高三数学模拟试卷3
2025届江西省南昌三校高三第三次模拟考试数学试卷含解析
2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。
2024年高考第三次模拟考试高三数学(考试版)
2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。
山东省高中名校2025届高三第三次模拟考试数学试卷含解析
山东省高中名校2025届高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李B .小王C .小董D .小李2.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)23.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④4.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613655.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .607.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .28.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .439.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .111.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<12.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .8二、填空题:本题共4小题,每小题5分,共20分。
2024年枣庄市高三数学第三次调研模拟考试卷附答案解析
2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。
2025届浙江省温州市高三3月份第一次模拟考试数学试卷含解析
2025届浙江省温州市高三3月份第一次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE ',记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立2.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=的2,则E 的离心率为( ) A .32 B .12 C .22 D .233.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( )A .12B .16C .20D .84.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .155D 105 5.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .26.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .7.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m > B .12m ≥ C .1m D .m 1≥8.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A .12种B .24种C .36种D .72种 9.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ) A .B .2C .3D .6 10.函数()2f x ax =-与()x g x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( )A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞D .(2,e ⎤-∞⎦ 11.ABC ∆中,25BC =D 为BC 的中点,4BAD π∠=,1AD =,则AC =( ) A .5B .22C .65D .212.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π 二、填空题:本题共4小题,每小题5分,共20分。
广西柳州市2024届高三第三次模拟考试数学试题含答案
柳州市2024届高三第三次模拟考试数学(考试时间120分钟满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某中学的学生积极参加体育锻炼,其中有90%的学生喜欢足球或游泳,60%的学生喜欢足球,80%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .70%B .60%C .50%D .40%2.已知i 是虚数单位,若()()1i i a ++为实数,则实数a 的值为()A .1B .2-C .0D .1-3.已知()()12,3,3,,1AB AC t BC ===,则AB BC ⋅= ()A .3-B .2-C .2D .34.在天文学中,天体的明暗程度可以用星等或亮度来描述。
两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为()1,2k E k =,已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为()A .10.110B .10.1C .lg10.1D .10.110-5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有()A .60种B .48种C .30种D .10种6.已知,,,P A B C 是半径为2的球面上四点,ABC △为等边三角形且其面积为4,则三棱锥P ABC -体积的最大值为()A .334B .934C.D .153410.椭圆22221(0)x y a b a b+=>>的离心率为e ,右焦点为(),0F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点()12,P x x ()A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .与圆222x y +=的关系与e 有关8.设函数()f x 是定义在R 上的奇函数,且对于任意的,x y R ∈,都有()()f x f y x y -<-,若函数()()g x f x x -=,则不等式()()2220g x x g x -+-<的解集是()A .()1,2-B .()1,2C .()(),12,-∞-+∞ D .()(),12,-∞+∞ 二、选择题:本题共3小题,每小题6分,共18分。
