复变函数论及其应用9解读

合集下载

完整版本复变函数学习知识点梳理解读

完整版本复变函数学习知识点梳理解读

第一章 :复数与复变函数这一章主假如解说复数和复变函数的有关观点 ,大多数内容与实变函数近似 ,不难理解。

一、复数及其表示法介绍复数和几种新的表示方法 ,其实就是把表示形式变来变去 ,方便和其余的数学知识联系起来。

二、复数的运算高中知识 ,加减乘除 ,乘方开方等。

主假如用新的表示方法来解说了运算的几何意义。

三、复数形式的代数方程和平面几何图形就是把实数替代成复数 ,因为复数的性质 ,因此平面图形的方程式二元的。

四、复数域的几何模型——复球面将复平面上的点 ,一一映照到球面上 ,意义是扩大了复数域和复平面 ,就是多了一个无量远点 ,此刻还不知道有什么意义 ,猜想应当是方便将微积分的思想用到复变函数上。

五、复变函数不同于实变函数是一个或一组坐标对应一个坐标 ,复变函数是一组或多组坐标对应一组坐标 ,因此看起来仿佛是映照在另一个坐标系里。

六、复变函数的极限和连续性与实变函数的极限、连续性同样。

第二章 :分析函数这一章主要介绍分析函数这个观点 ,将实变函数中导数、初等函数等观点移植到复变函数系统中。

一、分析函数的观点介绍复变函数的导数 ,近似于实变二元函数的导数,求导法例与实变函数同样。

所谓的分析函数 ,就是函数到处可导换了个说法 ,并且只合用于复变函数。

而复变函数能够分析的条件就是 : μ对 x 与ν对 y 的偏微分相等且μ对 y 和ν对 x 的偏微分互为相反数 ,这就是柯西黎曼方程。

二、分析函数和调解函数的关系出现了新的观点:调解函数。

就是对同一个未知数的二阶偏导数互为相反数的实变函数。

而分析函数的实部函数和虚部函数都是调解函数。

而知足柯西黎曼方程的两个调解函数能够构成一个分析函数 ,而这两个调解函数互为共轭调解函数。

三、初等函数和实变函数中的初等函数形式同样,可是变量成为复数 ,因此有一些不同的性质。

第三章 :复变函数的积分这一章 ,主假如将实变函数的积分问题,在复变函数这个系统里进行了系统的转化 ,让复变函数有独立的积分系统。

复变函数论总结

复变函数论总结

复变函数论总结摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。

关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换1引言《复变函数论主要内容》第一章复变函数 complex function第二章复变函数的积分 complex function integral第三章幂级数展开 power series expansion第四章留数定理 residual theorem第五章傅立叶变换 Fourier integral transformation第一章复变函数§1.1 复数及复数的运算§1.2 复变函数§1.3导数§1.4解析函数§1.1 复数及复数的运算1.复数的概念的数被称为复数,其中。

;;i为虚数单位,其意义为当且仅当时,二者相等复数与平面向量一一对应z平面虚轴y. (x,y)rx实轴模幅角 (k)注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义2.复数的表示代数表示三角表示指数表示一个复数z的共轭复数注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义4.复数的运算复数的加法法则:复数与的和定义是两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,且,当同一方向时等号成立。

复数的减法法则:且有复数的乘法法则:乘法的交换律、结合律与分配律都成立复数的除法法则:注意:采用三角式或指数式比较方便。

复变函数论.ppt

复变函数论.ppt
零点。
• 证: 取
f z at z nt
z a0 z n at1z nt1 at1z nt1 an
易验证在单位圆周上,有
f z z
• 依儒歇定理知 pz f z z
在单位圆内的零点,与 f z at z nt 在单位圆一样多,即 n t 个。
辅导课程十八
§3 辐角原理与儒歇定理
• 1 对数残数与辐角原理
形如
1
2i

f f
zzdz
的积分称为对数残数
n • 引理6.4 (1)设 a 为 f z 的
a 级零点,则 必为函数 f z 的
f z
一级极点,且
Rzeas
f f
z
z



