角平分线的判定定理

合集下载

角平分线的性质定理及其逆定理

角平分线的性质定理及其逆定理

4
挑战自我
如图,在△ABC中,已知AC=BC,∠C=900,AD 是△ABC的角平分线,DE⊥AB,垂足为E.
(1)如果CD=4cm,AC的长
A
(2)求证:AB=AC+CD.
E
C
D
B
可编辑ppt
5
定理的逆命题该怎么说?
逆定理:在一个角的内部,且 到角的两边距离相
等的点,在这个角的平分线上。
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
2
一.角平分线的性质
定理:角平分线上的点到角的两边的距离相等
用符号语言E ⊥OB
∴PD=PE.
O
A
D
P
1
2
B
E
可编辑ppt
3
例1: 已知:如图,E是∠BAC平分线上的一点, EB⊥AB,EC⊥AC,B,C分别是垂足。你能 得到哪些结论?为什么?
B
A
E
C
可编辑ppt
求证: 点P在∠MBN的平分线上
M D
A P
E
B
C FN
可编辑ppt
10
2、已知:如图,∠B= ∠C=90°,M是 BC的中点,DM平分∠ ADC
求证:AM平分∠DAB。
E
可编辑ppt
11
小结 拓展
回味无穷
一.定理 角平分线上的点到这个角的两边距离 相等.
二.逆定理 在一个角的内部,且到角的两边距 离相等的点,在这个角的平分线上.
三.遇到角平分线的问题,可以通过角平分线上的一点 向角的两边引垂线,以便充分运用角平分线定理
可编辑ppt
12
小测1:
.已知:如图,∠C=900,∠B=300,

角平分线的判定(用)

角平分线的判定(用)

为了证明角平分线的判定定理, 我们可以按照以下步骤进行推导
综上所述,我们证明了角平分线 的判定定理。
03 判定定理的应用
在几何证明中的应用
证明角平分线
利用角平分线的判定定理,可以 证明某个角是另一个角的平分线。
证明等腰三角形
在三角形中,如果一个角的平分线 与对边相交,则该交点与对边的两 个端点所形成的三角形是等腰三角 形。
进行证明。
THANKS FOR WATCHING
感谢您的观看
证明线段比例
利用角平分线定理,可以证明线段 之间的比例关系。
在三角形中的运用
01
02
03
确定角的平分线
在三角形中,可以利用角 平分线的判定定理来确定 角的平分线位置。
计算线段长度
利用角平分线定理,可以 计Байду номын сангаас三角形中某些线段的 长度。
判断三角形形状
在三角形中,可以利用角 平分线的性质来判断三角 形的形状。
在日常生活中的应用
建筑设计
在建筑设计中,角平分线 的判定定理可用于确定窗 户、门等部件的位置和角 度。
道路规划
在道路规划中,可以利用 角平分线的判定定理来确 定交叉路口的角度和道路 的走向。
机械制造
在机械制造中,角平分线 的判定定理可用于确定零 件的精确位置和角度。
04 判定定理的推论与变种
推论一
角平分线的判定定理
目录
• 角平分线的定义与性质 • 角平分线的判定定理 • 判定定理的应用 • 判定定理的推论与变种
01 角平分线的定义与性质
角平分线的定义
角平分线是从一个角的顶点出发,将 该角分为两个相等的部分的一条射线。
角平分线上的任意一点到这个角的两 边的距离相等。