山东省济南市2024届高三下学期3月模拟考试数学试题(含答案与解析)_9045
绝密★启用并使用完毕前2024年3月山东省济南市高三模拟考试数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 记等差数列{}n a 的前n 项和为n S .若57a =,102a =,则14S =()A 49B. 63C. 70D. 1262. 已知(),1a m = ,()31,2b m =- ,若//a b r r,则m =( )A. 1B. 1-C.23D. 23-3. 某公司现有员工120人,在荣获“优秀员工”称号的85人中,有75人是高级工程师.既没有荣获“优秀员工”称号又不是高级工程师的员工共有14人,公司将随机选择一名员工接受电视新闻节目的采访,被选中的员工是高级工程师的概率为( ) A.38B.1724C.45D.33404. 与抛物线22x y =和圆22(1)1x y ++=都相切的直线的条数为( ) A. 0B. 1C. 2D. 35. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C的对边,且cos sin a C C b +=,则A =( ) A.π6B.π4C.π3D.π26. 若sin1a =,()lg tan1b =,12c =,则( ) A. c b a <<B. b a c <<.C. b<c<aD. a c b <<7. 已知复数1z ,2z 满足1212222z z z z ==-=,则1212z z +=( ) A. 1B.C. 2D.8. 若不等式()ln e ,x a x b a b x ≤+≤∈R 对任意的31,2x ⎡⎤∈⎢⎥⎣⎦恒成立,则a 的最小值为( ) A. 323e -B. 325e 2-C33ln 22 D. 33e 3ln2- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知椭圆C :223448x y +=的两个焦点分别为1F ,2F ,P 是C 上任意一点,则( ) A. CB. 12PF F △的周长为12C. 1PF 的最小值为3D. 22PF PF ⋅的最大值为1610. 已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象在y 轴上的截距为12,π12是该函数的最小正零点,则( ) A. π3ϕ=B. ()()2f x f x '+≤恒成立C. ()f x 在π0,3⎛⎫⎪⎝⎭上单调递减D. 将()y f x =的图象向右平移π3个单位,得到的图象关于y 轴对称 11. 下列等式中正确的是( ) A.8881C 2k k ==∑B.82392C C k k ==∑ .C. 82111!8!k k k =-=-∑ D. ()8828160C C k k ==∑三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量()2~1,2X N ,则()21D X +的值为__________.13. 在三棱柱111ABC A B C -中,2AM MB = ,111A N mA C =,且//BN 平面1A CM ,则m 的值为________.14. 已知集合()()(){}2,,R A u x u x ax a b x b a b ==-++∈,函数()21f x x =-.若函数()g x 满足:对任意()u x A ∈,存在,R λμ∈,使得()()()u x f x g x λμ=+,则()g x 的解析式可以是_______.(写出一个满足条件的函数解析式即可)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为n S ,132a =且123n n S a +=-,令2n nn n b a +=.(1)求证:{}n a 为等比数列; (2)求使n b 取得最大值时的n 的值.16. 已知函数()2e e x xf x ax =+-.(1)当3a =时,求()f x 单调区间; (2)讨论()f x 极值点的个数.17. 抛掷甲、乙两枚质地均匀的骰子,所得的点数分别为a ,b ,记b a ⎡⎤⎢⎥⎣⎦的取值为随机变量X ,其中b a ⎡⎤⎢⎥⎣⎦表示不超过ba的最大整数. (1)求在0X >的条件下,bX a=的概率; (2)求X 分布列及其数学期望.18. 已知双曲线C :2214x y -=的左右顶点分别为1A ,2A ,过点()4,0P 的直线l 与双曲线C 的右支交于M ,N 两点.(1)若直线l 的斜率k 存在,求k 的取值范围;的的(2)记直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值; (3)设G 为直线1A M 与直线2A N 的交点,GMN ,12GA A △的面积分别为1S ,2S ,求12S S 的最小值. 19. 在空间直角坐标系O xyz -中,任何一个平面的方程都能表示成0Ax By Cz D +++=,其中,,,A B C D ∈R ,2220A B C ++≠,且(),,n A B C =为该平面的法向量.已知集合(){},,1,1,1P x y z x y z =≤≤≤,(){},,2Q x y z x y z =++≤,(){},,2,2,2T x y z x y y z z x =+≤+≤+≤.