n
• (2)设 b 为 f z 的 m 级极点,
• 例6.14 试证:当 a e 时,方程
e z az n 0
在单位圆 z 1 内有 n 个根。
• 证: 在单位圆周 z 1 上,有 az n a e e z eRe z e z e az n e z
• 由儒歇定理
N en azn,z 1 N azn,z 1 n
• (2) 在 C 上, f z z
则 N f ,C N f ,C
例6.13 设 n 次多项式
pz a0 z n at z nt an a0 0
合条件
at a0 at1 at1 an
则 pz 在单位圆 z 1 内有 n t 个
f z f z

z
n
a

g z gz
因右端第二式解析,故 a 为 f z 的 一级极点,且(1)式成立。 f z

【复变函数论】全套课件

【复变函数论】全套课件

1
znn|来自z |[cos(1Argz)
i sin( 1
Argz)]
n
n
n | z |[cos(1 arg z 2k ) i sin(1 arg z 2k )]
n
n
n
n
可以看到,k=0,1,2,…,n-1时,可得n个不同的
值,即z有n个n次方根,其模相同,辐角相差
一个常数,均匀分布于一个圆上。这样,复
z1 x1 iy1 x1 iy1 z1
三角表示的乘法:
利用复数的三角表示,我们可以更简单的表示 复数的乘法与除法 ,设
z1 | z1 | (cos Argz1 i sin Argz1)
z2 | z2 | (cos Argz2 isin Argz2)
则有 z1z2 | z1 || z2 | [cos( Argz1 Argz2 )
(a1 ib1)(a2 ib2 ) (a1a2 b1b2 ) i(a1b2 a2b1)
(a1 (a2
ib1) ib2 )
a1a2 a22
b1b2 b22
i
a2b1 a1b2 ) a22 b22
复数在四则运算这个代数结构下,构成一个
复数域(对加、减、乘、除运算封闭),记为 C,复数域可以看成实数域的扩张。
例2 则,z1z2 (x1iy1)(x2 iy2 )
(x1x2 y1y2 ) i(x1y2 y1x2 ) (x1x2 y1y2 ) i(x1y2 y1x2 ) [x1x2 ( y1)( y2 )] i[x1( y2 ) ( y1)x2 ] (x1 iy1)(x2 iy2 ) z1z2
| z1 / z2 || z1 | / | z2 |
Arg(z1 / z2 ) Argz1 Argz2

复变函数论

复变函数论

2. 复数的乘幂
定义 n个相同的复数z 的乘积,称为z 的n次幂,
记作z n,即z n=zzz(共n个).
设z=re iθ,由复数的乘法定理和数学归纳法可证 明 zn=rn(cos nθ+isin nθ)=rn einθ.
特别:当|z|=1时,即:zn=cosnθ+isin nθ,则有
2
22

sin

2
sin

2

i
cos

2


2 sin

2
cos


2


2


i sin

2


2


2 sin

ei

2


2

2
例4 用复数方程表示:
(1)过两点zj=xj+iyj (j=1,2)的直线;
y
(z)
L z1 z
z2
复数加、减法的 几何表示如右图:
y
z2
z1 z2
z2
0
z1 x
z1 z2 z2
关于两个复数的和与差的模,有以下不等式:
(1) | z1 z2 || z1 | | z2 | (2) | z1 z2 ||| z1 | | z2 || (3) | z1 z2 || z1 | | z2 | (4) | z1 z2 ||| z1 | | z2 ||
(cosθ+isinθ)n=cosnθ+isinnθ
定义
-----De Moivre公式.
zn