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点)【知识点一、角的平分线及其性质】1.尺规作角平分线尺规作角平分线方法(重要):已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.2.角平分线的性质定理:角的平分线上的点到角的两边的距离相等.【知识点二、角平分线的判定】1.角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.定理的几何表述:∵PD⊥OA,PE⊥OB,PD=PE.∴点P 在∠AOB的平分线上.2.三角形的内角平分线结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.已知如图,△ABC的角平分线BM,CN相交于点P,则点P到三边AB,BC,CA的距离相等.A.4B.【答案】B【分析】过点D作DH⊥AB,垂足为H,由题意可得DC=3,再由角平分线的性质可得CD=DH=3,即可得到答案.【详解】解:如图,过点D作DH⊥AB,垂足为H,∵AC=9,DC=1AC,3∴DC=3,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=3,∴点D到AB的距离等于3,故选:B.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.【变式训练1-1】如图,点E为∠BAC平分线AP上一点,AB=5,△ABE的面积为15,则点E到直线AC的距离为()A.5B.6C.7D.8【答案】B【分析】设点E到直线AB的距离为ℎ,根据三角形面积公式即可求解.【详解】解:如图,过点E作EM⊥AC,EN⊥AB,垂足分别为M,N,∵E为∠BAC平分线AP上一点,∴EM=EN,∵AB=5,△ABE的面积为15,AB×EN=15,∴12=6,∴EN=305∴EM=6,即点E到直线AC的距离为6.故选:B.【点睛】本题考查角平分线的性质定理及点到直线的距离之概念.其关键要理解角平分线上一点到角两边距离相等.【变式训练1-2】如图,OC是∠AOB的平分线,PD⊥OA于点D,PD=2,则点P到OB的距离是()A.1B.2C.4D.都不对【答案】B【分析】过点P作PE⊥OB于E,根据角平分线的性质即可求解.【详解】解:如图,过点P作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=2,即点P到边OB的距离为2.故选:B.【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.【变式训练1-3】如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线.若AC=9,CD=6,则点D到BC的距离是()A.2B.4C.3D.6【答案】C【分析】过点D作DE⊥BC于点E,根据角平分线的性质得到DE=AD=3.【详解】解:过点D作DE⊥BC于点E,∵AC=9,CD=6,∴AD=AC―CD=9―6=3,∵BD是△ABC的角平分线,∠A=90°,DE⊥BC,∴DE=AD=3,∴点D到BC的距离是3,故选:C.【点睛】此题考查了角平分线的性质:角平分线上的点到角的两边的距离相等,正确掌握性质是解题的关键.考点2:利用角平分线性质求周长例2.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E.AB=10cm,则△DEB的周长是()A.5cm B.10cm C.15cm D.20cm【答案】B【分析】先根据角平分线的性质得出DE=DC,再利用HL证明Rt△ADE≌Rt△ADC,推出AC=AE,进而通过等量代换可得BD+DE+EB=AB=10cm.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=DC,又∵AD=AD,∴Rt△ADE≌Rt△ADC(HL),∴AC=AE,∵AC=BC,∴AE=BC,∴BD+DE+EB=BD+DC+EB=BC+EB=AE+EB=AB=10cm,故选B.【点睛】本题主要考查角平分线的性质、直角三角形全等的判定与性质,解题的关键是通过证明Rt△ADE≌Rt△ADC推导出AC=AE.【变式训练2-1】.如图,△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是()A.15B.12C.9D.6【答案】B【分析】由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.【详解】解:∵△ABC中,∠C=90°;∴AC⊥CD;∵AD平分∠BAC,DE⊥AB;∴DE=CD,∵BC=9,BE=3,∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.故选:B.【点睛】本题主要考查了角平分线的性质.注意角平分线的性质:角的平分线上的点到角的两边的距离相等.【变式训练2-2】如图,在△ABC中,∠C=90°,BC=6cm,AC=8cm,AB=10cm,若BD平分∠ABC交AC 于点D,过D作DE⊥AB于点E,则△ADE的周长为( )cm.A.8B.10C.12D.14【答案】C【分析】根据角平分线的性质定理可得DE=CD,从而可证△BDE≌△BDC(HL),即得出BE=BC=6cm,最后可求△ADE的周长为AC+AE=12cm.【详解】∵BD平分∠ABC,∠C=90°,DE⊥AB,∴DE=CD.又∵BD=BD,∴△BDE≌△BDC(HL),∴BE=BC=6cm,∴AE=AB―BE=10―6=4cm,∴C△ADE=AD+DE+AE=AD+CD+AE=AC+AE=8+4=12cm.故选C.【点睛】本题考查角平分线的性质定理,三角形全等的判定和性质.证明C△ADE=AC+AE是解题关键.