(1)设集合(){},,0M x y z z ==,记P M ⋂中所有点构成的图形的面积为1S ,Q M 中所有点构成的图形的面积为2S ,求1S 和2S 的值;(2)记集合Q 中所有点构成的几何体的体积为1V ,P Q 中所有点构成的几何体的体积为2V ,求1V 和2V 的值:(3)记集合T 中所有点构成的几何体为W . ①求W 的体积3V 的值;②求W 的相邻(有公共棱)两个面所成二面角的大小,并指出W 的面数和棱数.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 记等差数列{}n a 的前n 项和为n S .若57a =,102a =,则14S =()A. 49B. 63C. 70D. 126【答案】B 【解析】【分析】利用等差数列的项的“等和性”得到1149a a +=,再运用等差数列的前n 项和公式计算即得. 【详解】因{}n a 是等差数列,故1145109a a a a +=+=,于是1141414()63.2a a S +==故选:B2. 已知(),1a m = ,()31,2b m =- ,若//a b r r,则m =( )A. 1B. 1-C.23D. 23-【答案】A 【解析】【分析】根据平面向量共线的充要条件即可得解.【详解】因为(),1a m = ,()31,2b m =- ,//a b r r ,所以()2310m m --=,解得1m =. 故选:A .3. 某公司现有员工120人,在荣获“优秀员工”称号的85人中,有75人是高级工程师.既没有荣获“优秀员工”称号又不是高级工程师的员工共有14人,公司将随机选择一名员工接受电视新闻节目的采访,被选中的员工是高级工程师的概率为( ) A.38B.1724C.45D.3340【答案】C 【解析】【分析】求出没有荣获“优秀员工”称号高级工程师人数,得到公司的高级工程师总人数,从而得到概率. 【详解】由题意得,没有荣获“优秀员工”称号的高级工程师有120851421--=人, 则公司共有高级工程师的人数为752196+=, 故被选中的员工是高级工程师的概率为9641205=. 故选:C4. 与抛物线22x y =和圆22(1)1x y ++=都相切的直线的条数为( ) A. 0 B. 1C. 2D. 3【答案】D 【解析】【分析】设出切点坐标,利用导数的几何意义求出抛物线的切线方程,再由圆的切线性质列式计算即得.【详解】设直线与抛物线22x y =相切切点坐标为21(,)2t t ,由212y x =,求导得y x '=, 因此抛物线22x y =在点21(,)2t t 处的切线方程为21()2y t t x t -=-,即2102tx y t --=,的的依题意,此切线与圆22(1)1x y ++=1=,解得0=t或t =±数为3. 故选:D5. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C的对边,且cos sin a C C b +=,则A =( ) A.π6B.π4C.π3D.π2【答案】A 【解析】【分析】由题设条件和正弦定理化边为角,再利用和角公式进行拆角化简,即可得到tan A =角形内角范围即得.详解】由cos sin a C C b =以及正弦定理可得:sin cos sin sin A C A C B +=,因sin sin()sin cos cos sin B A C A C +A C =+=sin cos sin 0A C A C -=, 因0π,sin 0C C <<>,则得tan A =,又因0πA <<,故π6A =.故选:A.6. 若sin1a =,()lg tan1b =,12c =,则( ) A. c b a << B. b a c << C. b<c<a D. a c b <<【答案】C 【解析】【分析】利用三角函数和对数函数的单调性,放缩求解即可. 【详解】因为π1sin1sin 62>=,所以a c >,因为πtan1tan 3<=,所以()1lg tan1lg 2<<=,即b c <, 综上b<c<a , 故选:C【7. 已知复数1z ,2z 满足1212222z z z z ==-=,则1212z z +=( )A. 1B.C. 2D.【答案】B 【解析】【分析】首先分析题意,设出复数,求出复数的模找变量之间的关系,整体代入求解即可.【详解】设12i,i, z a b z c d =+=+则2===所以221a b +=,224,c d +=484()ac bd -+=,即1ac bd +=,则1212z z +====故选:B. 8. 若不等式()ln e ,x a x b a b x ≤+≤∈R 对任意的31,2x ⎡⎤∈⎢⎥⎣⎦恒成立,则a 的最小值为( ) A. 323e -B. 325e 2-C.33ln 22 D. 33e 3ln2- 【答案】A 【解析】【分析】因为ln e x ax b x≤+≤,所以ln e x x x bx a x ≤+≤,即求直线y bx a =+的纵截距a 的最小值,设()e x f x x =,利用导数证明()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦的图象上凹,所以直线与()f x 相切,切点横坐标越大,纵截距越小,据此即可求解. 【详解】因为ln e x ax b x≤+≤,所以ln e x x x bx a x ≤+≤,所以即求直线y bx a =+的纵截距a 的最小值, 设()e x f x x =,所以()e (1)0x f x x '=+>,所以()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦单调递增,所以()f x 在31,2x ⎡⎤∈⎢⎥⎣⎦的图象上凹,所以直线与()f x 相切,切点横坐标越大,纵截距越小,令切点横坐标为32,所以直线过点3233(,e )22,且直线y bx a =+斜率为325e 2所以y bx a =+的直线方程为3259e ()24y x =-,当1x =时,3322e 2.56 1.024ln 44y x x =>=>,即直线y bx a =+与()f x 相切时, 直线y bx a =+与()f x 无交点, 设()ln g x x x =,所以()ln 1g x x '=+,所以()g x 在32x =时斜率为3ln 12+,在1x =时斜率为1,均小于直线的斜率, 所以可令直线y bx a =+在32x =处与()f x 相交,在1x =处与ln y x x =相交,所以直线方程为32323e 02(1)03e (1)312y x x -=-+=--, 所以截距为323e -. 