1 zn

复变函数论第三版钟玉泉ppt 3 shu-PPT精品文档79页

复变函数论第三版钟玉泉ppt 3 shu-PPT精品文档79页
第三章 复变函数的积分
第一节 复积分的概念及其简单性质
29.09.2019
1
1.有向曲线:
简单曲线(Jordan曲线): 无重点的连续曲线
光滑曲线:处处有切线,且切线随切点的移动而 连续转动的曲线
逐段光滑曲线:有限条光滑曲线衔接而成的连 续曲线
重点
重点
29.09.2019
重点
2
在讨论复变函数积分时,将要用到有向曲线的概 念,如果一条光滑或逐段光滑曲线规定了其起点 和终点,则称该曲线为有向曲线,曲线的方向是 这样规定的:
(1) 曲线C是开口弧段,
若规定它的端点P为起点,Q为终点,则
沿曲线 C 从 P 到Q 的方向为曲线C的正方向
把正向曲线记为C或C+.
y
BQ
而由Q到P的方向称为C的负方向, AP
负向曲线记为 C.
o
x
29.09.2019
3
(2) 如果 是简单闭曲线,规定人沿着曲线边 界行走时C ,区域内部总保持在人的左侧为正方 向,因此,逆时针方向为正方向,顺时针方向 为负方向.
o
1
19
(1)连接由点O到点1i的直线段的参数方程是
z (1i)t (0 t 1)
故CRezdz 01Re(1i)t(1i)dt
(1i)
1
tdt

1
i
0
2
29.09.2019
20
(2)先沿着正实轴从 O到1,再沿着平行于
虚轴的方向从 1到1 i
先沿着正实轴从 O到1,连接 0与1的直线段的参数方程为

5, 93
25

从而 1 dz C z i
1 dz 25.

复变函数的应用

复变函数的应用

复变函数的应用复变函数的应用数学与应用数学班数学是一门很抽象的学科,而复变函数更是如此,如果直接想象很难和实际联系起来。

经过两年的大学学习就目前学习的知识而言,感觉和复变函数联系比较紧密的是有两方面,一是电流方面;二是在信号方面。

我们日常中的电流都是交流三相的,而相位如果通过三角函数计算的话较为复杂和抽象,很多工程问题无法解决,引入虚数则较大简化了计算的过程,是很多工程问题迎刃而解。

可以通过RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。

这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。

成功而且巧妙的解决了电流的相位问题。

我们打电话,发短信是通过电磁波传递信号,在信号方面也极大的应用了复变函数。

信号分析和其他领域使用复数可以方便的表示周期信号。

模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。

利用傅立叶变换可将实信号表示成一系列周期函数的和。

这些周期函数通常用形式如下的复函数的实部表示:其中ω对应角频率,复数z包含了幅度和相位的信息。

于是当我们要的信息得以传递。

所以,不管是我们使用家用电器,用手机问候远方的朋友,还是使用卫星电视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——复变函数。

一、复变函数的简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况,它的一般形式是:bia ,其中i是虚数单位。

多复分析是数学中研究多个复变量的全纯函数的性质和结构的分支学科,它和单复变函数有着很强的渊源,但其特有的困难和复杂性,导致在研究的重点和方法上,都和单复变函数论有明显的区别.因为多复变全纯函数的性质在很大程度上由定义区域的几何和拓扑性质所制约,因此,其研究的重点经历了一个由局部性质到整体性质的逐步的转移.它广泛地使用着微分几何学、代数几何、拓扑学、微分方程等相邻学科中的概念和方法,不断地开辟前进的道路,更新和拓展研究的内容和领域。

复变函数解析的判定及其应用【文献综述】

复变函数解析的判定及其应用【文献综述】

毕业论文文献综述数学与应用数学复变函数解析的判定及其应用一、前言部分为了使负数开平方有意义,16世纪中叶意大利数学家卡尔丹引进了虚数,再一次扩大了数系,使实数域扩大到复数域。

关于复数理论最系统的叙述,是由瑞士数学家欧拉(Euler)作出的,他在1777年系统地建立了复数理论,发现了复指数函数和三角函数间的关系,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上。

用符号“i”作为虚数的单位,也是他首创的。

19世纪,复变函数的理论经过法国数学家柯西(Cauchy)、德国数学家黎曼(Riemann)和魏尔斯特拉斯(Weierstrass)的巨大努力,形成了非常系统的理论,并且深刻地渗入到代数学、解析数论、微分方程、概论统计、计算数学和拓扑学等数学分支;同时,它在热力学、流体力学和电学等方面也有很多的应用。