【变式训练2-3】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BE=2,BC=6,则△BDE的周长为( )A.6B.8C.10D.14【答案】B【分析】根据角平分线的性质定理可得DE=DC,进而可以求出△BDE的周长;【详解】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC,∴C△BDE=BE+DE+BD=BE+BC=2+6=8,故选:B.【点睛】本题考查了角平分线的性质定理;熟练运用该定理实现线段的转化是解题的关键.考点3:利用角平分线性质求面积例3.在△ABC中,BD是△ABC的高线,CE平分∠ACB,交BD于点E,BC=6,DE=3,则△BCE的面积等于()A.3B.5C.9D.12【答案】C【分析】过点E作EF⊥BC于点F,根据角平分线的性质可得EF=DE=3,再根据三角形的面积公式求解即可.【详解】解:过点E作EF⊥BC于点F,∵CE 平分∠ACB ,ED ⊥AC ,EF ⊥BC ,∴EF =DE =3,∴S △BCE =12BC ⋅EF =12×6×3=9,故选:C .【点睛】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线上的点到两边距离相等.【变式训练3-1】如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,已知,BC =8,DE =2,则△BCE 的面积等于( )A .4B .6C .8D .10【答案】C 【分析】作EF ⊥BC 于F ,根据角平分线的性质得到EF =DE =2,根据三角形的面积公式计算即可.【详解】解:如图,作EF ⊥BC 于F ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△BCE 的面积=12×BC ×EF =12×8×2=8,故选C .【点睛】本题考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式训练3-2】如图,AD 是△ABC 的角平分线,DE ⊥AC 于E ,M ,N 分别是边AB ,AC 上的点,DM =DN ,若△ADM 和△ADN 的面积分别为30和16,则△ADE 的面积是( )A .22B .23C .24D .25【答案】B 【分析】如图所示(见详解),过点D 作DF ⊥AB 于F ,AD 是△ABC 的角平分线,DE ⊥AC 于E ,可证Rt △DFM ≌Rt △DEN(HL),同理可证Rt △ADF ≌Rt △ADE(AAS),设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,列方程30―x =16+x 即可求解.【详解】解:如图所示,过点D 作DF ⊥AB 于F ,∵AD 是△ABC 的角平分线,DE ⊥AC 于E ,∴DE =DF ,在Rt △DFM,Rt △DEN 中,DM =DN DF =DE ,∴Rt △DFM ≌Rt △DEN(HL),∴S △DFM =S △DEN ,在Rt △ADF,Rt △ADE 中,∠FAD =∠EAD ∠AFD =∠AED =90°AD =AD(公共边),∴Rt △ADF ≌Rt △ADE(AAS),∴S △AFD =S △AED =S △ADN +S △DEN =S △ADN +S△AFM ,设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,∴30―x =16+x ,解方程得,x =7,∴S △AFM =S △AEN =7,∴S△ADE=S△ADN+S△AEN=16+7=23,故选:B.【点睛】本题主要考查角平分线,三角形全等和性质的综合,理解并掌握角平分线上点到角两边的距离相等,全等三角形的判定和性质是解题的关键.【变式训练3-3】如图,在四边形ABCD中,∠A=90°,AD=4,BC=10,BD平分∠ABC,则△BCD的面积是()A.10B.12C.16D.20【答案】D【分析】过D点作DE⊥BC于E,根据角平分线的性质“角平分线上的点到角的两边的距离相等”得到DE=DA=4,根据三角形面积公式计算即可.【详解】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=DA=4,×10×4=20.∴△BCD的面积=12故选:D.【点睛】本题主要考查了角平分线的性质以及求三角形面积角,理解并掌握角平分线的性质是解题关键.考点4:判定结论是否正确例4.如图,ΔAOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°―∠O,其中正确的有()A .0个B .1个C .2个D .3个【答案】C【分析】过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE =PG =PF ,可判断(1)(2)正确;由∠APB =12∠EPF ,∠EPF +∠O =180°,得到∠APB =90°―12∠O ,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE ⊥OC ,PF ⊥OD ,PG ⊥AB ,∴PE =PG =PF ;故(1)正确;∴点P 在∠COD 的平分线上;故(2)正确;∵∠APB =∠APG +∠BPG =12∠EPF ,又∠EPF +∠O =180°,∴∠APB =12×(180°―∠O)=90°―12∠O ;故(3)错误;∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.【变式训练4-1】如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的∠EAC 、∠ABC 、∠ACF ,以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°―∠ABD ;④BD 分∠ADC ;⑤3∠BDC =∠BAC 。