故选:A.【点睛】关键点点睛:本题关键在于ln e x ax b x≤+≤,ln e x x x bx a x ≤+≤,即求直线y bx a =+的纵截距a 的最小值的分析.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知椭圆C :223448x y +=的两个焦点分别为1F ,2F ,P 是C 上任意一点,则( )A. CB. 12PF F △的周长为12C. 1PF 的最小值为3D. 22PF PF ⋅的最大值为16【答案】BD 【解析】【分析】首先分析题意,利用椭圆性质进行逐个求解,直接求出离心率判断A ,利益椭圆的定义求出焦点三角形周长判断B ,举反例判断C ,利用基本不等式求最大值判断D 即可.【详解】由椭圆22:3448,C x y +=得221,1612x y +=则4,2,a b c ===所以12c e a ==,故A 错误; 易知12PF F △的周长为121228412F c F PF PF a ++=+2=+=故B 正确;当P 在椭圆长轴的一个端点时,1PF 取得最小值,最小值为422a c -=-=,故C 错误; 由基本不等式得122122PF PF PF PF +⋅≤()=16,当且仅当12PF PF =时取等,则12PF PF ⋅取得最大值16,故D 正确. 故选:BD.10. 已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象在y 轴上的截距为12,π12是该函数的最小正零点,则( ) A. π3ϕ=B. ()()2f x f x '+≤恒成立C. ()f x 在π0,3⎛⎫⎪⎝⎭上单调递减D. 将()y f x =的图象向右平移π3个单位,得到的图象关于y 轴对称 【答案】AC 【解析】【分析】由题意求出,ωϕ,然后由余弦型函数的性质判断即可.【详解】函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭图象在y 轴上的截距为12, 所以1cos 2ϕ=,因为π02ϕ<<,所以π3ϕ=.故A 正确;又因为π12是该函数的最小正零点, 所以ππcos 0123ω⎛⎫+= ⎪⎝⎭,所以πππ1232ω+=,解得2ω=,所以()πcos 23f x x ⎛⎫=+⎪⎝⎭,()π2sin 23f x x ⎛⎫=-+ ⎪⎝⎭',所以()()πππcos 22sin 22333f x f x x x x θ⎛⎫⎛⎫⎛⎫+=+-+=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭',故B 错误; 当π0,3x ⎛⎫∈ ⎪⎝⎭时,()ππ2,π0,π33x ⎛⎫+∈∈ ⎪⎝⎭,故C 正确; 将()y f x =的图象向右平移π3个单位,得到πππcos 2cos 2333y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是非奇非偶函数,图象不关于y 轴对称,故D 错误. 故选:AC.11. 下列等式中正确的是( ) A.8881C2kk ==∑B.82392CC k k ==∑C. 82111!8!k k k =-=-∑ D.()882816C C k k ==∑ 【答案】BCD 【解析】【分析】利用()81x +的展开式与赋值法可判断A ,利用组合数的性质2331C C C n n n ++=可判断B ,利用阶乘的裂项法可判断C ,构造()()()1688111x x x +=++求其含8x 的项的系数可判断D.【详解】对于A ,因为()801228888881C C C C x x x x +=++++ ,令1x =,得881288888121C C C 1Ck k ==++++=+∑ ,则88811C2k k ==-∑,故A 错误;的对于B ,因为2331C C C n n n ++=, 所以8222223222234833482CC C C C C C C C kk ==++++=++++∑322323448889C C C C C C =+++==+= ,故B 正确;对于C ,因为()()()()()()!1!11!1111!!!1!!1!!k k k k k k k k k k k k ------===---,所以()882211111111111!1!!1!2!2!3!7!8!8!k k k k k k ==⎡⎤-=-=-+-++-=-⎢⎥-⎣⎦∑∑ ,故C 正确. 对于D ,()()()1688111x x x +=++, 对于()161x +,其含有8x 的项的系数为816C ,对于()()8811x x ++,要得到含有8x 的项的系数,须从第一个式子取出()08,N k k k ≤≤∈个x ,再从第二个式子取出8k -个x , 它们对应的系数为()088288808C CC kk kk k =-==∑∑, 所以()8828160C C k k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:本题D 选项解决的关键是,利用组合的思想,从多项式()()8811x x ++中得到含有8x 的项的系数,从而得解.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量()2~1,2X N ,则()21D X +的值为__________.【答案】16 【解析】【分析】理解正态分布的均值、方差的含义即得()D X ,再利用随机变量的方差性质即可求得()21D X +. 【详解】由()2~1,2X N 可得2()24D X ==,则(21)4()16D X D X +==.故答案为:16 .13. 在三棱柱111ABC A B C -中,2AM MB = ,111A N mA C =,且//BN 平面1A CM ,则m 的值为________. 