20世纪以来,复变函数已被广泛地应用在理论物理、弹性理论和天体力学等方面,与数学中其他分支的联系也日益密切。

致使经典的复变函数理论,如整函数与亚纯函数理论、解析函数的边值问题等有了新的发展和应用。

并且,还开辟了一些新的分支,如复变函数逼近论、黎曼曲面、单叶解析函数论、多复变函数论、广义解析函数论和拟共形映射等。

另外,在种种抽象空间的理论中,复变函数还常常为我们提供新思想的模型。

复变函数研究的中心对象是所谓解析函数。

因此,复变函数论又称为解析函数论,简称函数论。

解析函数是在某一区域内处处可微的复变函数[1]。

除了用定义判定一个复变函数是否解析之外,经过中外数学家将近两百年的不懈努力,还研究出了复变函数在区域内解析的其他各种判别条件,包括充分条件,必要条件和充要条件。

此外,研究解析函数自然也少不了要研究其性质。

通过本课题的研究,旨在全面总结复变函数解析的判定,解析函数的性质以及解析函数在积分、微分、幂级数展开以及留数运算中的诸多应用。

本文基于复变函数的一般理论,参考国内外相关文献,就解析函数的历史背景、相关应用和研究相关问题的方法进行综述。

复变函数论

复变函数论

arg
z

arctg
3 1


3



2 3


Argz arg z 2k 2 2k ,
3
(k 0,1,2,3)
z

2(cos(
2

)

sin(
2

))

i(
2e
2 3
)
3
3
二、复数的运算:
1.相等: x1 iy1 x2 iy2 x1 x2, y1 y2 2.四则运算:运算规律
复数形式的方程表示时更简明。
2
2i
实数形式复数形式
z xiy
例 6: 连接 z1及 z2两点的线段的参数方程为:
z z1 t(z2 z1) (o t 1)
过 z1及z2两点直线的参数方程为:
z z1 t(z2 z1) ( t )
例 7: 求下列方程所表示的曲线
2
2
当 x 0, y 0 时,
x 0, y 0, arg z 0

x

0,
y

0, arg
z


当 x 0 时,
一象限 二象限
arg z( (0, )) arctan y ( (0, ))
2
x
2
arg
z (

(
,
))

arctan
y
(
(

,0))
(x 2)2 y2 9 .
2)几何上,该方程表示到复平面上点 2 和点 4
距离相等的点的轨迹,所以方程表示的曲线就是连接

复变函数中解析函数的理论分析及应用

复变函数中解析函数的理论分析及应用

复变函数中解析函数的理论分析及应用【摘要】本文对解析函数的概念进行分析,给出了判断函数解析性的几种方法,并通过例子对解析函数的数学应用和实际应用都进行了分析。

【关键词】解析函数;解析;复变函数0 前言复变函数这门数学分支在数学理论和实际中都有非常强大应用性。

而解析函数是复变函数特有的内容,在复变函数理论中起着重要的作用,解析函数在理论和实际中都有着广泛的应用,所以对解析函数的理论及应用进行分析有非常大的必要性。

1 解析函数的概念如果函数f(z)不仅在z0处可导,而且在z0的某个邻域内的任意一点可导,则称f(z)在z0解析。

如果f(z)在区域D内的任一点解析,则称f(z)在区域D内解析。

注:1)如果f(z)在区域D内解析,那么D内每一点都是它的内点,从而D是开区域。

2)如果说函数f(z)在闭圆盘z≤1上解析,指的是在包含该圆盘的某个区域内解析。

3)f(z)在z0解析,则f(z)在z0可导;f(z)在z0可导,则f(z)在z0不一定解析。

但是f(z)在区域D内解析和可导是等价的。

4)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。

2 函数解析的判定2.1 根据解析函数的定义判定要考察函数在某一点的解析性,首先看函数在该点是否有定义,然后看函数在该点及其邻域内是否可导。

例:因为f(z)=z2在整个复平面上处处可导,且f’(z)=2z则由解析的定义知f(z)在整个复平面上解析。

2.2 根据初等函数的解析性判定若复变数函数为初等函数,则可根据初等函数的解析性进行判定1)指数函数ez在整个复平面上解析;2)对数函数Lnz的主值函数和各个分支在除去原点和负实轴外的每一点解析;3)幂函数zα,α为正整数时,幂函数在整个复平面上解析;α为负整数时,幂函数在除原点外的复平面上解析;α为既约分数、无理数、虚数时,在除去原点和负实轴的复平面上解析。