角平分线性质定理

角平分线性质定理

角平分线性质定理定理说明在几何学中,角平分线性质定理是一个重要的几何定理。

它指出:如果一条直线将一个角分成两个相等的角(即平分该角),那么这条直线就被称为该角的角平分线。

根据这个定理,我们可以得出一些有趣的推论和性质。

角平分线的性质性质一:角平分线两侧的角相等若一条直线分割一个角,并且它分成的两个角相等,那么这条直线就是该角的平分线。

以角A为例,若BD为角A的角平分线,则∠ABD = ∠CBD。

性质二:角平分线在三角形中的应用在一个三角形中,如果一条角平分线平分了一个内角,那么它将三角形分成两个相似的三角形。

我们可以利用这个性质来求解三角形内部角的度数。

性质三:角平分线长度关系两内锐角平分线的长度之比等于与这两个角的正弦比值。

性质四:角平分线与外切圆关系若角BAC的角平分线交外接圆于点D,那么∠BDC = 90°。

性质五:角平分线的唯一性对于一个给定的角,其角平分线唯一且确定。

应用和分析角平分线性质定理在几何学中有着广泛的应用。

通过合理应用这些性质,我们可以有效地解决角平分线相关的问题,从而推理出更复杂的几何问题的解决方案。

同时,深入了解角平分线的性质也有助于提高我们的几何推理能力,培养我们的数学思维和逻辑推理能力。

结论角平分线性质定理是几何学中一个基础而重要的定理,它揭示了角平分线的一些重要性质和应用。

通过深入理解和应用这个定理,我们可以更好地解决几何学中有关角平分线的问题,并且提高自己的数学分析能力。

对于学习几何学的人来说,掌握角平分线性质定理是必不可少的,它将为我们的数学学习之路增添光彩。

锐角平分线的三个定理

锐角平分线的三个定理

锐角平分线的三个定理
锐角平分线的三个定理介绍如下:
1. 角平分线定理
* 定义: 若一个角的平分线与一个直线相交,则相对的两个交点到这个角的两边的距离相等。

* 证明: 通过角的平分线上的任意一点,向角的两边作垂线,由于角的平分线性质,这两个垂线长度相等。

再根据点到直线的距离定义,可证该定理。

* 应用: 在几何证明和构造中,角平分线定理常被用来确定与角平分线相关的线段长度。

2. 锐角定理
* 定义: 锐角平分线与该角的对边所形成的夹角小于90°。

* 证明: 设锐角为α,其平分线与对边形成的角为β。

由于α是锐角,所以0°< α< 90°。

根据角的平分线性质,α/2 < β< 90°。

* 应用: 在解决几何问题时,锐角定理可以用来判断角平分线与对边形成的角度的大小。

3. 余弦定理
* 定义: 在任意三角形ABC中,若AD是角BAC的平分线,则有AB²=BD×BC+BD²-CD²。

* 证明: 根据角平分线的性质,得到AD²=BD×BC+CD×AC,然后通过余弦定理和已知条件可证明上述结论。

* 应用: 余弦定理常被用来确定角平分线上的点到三角形的两边距离的关系。

总结:锐角平分线的三个定理在几何学中具有重要地位,它们在解决与角平分线相关的几何问题时非常有用。

深入理解和掌握这些定理对于提高几何解题能力至关重要。

角平分线的判定定理

角平分线的判定定理

A
O E
P
证明: 作射线OP

PD ^ OA
\
PE ^ OB
B
PDO PEO 90
OP = OP (公共边) PD = PE ( 已 知 )
在 Rt△PDO 和Rt△PEO 中,
\ RtPDO≌ RtPEO ( HL) \ AOP BOP (全等三角形的对应角相等) \ 点P在 AOB 角的平分线上
O
PD = PE
用途:证线段相等
B
角平分线的判定到一个角的两边的距离相等的
点, 在这个角的平分线上。
∵ \
PD ^ OA
PE ^ OB
PD = PE OP 是 AOB 的平分线
用途:判定一条射线是角平分线
A
练一练
填空: (1). ∵∠1= ∠2,DC⊥AC, DE⊥AB DC=DE ∴___________
角平分线的判定的应用书写格式:
D
A P

PD ^ OA
PE ^ OB
O