【答案】12 ##0.5 【解析】【分析】利用三棱柱模型,选择一组空间基底1,,AB a AC b AA c ===,将相关向量分别用基底表示,再利用//BN 平面1A CM ,确定1,,BN MA MC必共面,运用空间向量共面定理表达,建立方程组计算即得.【详解】如图,不妨设1,,AB a AC b AA c === ,依题意,1122,3233AM a MA MA AA c a AB +=-===-, 23MC AC AM b a =-=- ,因111A N mAC mb == ,则11,BN BA A N c a mb =+=-+又因//BN 平面1A CM ,故1,,BN MA MC必共面,即存在,R λμ∈,使1BN MA MC λμ=+,即22()()33c a mb c a b a λμ-+=-+-,从而有2()131m λμμλ⎧-+=-⎪⎪=⎨⎪=⎪⎩,解得12m =.故答案为:12.14. 已知集合()()(){}2,,R A u x u x ax a b x b a b ==-++∈,函数()21f x x =-.若函数()g x 满足:对任意()u x A ∈,存在,R λμ∈,使得()()()u x f x g x λμ=+,则()g x 的解析式可以是_______.(写出一个满足条件的函数解析式即可)【答案】()1g x x =-(满足()10g =,且一次项系数不为零的所有一次或者二次函数解析式均正确)【解析】【分析】根据()10u =,求得()10g =,则满足()10g =的一次函数或二次函数均可. 【详解】()()2u x ax a b x b =-++,()21f x x =-,()()10u a a b b =-++=,()10f =,()()()u x f x g x λμ=+,()()()()11110u f g g λμμ=+==,所以()10g =,则()g x 的解析式可以为()1g x x =-. 经检验,()1g x x =-满足题意. 故答案为:()1g x x =-(答案不唯一).【点睛】关键点点睛:本题的关键是根据函数的形式,确定函数的关键特征和条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为n S ,132a =且123n n S a +=-,令2n n n nb a +=.(1)求证:{}n a 为等比数列; (2)求使n b 取得最大值时的n 的值. 【答案】(1)证明见解析(2)32081. 【解析】【分析】(1)结合已知,由2n ≥时1n n n a S S -=-化简得132n n a a +=,再由2132a a =及等比数列的定义证明即可;(2)先求得()223nn b n n ⎛⎫=+ ⎪⎝⎭,利用作商法判断数列{}n b 的单调性即可求得最值.【小问1详解】由123n n S a +=-,可得2n ≥时,1122n n n n n a S S a a -+=-=- 即2n ≥,132n n a a +=,又因为132a =,所以294a =,2132aa =,综上,1n ≥,132n n a a +=,所以{}n a 为首项和公比均为32的等比数列. 【小问2详解】由(1)可得32n n a ⎛⎫= ⎪⎝⎭,所以()223nn b n n ⎛⎫=+ ⎪⎝⎭,2n ≥时,()()()()221221313nn n n n b b n n n -++==--, 令11n n b b ->,可得25n ≤<,(或令11nn b b -<,可得5n >), 可知1234567b b b b b b b <<<=>>>⋅⋅⋅, 综上,4n =或5n =时,n b 的取得最大值32081. 16. 已知函数()2e e x xf x ax =+-.(1)当3a =时,求()f x 的单调区间; (2)讨论()f x 极值点的个数.【答案】(1)单调递增区间为()0,∞+,单调递减区间为(),0∞-;(2)答案见解析. 【解析】【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)求出函数的导函数,分0a ≤、0a >两种情况讨论,分别求出函数的单调性,即可得到函数的极值点个数.小问1详解】当3a =时,()2e e 3x xf x x =+-定义域为R , 又()22e e 3x xf x '=+-,所以()()()2e 3e 1x xf x '=+-,由()0f x ¢>,解得0x >,此时()f x 单调递增; 由()0f x '<,解得0x <,此时()f x 单调递减,【所以()f x 的单调递增区间为()0,∞+,单调递减区间为(),0∞-. 【小问2详解】函数()f x 的定义域为R ,由题意知,()22e e x xf x a '=+-,当0a ≤时,()0f x ¢>,所以()f x 在R 上单调递增, 即()f x 极值点的个数为0个; 当0a >时,易知180a +>,故解关于t 的方程220t t a +-=得,1t =,2t =所以()()()122e exxf x t t '=--,又21104t -+=>=,10t =<,所以当2ln x t >时,()0f x ¢>,即()f x 在()2ln ,t +∞上单调递增, 当2ln x t <时,()0f x '<,即()f x 在()2,ln t -∞上单调递减, 即()f x 极值点的个数为1个.综上,当0a ≤时,()f x 极值点的个数为0个;当0a >时,()f x 极值点的个数为1个.17. 抛掷甲、乙两枚质地均匀的骰子,所得的点数分别为a ,b ,记b a ⎡⎤⎢⎥⎣⎦的取值为随机变量X ,其中b a ⎡⎤⎢⎥⎣⎦表示不超过ba的最大整数. (1)求在0X >的条件下,bX a=的概率; (2)求X 的分布列及其数学期望. 【答案】(1)23(2)分布列见解析,()4136E X = 【解析】【分析】(1)利用列举法结合条件概率公式即可得解;(2)写出随机变量的所有可能取值,求出对应概率,即可得出分布列,再根据期望公式求期望即可. 