)3.解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)立方和公式:a3+ b3=(a+b)( a2-ab+b2)所以,1-8 a3=(1-2a)(1+2a+4a2)4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x和(a-b)y视为一个整体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17、多项式 分解因式的结果是()
A、 B、 C、 D、
18、如果单项式 与 是同类项,那么这两个单项式的积是()
A、 B、 C、 D、
19、若 ,则
20、 化简 的结果是_______________。
21、分解因式 ,计算
22、当m=___________时,多项式 是一个完全平方式。
七年级数学《因式分解》培优提高题
1、因式分解:Βιβλιοθήκη (1) (2) (3) (4)
(5) (6) (7)
(8) (9)
(10) (11)
(12) (13)
(14)
2、求证:不论x、y为何有理数, 的值均为正数。
3、若a为整数,证明 能被8整除。
4、计算:
5、已知 ,求a、b的值。
6、先化简,再求值: ,其中
7、下列运算正确的是()
A、 B、 C、 D、
8、下列运算中,正确的是()
A、 B、 C、 D、
9、下列多项式中,能够因式分解的是()
A、 B、 C、 D、
10、分解因式 的结果是()
A、 B、 C、 D、
11、下列多项式能利用平方差公式分解的是()
A、 B、 C、 D、
12、在多项式 中是完全平方式的有()
23、若多项式 能写成一个多项式的平方的形式,则a的值为____________。
24、已知 ,则 。
25、如果 成立,那么k=______________。
26、已知二次三项式 与 的乘积展开式中不含 项,也不含x项,求a、b的值。
27、已知 能被 整除,其商式为 ,求m、n的值。
28、现规定一种运算 ,其中a,b为实数,则 等于多少?
29、当a、b的值为多少时,多项式 有最小值,并求出这个最小值。
30、若一个三角形的三边长a,b,c,满足 ,试判断三角形的形状。
31、已知a、b、c分别为△ABC的三边,你能判断 的符号吗?
A、1个B、2个C、3个D、4个
13、数轴上的每一个点都表示一个()
A、无理数B、有理数C、实数D、整数
14、无理数是()
A、无限循环小数B、无限不循环小数C、不循环小数D、有限小数
15、下列说法中正确的是()
A、1的平方根是1 B、 的平方根是
C、 是 的立方根D、16的平方根是4
16、若 ,则 的值为()