PD= PE
\OP 是 AOB的平分线(到一个角的
B 两边的距离相等的点, 在这个角的平分线上)
E
角平分线的性质:在角的平分线上的点到这
个角的两边的距离相等。
D P E
A C
∵ \
OP 是 AOB 的平分线
PD ^ OA
PE ^ OB
例1.如图,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别是E、F, 且BE=CF。求证:AD是△ABC的角平分线。
A
E B
F
D
C
课堂练习
已知:如图,BE⊥AC于E, CF⊥AB于F, BE、CF相交于D, BD=CD 。 求证: AD平分∠BAC 。

等边三角形角平分线定理

等边三角形角平分线定理

等边三角形角平分线定理定理:等边三角形中, 三条角平分线交于一个点,并且这个点是重心、垂心、外心、内心的交点。

证明:1. 假设三角形ABC是一个等边三角形,三个角的测量都是60度。

2. 连接三角形的顶点A与底边BC的中点D,同时也连接角A的平分线AE。

同样,连接B与平分线CF, C与平分线BG.3. 由于等边三角形中,三个角的测量都是60度,所以可以得到角DAB=30度,角FAE=30度,角GBC=30度。

4. 同样由于等边三角形中,AB=BC=AC,可以得到三角形ABD与三角形ACD 是相等的,即AB=AC,角DAB=角DAC=30度。

5. 这意味着线段AD是三角形ABC的一个角平分线。

同样由于线段BE和CF 也分别是角B和角C的平分线,我们可以得到三角形ABC中的三条角平分线。

6. 接下来,我们要证明这三条角平分线会交于同一个点。

假设它们交于点O。

7. 由于角DAB=30度,角FAE=30度,角GBC=30度,所以可以得到角BOC=120度。

8. 同时,由于线段AD是角A的平分线,所以可以得到角BAD=angleCAD=30度。

9. 又因为AB=AC,所以可以得到三角形ABO与三角形ACO是相等的,即AB=AC, AO=AO, 和角BAO=角CAO=30度。

10. 因此,三角形ABO与ACO是相等且全等的,从而可以得到BO=CO,即点O位于线段BC的中垂线上。

11. 可以类似地证明点O也位于线段AB和线段AC的中垂线上,所以它是三角形ABC的重心。

12. 另一方面,由于三角形ABC是等边三角形,所以利用此前已经证明过的结论,点O也是三角形ABC的垂心、外心和内心的交点。

综上所述,等边三角形中,三条角平分线交于一个点,并且这个点是重心、垂心、外心、内心的交点。

角平分线的判定定理ppt课件

角平分线的判定定理ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
4、如图,已知△ABC的外角∠CBD和∠BCE的
平分线相交于点F,
求证:点F在∠DAE的平分线上.
G
P
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
课内拓展延伸
如图,△ABC中,点O是∠BAC与∠ABC的平分线的 交点,过O作与BC平行的直线分别交AB、AC于D、E.已 知△ABC的周长为15,BC的长为6,求△ADE的周长.
A
D OE
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
的判定 到角的两边的距离相等的点
的平分线上。
在角
D
已知:如图,PD^OA ,PE^OB,
垂足分别是 D、E,PD=PE,
O
求证:点P在 AOB的角平分线上。
证明: 作射线OP
∵ PD^OA PE^OB
E
\ PD P OE 9O 0
在 Rt△PDO 和Rt△PEO 中,
OP = OP (公共边)
B
(1). ∵DC⊥AC ,DE⊥AB ,DC=DE ∴_∠__1_=_∠__2___
(_到__一__个__角__的__两__边__的__距__离__相__等__的__点__,__在__这__个__角__平__分__线__上__。)