【小问1详解】记抛掷骰子的样本点为(),a b , 则样本空间为(){}Ω,16,16,Z,Z a b a b a b =≤≤≤≤∈∈,则()Ω36n =,记事件A =“0X >”,记事件B =“b bX a a ⎡⎤==⎢⎥⎣⎦”,则(){},16,Z,Z A a b a b a b =≤≤≤∈∈,且()21n A =,又{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),AB =}(2,6),(3,3),(3,6),(4,4),(5,5),(6,6),则()14n AB =, 所以()()()142213n AB P B A n A ===, 即在0X >的条件下,b X a=的概率为23;【小问2详解】X 所有可能取值为0,1,2,3,4,5,6.()3621503612P X -===,()1211363P X ===,()412369P X ===, ()2133618P X ===,()1436P X ==,()1536P X ==,()1636P X ==,所以X 的分布列为:X 01 2 3 4 5 6P512 13 19 118 136 136 136所以()511111141012345612391836363636E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 18. 已知双曲线C :2214x y -=的左右顶点分别为1A ,2A ,过点()4,0P 的直线l 与双曲线C 的右支交于M ,N 两点.(1)若直线l 的斜率k 存在,求k 的取值范围; (2)记直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值; (3)设G 为直线1A M 与直线2A N 的交点,GMN ,12GA A △的面积分别为1S ,2S ,求12S S 的最小值. 【答案】(1)11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭; (2)13-;(3)3. 【解析】【分析】(1)设直线l 的方程为4x my =+,联立方程组,结合题意列出不等式组,即可求解;(2)由(1)得到121222812,44m y y y y m m +=-=--,求得()121223my y y y =-+,结合斜率公式,准确运算,即可求解;(3)由(2)可知213k k =-,设1A M 与2A N 的方程分别为()12y k x =+和()132y k x =--,两两方程组,求得1G x =,结合三角形的面积公式和不等式的性质,即可求解. 【小问1详解】解:设()11,M x y ,()22,N x y ,直线l 的方程为4x my =+,联立方程组22414x my x y =+⎧⎪⎨-=⎪⎩,整理得()2248120m y my -++=, 因为直线l 与双曲线的右支交于,M N 两点,可得()()()2222122Δ8441216120401204m m m m y y m ⎧=--⨯=+>⎪⎪-≠⎨⎪⎪=<-⎩,解得22m -<<,又由直线l 的斜率为1k m =,可得k 的取值范围是11,,22∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭.【小问2详解】解:由双曲线22:14x C y -=,可得()12,0A -,()22,0A ,由(1)可得12284my y m +=--,122124y y m =-,则()121223my y y y =-+. 所以()()()()1121211121222121122222222662y y x y my k x my y y y k y x y my my y y x -+++====+++- ()()12112122123132122233936222y y y y y y y y y y -++-===--++-+.【小问3详解】解:由(2)可知213k k =-,所以直线1A M 与直线2A N 的方程分别为()12y k x =+和()132y k x =--, 联立两直线方程可得交点G 的横坐标为1G x =,于是()()1211221212121sin 331121313sin 2GM GN MGN my my S x x GM GN S GA GA GA GA A GA ⋅∠++--==⋅=⋅=⋅∠ ()221212223912161611334440m y y m y y m m m +++--===-+≥-+=---, 故12S S 的最小值为3,当且仅当0m =时取等号成立.【点睛】方法技巧:求解圆锥曲线的最值问题的解答策略与技巧:1、几何方法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、代数方法:当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.19. 在空间直角坐标系O xyz -中,任何一个平面的方程都能表示成0Ax By Cz D +++=,其中,,,A B C D ∈R ,2220A B C ++≠,且(),,n A B C =为该平面的法向量.已知集合(){},,1,1,1P x y z x y z =≤≤≤,(){},,2Q x y z x y z =++≤,(){},,2,2,2T x y z x y y z z x =+≤+≤+≤.(1)设集合(){},,0M x y z z ==,记P M ⋂中所有点构成的图形的面积为1S ,Q M 中所有点构成的图形的面积为2S ,求1S 和2S 的值;(2)记集合Q 中所有点构成的几何体的体积为1V ,P Q 中所有点构成的几何体的体积为2V ,求1V 和2V 的值:(3)记集合T 中所有点构成的几何体为W . ①求W 的体积3V 的值;②求W 的相邻(有公共棱)两个面所成二面角的大小,并指出W 的面数和棱数. 【答案】(1)14S =,28S =;(2)1323V =,2203V =; (3)①16;②2π3,共有12个面,24条棱.【解析】【分析】(1)首先分析题意进行解答,分别表示出集合,M P 代表的点,后得到P M ⋂的截面是正方形求出1S ,同理得到Q M 是正方形求出2S 即可.(2)首先根据(1)分析得出P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分. 后用割补法求解体积即可.(3)利用题目中给定的定义求出法向量,结合面面角的向量求法求解,再看图得到面数和棱数即可. 