4)sinz,cosz在整个复平面上解析;tanz,cotz,secz,cscz在各自的定义域内解析5)shz,chz在整个复平面上解析。

复变函数课件

复变函数课件

7
学习方法
• 复变函数论作为一门学科,它不仅在内 容上与实变函数微积分有许多类似之处, 而且在研究问题的方面与逻辑结构方面 也非常类似 .但也有其自身的特点和研究 方法与研究工具,在学习过程中,应注 意与微积分理论的比较,从而加深理解, 同时也须注意复变函数本身的特点,并 掌握它自身所固有的理论和方法,抓住 要点,融会贯通.
(a , b) (c , d ) (ac bd , bc ad )
ac bd bc ad 2 2 ( a , b) ( c , d ) ( 2 2 , 2 2 ) , c d 0 c d c d
27
首页
上页
返回
下页
结束

2 复平面
2.1 复平面的定义
复数 z x iy 与有序实数对 ( x , y ) 成一一 对应. 因此, 一个建立了直角坐标系的平面可以 用来表示复数, 通常把横轴叫实轴或x 轴, 纵轴 叫虚轴或 y 轴. 这种用来表示复数的平面叫复平 面.
9
参考书目:
• [4] 余家荣,复变函数,高等教育出版社. 北京:高等教育出版社,2000.3 • [5] 庞学诚、梁金荣、柴俊编著,复变函 数,科学出版社,2003.9 • [6] 盖云英、邢宇明编,复变函数与积分 变换(中文版、英文版),北京:科学 出版社,2007.8
10
第一章 复数与复变函数
Ch 0 引言 复变函数课程简介
1
研究对象
• 复变函数就是自变量为复数的函数.复变 函数论是分析学的一个分支,故又称复 分析. • 其主要研究对象是解析函数 .
2
研究的主要内容
• 本课程主要讲授:单复变函数的一些基本知识, 以解析函数为研究对象,分别从导数、积分、 级数、残数、映射五个方面来刻画解析函数的 性质及其应用. • 首先从复数域开始,引入复变函数,再给出解 析函数的概念,再以它为研究对象,介绍解析 函数的导数、积分、解析函数的幂级数表示法, 解析函数的罗朗展式与孤立奇点,残数理论及 其应用.

复分析与复变函数理论

复分析与复变函数理论

复分析与复变函数理论复分析是数学中的一个重要分支,它研究的对象是复变函数及其性质。

复变函数理论在数学、物理和工程等领域有广泛的应用。

本文将介绍复分析的相关概念和定理,以及复变函数的主要性质。

一、复数的引入复数是数学中一个重要的概念,它是由实数与虚数的结合所得到的数。

复数可用a+bi的形式表示,其中a和b分别是实数部分和虚数部分。

复数在平面上可以用复平面表示,实数部分表示复平面上的横坐标,而虚数部分表示复平面上的纵坐标。

二、复变函数的定义复变函数是一个以复数作为自变量和因变量的函数。

形式上可以表示为f(z)=u(x,y)+iv(x,y),其中z=x+yi是复平面上的点,u(x,y)和v(x,y)分别是实部和虚部的函数。

三、解析函数与调和函数解析函数是指在某个区域内可导且导数处处存在的复变函数。

解析函数满足柯西-黎曼方程,即满足实部和虚部的一阶偏导数条件。

调和函数是实部和虚部都是调和函数的复变函数。

四、复变函数的性质1. 高斯型积分定理:对于区域Ω内的可微的解析函数f(z),有∬_Ω▒f(z)dzd\overline{z}=0。

2. 柯西积分公式:若f(z)在闭合曲线C内解析,在曲线C内任意点z_0处有f(z)=\frac{1}{2\pi i}\oint_C\frac{f(\zeta)}{\zeta -z}d\zeta 。