(完整版)角平分线定理

(完整版)角平分线定理

角平分线定理角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

【注】三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

■定理1:在角平分线上的任意一点到这个角的两边距离相等。

■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。

■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC提供四种证明方法:已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC已知和证明1图证明:方法1:(面积法)S△ABM=(1/2)·AB·AM·sin∠BAM,S△ACM=(1/2)·AC·AM·sin∠CAM,∴S△ABM:S△ACM=AB:AC又△ABM和△ACM是等高三角形,面积的比等于底的比,证明2图即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC方法2(相似形)过C作CN‖AB交AM的延长线于N则△ABM∽△NCM∴AB/NC=BM/CM又可证明∠CAN=∠ANC∴AC=CN∴AB/AC=MB/MC证明3图方法3(相似形)过M作MN‖AB交AC于N则△ABC∽△NMC,∴AB/AC=MN/NC,AN/NC=BM/MC又可证明∠CAM=∠AMN∴AN=MN∴AB/AC=AN/NC∴AB/AC=MB/MC方法4(正弦定理)作三角形的外接圆,AM交圆于D,由正弦定理,得,证明4图AB/sin∠BMA=BM/sin∠BAM,∴AC/sin∠CMA=CM/sin∠CAM又∠BAM=∠CAM,∠BMA+∠AMC=180°sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC。

角平分线的判定定理

角平分线的判定定理

A
练一练
填空: (1). ∵∠1= ∠2,DC⊥AC, DE⊥AB DC=DE ∴___________
C
1 2
E
D B
(___________________________________________) 在角平分线上的点到角的两边的距离相等 (2). ∵DC⊥AC ,DE⊥AB ,DC=DE
∠1= ∠2 ∴__________
(_到一个角的两边的距离相等的点,在这个角平分线上。 ______________________________________________)
2、点P在∠AOB的内部,且PD⊥OA, o 垂足分别为D、E,PD=PE,∠AOB=60 , 则∠AOP= .
D O E A P
B
3、如图所示,DB⊥AB,DC⊥AC,垂足 o 分别为B、C,BD=DC,∠BAC=100 , o o 则∠BAD= ,∠CAD= .
例1.如图,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别是E、F, 且BE=CF。求证:AD是△ABC的角平分线。
A
E B
F
D
C
4、如图,OC是∠AOB的平分线,P是OC 上的一点,PD⊥OA于D,PE⊥OB于E, F是OC上的另一点,连接DF,EF。求证: DF=EF
PE OB
O
D
A P
\
PD= PE
E OP 是 AOB的平分线(到一个角的 B 两边的距离相等的点, 在这个角的平分线上)
角的平分线的性质
角的平分线的判定
图形
C
P P
C
已知 条件
OP平分∠AOB PD⊥OA于D PE⊥OB于E
PD=PE PD⊥OA于D PE⊥OB于E OP平分∠AOB

数学角平分线的性质定理及其逆定理

数学角平分线的性质定理及其逆定理
∠1=∠2 ∴__________
(_到一个角的两边的距离相等的点,在这个角平分线上。 ______________________________________________)
在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB, DF⊥AC,垂足分别为点E、F,且DE=DF,求DE的长。
D O