【小问1详解】 集合(){},,0M x y z z ==表示xOy 平面上所有的点,(){},,1,1,1P x y z x y z =≤≤≤表示()1,1,1±±±这八个顶点形成的正方体内所有的点,而P M ⋂可以看成正方体在xOy 平面上的截面内所有的点. 发现它是边长为2的正方形,因此14S =. 对于(){},,2Q x y z x y z =++≤,当,,0x y z >时,2x y z ++=表示经过(2,0,0),(0,2,0),(0,0,2)的平面在第一象限的部分.由对称性可知Q 表示2,0,0±(),0,2,0±(),0,0,2±() 这六个顶点形成的正八面体内所有的点.而Q M 可以看成正八面体在xOy 平面上的截面内所有的点.它是边长为28S =. 【小问2详解】记集合Q ,P Q 中所有点构成的几何体的体积分别为1V ,2V ; 考虑集合Q 的子集(){},,2,0,0,0Q x y z x y z x y z =++≤≥≥≥';即为三个坐标平面与2x y z ++=围成的四面体.四面体四个顶点分别为(0,0,0),(2,0,0),(0,2,0),(0,0,2), 此四面体的体积为114222323Q V '⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭由对称性知,13283Q V V '== 考虑到P 的子集P '构成的几何体为棱长为1的正方体,即(){},,01,01,01P x y z x y z =≤≤≤≤≤≤',(){},,2,0,0,0Q x y z x y z x y z =++≤≥≥≥',显然P Q '' 为两个几何体公共部分,记()11,1,0Q ,()21,0,1Q ,()30,1,1Q ,()41,1,1Q .容易验证1Q ,2Q ,3Q 在平面2x y z ++=上,同时也在P '的底面上. 则P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分.P '的体积1111P V '=⨯⨯=,三棱锥4123Q Q Q Q -的体积为()4123111111326Q Q Q Q V -=⨯⨯⨯⨯=. 故P Q '' 的体积412315166P Q P Q Q Q Q V V V '''-=-=-= . 当由对称性知,22083P Q V V ''==. 【小问3详解】如图所示,即为T 所构成的图形.其中正方体ABCD IJML -即为集合P 所构成的区域.E ABCD -构成了一个正四棱锥,其中E 到面ABCD 的距离为2,1412233E ABCD V -=⨯⨯⨯=,34686163P E ABCD V V V -=+=+⨯=.由题意面EBC 方程为20x z +-=,由题干定义知其法向量()11,0,1n =面ECD 方程为20y z +-=,由题干定义知其法向量()20,1,1n = 故1212121cos ,2n n n n n n ⋅==⋅ . 由图知两个相邻的面所成角为钝角.故H 相邻两个面所成角为2π3. 由图可知共有12个面,24条棱. 【点睛】关键点点睛:本题考查立体几何新定义,解题关键是利用新定义求出法向量,然后利用向量求法得到所要求的二面角余弦值即可.。
安徽省“江淮十校”2025届高三第三次模拟考试数学试卷含解析
安徽省“江淮十校”2025届高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,2D .()2,e2.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -3.已知函数()(0x f x m m m =->,且1)m ≠的图象经过第一、二、四象限,则|(2)|a f =,384b f ⎛⎫= ⎪⎝⎭,|(0)|c f =的大小关系为( ) A .c b a << B .c a b << C .a b c <<D .b a c <<4.某几何体的三视图如图所示,则该几何体的体积是( )A .53π B .43π C .223π+D .243π+5.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1B .2C .3D .46.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,77.给出下列四个命题:①若“p 且q ”为假命题,则p ﹑q 均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题0:p x R ∃∈,200x ≥,则命题:p x R ⌝∀∈,20x <;④设集合{}1A x x =>,{}2B x x =>,则“x A ∈”是“x B ∈”的必要条件;其中正确命题的个数是( ) A .1B .2C .3D .48.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路D .甲走天烛峰登山线路9.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=10.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''== 3O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .163πC .(833)π+D .(16312)π+11.已知全集,,则( )A .B .C .D .12.已知向量11,,2a b m ⎛⎫==⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( ) A .12B .32C .12±D .32±二、填空题:本题共4小题,每小题5分,共20分。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
江西省宜春市第一中学2024届高三下学期第三次模拟考试数学试卷(含答案与解析)_9968