3. 柯西-黎曼方程:设f(z)=u(x,y)+iv(x,y)是C内的解析函数,则它在C内的充要条件是u(x,y)和v(x,y)满足调和方程。

五、留数定理留数定理是复分析中的一个重要定理,它用于计算由解析函数围出的闭合曲线内的积分。

留数定理的核心思想是通过计算函数在奇点处的留数来求解积分的值。

六、主要的复变函数1. 指数函数:指数函数e^z在复平面上的图像是指数曲线。

2. 对数函数:对数函数lnz在复平面上的图像是一族以原点为极点的曲线。

3. 三角函数:正弦函数sinz和余弦函数cosz在复平面上也是周期函数。

复变函数论

复变函数论

第二章 解析函数 定义2.1 设函数w=f(z)在z0的邻域内或包含z0 的区域D内有定义,考虑比值 ∆w f(z)-f(z0) f(z0+∆z)-f(z0) = z-z0 = (∆z≠0), ∆z ∆z
如果当z按任意方式趋于z0时,即当∆z按任意方式 趋于零时,比值∆w/ ∆z的极限存在,且有极限,则称 此极限为函数f(z)在点z0的导数,并记为f’(z),即: ∆w f(z)-f(z0) f(z0)=lim ∆z =lim z-z0 , ∆z->0 z->z
定义1.7 设x(t)及y(t)是实变数(t)的两个实函数,在 闭区间[α,β]上连续,则由方程组{x=x(t),y=y(t)}或由 方程z=x(t)+iy(t) (α≤t≤β)(记为:z=z(t)) 所决定的 点集C,称为z平面长的一条连续曲线.z(α)及z(β) 分别为C的起点和终点;对满足α≤t1≤β, α≤t2≤β, t1≠t2的t1及t2,当z(t1)=z(t2)成立时,点z(t1)称为曲 线的重点;凡无重点的连续曲线,称为简单曲线或 约当曲线;z(α)=z(β)的简单曲线称为简单闭曲线. 简单曲线是z平面上的一个有界闭集.
全体复数并引进运算后就称为复数域.
2. 复平面 一个复数z=x+iy本质上是由一对有序实数 (x,y)唯一确定的.于是能够建立平面上所有的点 和全体复数间一一对应的关系. 由于x轴上的点对应着实数,故x轴称为实轴;y 轴上的非原点的点对应着纯虚数,故y轴称为虚 轴.这样表示的平面称为复平面或z平面. y z y
复 变 函 数 论
数学系
第一章 复数与复变函数 第二章 解析函数 第三章 复变函数的积分 第四章 解析函数的幂级数表示法 第五章 解析函数的罗朗展式 第六章 残数理论及其应用 第七章 保形变换 第八章 解析开拓 第九章 调和函数

浅谈复变函数论

浅谈复变函数论

浅谈复变函数论王璐 20091105168数学科学学院信息与计算科学专业 2009级信息2班指导教师海泉摘 要 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。

关键词 复变函数、解析函数、初等解析函数、复变函数的导数、复变函数的积分、柯西定理、复变函数就是自变量为复数的函数,复变函数论是分析学的一个分支,故又称复分析。

我们研究的主要对象,是在某种意义下可导的复变函数,通常称为解析函数。

为建立这种解析函数的基础,首先引入: 1复数及复平面 1.1复数域每个复数具有iy x z +=的形状,其中x 和y 是实数,i 是虚数单位(-1的平方根)。

x 和y 分别称为实部和虚部,分别记作:z x Re =,z y Im =。

复数和相等是指它们的实部和虚部分别相等。

如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,则z 称为一个虚数;如果0Im ≠z ,0Re =z ,则z 为一个纯虚数。

1.2复数的四则运算复数的四则运算定义为:())()()(21212211b b i a a ib a ib a ±+±=+±+)()())((122121212211b a b a i b b a a ib a ib a ++-=++22222112222*********)()(b a b a b a i b a b b a a ib a ib a +-+++=++ 复数在四则运算这个代数结构下,构成一个复数域(对加,减,乘,除运算封闭),记为C ,复数域可以看成实数域的扩张。

1.3复平面复数域C 也可理解成平面R R ⨯,我们称C 为复平面。

作映射:),(:2y x iy x z R C +=→则在复数C 与平面R R ⨯之间建立了一个一一对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档