求证:点P在∠AOB的平分线上. 分析:要证明点P在∠AOB的平分线上,可以先作出过点P 的射线OC,然后证明∠AOC=∠BOC.
E B
二.角平分线性质定理的逆定理
逆定理: 到一个角的两边距离相等的点, 在这个角的平分线上.
用符号语言表示为: ∵PD⊥OA,PE⊥OB,垂足分别是D,E, 且PD=PE O ∴点P在∠AOB的平分线上
A
C C′
B
三.尺规作图 角平分线的作法
用尺规作角的平分线. 已知:∠AOB,如图. 求作:射线OC,使∠AOC=∠BOC 作法:
O B
A
1.在OA和OB上分别截取OD,OE,使OD=OE. 2.分别以点D和E为圆心,以大于DE/2长为
半径作弧,两弧在∠AOB内交于点C 3.作射线OC.
2:若已知超市P到道路OA 的距离为600 米, 求P到道路OB的距离。
A
M
D
P
N O B
做一做
1
三角形内角的角平 分线
剪一个三角形纸片通过折叠 找出每个角的平分线. 观察这三条角平分线, 你发现了什么? 结论:三角形三个角的平 分线相交于一点. 你能证明这个命题吗? 老师期望: 你能写出规范的证明过程.
驶向胜利 的彼岸
小结
拓展
回味无穷
一.定理 角平分线上的点到这个角的两边距 离相等. 二.逆定理 在一个角的内部,且到角的两边距 离相等的点,在这个角的平分线上.

角平分线的判定-八年级数学上册课件(沪科版)

角平分线的判定-八年级数学上册课件(沪科版)
F D
E
13、如图,在 △ABC 中,∠BAC 和 ∠ABC 的平分线相交于
点 O,过点 O 作 EF∥ AB交 BC 于 F,交 AC 于 E,过点 O
作OD⊥BC 于 D. (1) 求证:∠AOB=90°+ 1 ∠C;
2 (2) 求证:AE+BF=EF;
(3) 若 OD=a,CE+CF=2b,请用含 a,b 的代数式表示
OP平分∠AOB
(角的内部的)点到角两 边的距离相等
建一个货物中转站,要求它到三条公路的距离相等,可选择的 地址有几处? 画出它的位置.
P2
l1
P1 P4
P3
l
l2
比 一
角的平分线的性质 角的平分线的判定

图形
C
C
P
P
已知 条件
OP平分∠AOB PD⊥OA 于 D PE⊥OB 于 E
结论
PD=PE
点在角平分线上
性质 判定
PD=PE PD⊥OA 于 D PE⊥OB 于 E
∴ ∠BED=∠CFD=90° (垂直的定义) 在△BED和△CFD中
∠BDE=∠CDF (对顶角相等) ∵ ∠BED=∠CFD (已证)
BE=CF (已知) ∴ △BED≌△CFD (AAS) ∴ DE=DF (全等三角形的对应边相等) 又∵ DF⊥AC,DE⊥AB ∴ AD平分∠BAC
(角的内部到角两边距离相等的点在角的平分线上)
15.4.2 角平分线的判定
知识回顾
角平分线的性质:
定理: 角平分线上的点到角两边的距离相等.
特别提醒: ① 点一定要在角平分线上 ② 点到角两边的距离 是指 点到角两
A C
P

三角形内角平分线定理

三角形内角平分线定理

三角形内角平分线定理
定理:三角形任意两边之比等于它们夹角的平分线分对边之比。

三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线。

三角形的一个角(内角)的角平分线缴其对边的点所连成的线段,叫作这个三角形的一条角平分线。

定理1:
角平分线上的的边这个角两边的距离成正比。

逆定理:在角的内部到一个角的两边距离相等的点在这个角的.角平分线上。

定理2:
三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

逆定理:
如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。

证明角平分线判定方法

证明角平分线判定方法

证明角平分线判定方法从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,三角形三条角平分线的交点叫做三角形的内心。

下面我给大家带来证明角平分线判定(方法),盼望能关心到大家!证明角平分线判定方法角的内部到角的两边距离相等的点,都在这个角的平分线上。

因此依据直线公理。

证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB证明:在Rt△OPD和Rt△OPE中:OP=OP,PD=PE∴Rt△OPD≌Rt△OPE(HL)∴∠1=∠2∴ OC平分∠AOB方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M,N。

2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。

3.作射线OP。

射线OP即为所求。

证明:连接PM,PN在△POM和△PON中∵OM=ON,PM=PN,PO=PO∴△POM≌△PON(SSS)∴∠POM=∠PON,即射线OP为角AOB的角平分线当然,角平分线的作法有许多种。

方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;2.连接CN与DM,相交于P;3.作射线OP。

射线OP即为所求。

证明角平分线判定定理1.在角的内部,假如一条射线的端点与角的顶点重合,且把一个角分成两个相等的角,那么这条射线就是这个角的平分线。

2.在角的内部,到一个角两边距离相等的点在这个角的平分线上。

3.两个角有一条公共边,且相等。

定理1:角平分线上的点到这个角两边的距离相等。

逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

逆定理:假如三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。

证明角平分线判定性质在三角形中的性质。

1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心可以在三角形内部画一个内切圆)。

数学人教版八年级上册角平分线有关的定理

数学人教版八年级上册角平分线有关的定理

角平分线定理
角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.
三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线.
注:三角形的角平分线不是角的平分线,是线段.角的平分线是射线.
拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心).
定理1:角平分线上的任意一点到这个角的两边距离相等.
逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上.
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、学习目标
1、能用三角形全等的知识,解释角平分线的原理;
2、会用尺规作已知角的平分线.
二、温故知新
如图1,在∠AOB 的两边OA 和OB 上分别取OM=ON ,MC ⊥OA ,NC ⊥OB .MC 与NC 交于C 点.
求证:(1) Rt △MOC ≌Rt △NOC
(2) ∠MOC=∠NOC .
三、自主探究 合作展示
探究(一)
1、依据上题我们应怎样平分一个角呢?
2、思考:把上面的方法改为“在已知∠AOB 的两边上分别截取OM=ON ,使MC=NC ,连接
OC ,则OC 即为∠AOB 的平分线。

”结论是否仍然成立呢?
3、受上题的启示,我们可以制作一个如图2所示的平分角的仪器:其中AB=AD ,BC=DC .将
点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分
线.你能说明它的道理吗?
探究(二)
思考:如何作出一个角的平分线呢?
已知:∠AOB .
求作:∠AOB 的平分线.
作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .
(2)分别以M 、N 为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C .
(3)作射线OC ,射线OC 即为所求.
请同学们依据以上作法画出图形。

议一议: 1、在上面作法的第二步中,去掉“大于12
MN 的长”这个条件行吗? 2、第二步中所作的两弧交点一定在∠AOB 的内部吗?
探究(三)
如图3,OA 是∠BAC 的平分线,点O 是射线AM 上的任意一点.
操作测量:取点O 的三个不同的位置,分别过点O 作OE ⊥AB ,OD ⊥AC,点D 、E 为垂足,
测量OD 、OE 的长.将三次数据填入下表:
观察测量结果,猜想线段OD 与OE 的大小关系,写出结论:
下面用我们学过的知识证明发现: 已知:如图4,AO 平分∠BAC ,OE ⊥AB ,OD ⊥AC 。

图2 图1 OD OE
第一次
第二次
第三次
B
O A
求证:OE=OD 。

四、双基检测
1、如图5所示,在△ABC 中,∠C= 90,BC=40,AD 是∠BAC 的平分线交BC 于D ,且DC :DB=3:5,则点D 到AB 的距离是___________。

2、如图6所示,∠AOC=∠BOC ,CM ⊥OA ,CN ⊥OB ,垂足分别为M 、N ,则下列结论中错误的是( )
A .CM=CN B. OM=ON C. ∠MCO= ∠NCO D. ON=CM
3、如图7,在Rt △ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,则:
⑴图中相等的线段有哪些?相等的角呢?
⑵哪条线段与DE 相等?
五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。

图 4
A B C D
图5 图6 图7 A
E D B C。

相关文档
最新文档