2024年江西省宜春市第一中学高三下学期第三次模拟考试数学试卷(新高考)本试卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|lg 0}M x x =>,{|N x y ==,则M N ⋂=( ) A. (1,2]B. (4,)+∞C. (1,2)[4,)+∞D. (1,2][4,)+∞2. 已知复数z 满足2(1i)|34i |(1i)z -=++,则z 的虚部是( )A. -25B. -5C. 1D. 53. 下列说法不正确的是( )A. 一组数据1,4,14,6,13,10,17,19的25%分位数为5B. 一组数据m ,3,2,5,7中位数为3,则m 的取值范围是(,3]-∞C. 若随机变量1~(4,)3X B ,则方差(31)4D X +=D. 若随机变量2~(1,)X N σ,且(01)0.4<<=P X ,则(2)0.1P X >= 4. 设等差数列{}n a 的前n 项和为n S ,且1248S S -=,则133S S -=( ) A. 10B. 12C. 14D. 165. 已知,m n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是( ) A. 若m α⊥、//n α,则m n ⊥ B. 若m α⊥,//m n ,则n α⊥ C. 若//m n ,n β⊥,m α⊥,则//αβD. 若m α⊥,m n ⊥,则//n α的6. 已知0a >,且1a ≠,若函数1()(ln )x f x a x a -=-在(1,)+∞上单调递减,则a 的取值范围是( ) A. 1(0,]eB. 1[,1)eC. (1,e]D. [e,)+∞7. 已知抛物线C :24y x =焦点为F ,动直线l 与抛物线C 交于异于原点O 的A ,B 两点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点()4,P m (0m >),则当||||AF BF +取最小值时,m =( ) A. 2B.C. 3D.8.已知a =,b =,ln 44c =,其中e 2.71828= 为自然对数的底数,则( ) A. b a c <<B. b c a <<C. a b c <<D. c b a <<二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 同时抛出两枚质地均匀骰子甲、乙,记事件A :甲骰子点数为奇数,事件B :乙骰子点数为偶数,事件C :甲、乙骰子点数相同.下列说法正确的有( ) A. 事件A 与事件B 对立 B. 事件A 与事件B 相互独立 C. 事件A 与事件C 相互独立D. ()()P C P AB =10. 古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中给出了阿波罗尼斯圆的定义:在平面内,已知两定点A ,B 之间的距离为a (非零常数),动点M 到A ,B 的距离之比为常数λ(0λ>,且1λ≠),则点M 的轨迹是圆,简称为阿氏圆.在平面直角坐标系xOy 中,已知()()4,0,2,0A B -,点M 满足||2||MA MB =,则下列说法正确的是( )A. AMB 面积的最大值为12B. MA MB ⋅的最大值为72C. 若()88Q ,,则||2||MA MQ +的最小值为10D. 当点M 不在x 轴上时,MO 始终平分AMB ∠11. 设椭圆C :22184x y +=的左、右焦点分别为1F ,2F ,坐标原点为O .若椭圆C 上存在一点P ,使得||OP = )A. 123cos 5F PF ∠=B. 125PF PF ⋅=C. 12F PF △的面积为2D. 12F PF △1-的的12. 如图,正方体1111ABCD A B C D -的棱长为2,设P 是棱1CC 的中点,Q 是线段1C P 上的动点(含端点),M 是正方形11BCC B 内(含边界)的动点,且1//A M 平面1D AP ,则下列结论正确的是( )A. 存在满足条件的点M ,使11A M AD ⊥B. 当点Q 在线段1C P 上移动时,必存在点M ,使1A M BQ ⊥C. 三棱锥11C A PM -的体积存在最大值和最小值D. 直线1A M 与平面11BCC B 所成角的余弦值的取值范围是11[,]32三、填空题:本题共4小题,每小题5分,共20分.13. 已知a ,b 均为非零向量,若|2|||2||a b b a -== ,则a 与b的夹角为________.14. 已知π0θ4<<,且πtan 2θtan(θ)44⋅+=,则cos 2θ1sin 2θ=-________. 15. 已知0x >,0y >,且满足2249630x y xy ++-=,则23x y +最大值为________. 16. 已知方程ln e 1xx mx+=+在(0,1)上有两个不相等的实数根,则实数m 的取值范围是________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c .已知120C =︒,ABC 的周长为15,面积为. (1)求ABC 的外接圆面积;(2)设D 是边AB 上一点,在①CD 是边AB 上的中线;②CD 是ACB ∠的角平分线这两个条件中任选一个,求线段CD 的长.18. 在正项数列{}n a 中,已知11a =,且11(1)1n n n nna n a a a +++-=. (1)求数列{}n a 的通项公式;的(2)求证:2(1)3nn a ≤+<.19. 如图,在四棱锥P-ABCD 中,已知底面ABCD 为菱形,平面PAB ⊥底面ABCD ,M 为棱BC 上异于点C 的一点,O 为棱AB 的中点,且PA PB AB ==,60ABC ∠=︒.(1)若BD PM ⊥,求证:M 为BC 中点;(2)若平面POM 与平面PAC,求BM BC 的值.20. 据教育部统计,2024届全国高校毕业生规模预计达1179万,同比增加21万,岗位竞争激烈.为落实国务院关于高校毕业生就业工作的决策部署,搭建高校毕业生和用人单位求职招聘的双向对接通道,促进高校毕业生高质量充分就业,某市人社局联合市内高校开展2024届高校毕业生就业服务活动系列招聘会.参加招聘会的小王打算依次去甲、乙、丙三家公司应聘.假设小王通过某公司的专业测试就能与该公司签约,享受对应的薪资待遇,且不去下一家公司应聘,或者放弃签约并参加下一家公司的应聘;若未通过测试,则不能签约,也不再选择下一家公司.已知甲、乙、丙三家公司提供的年薪分别为10万元、12万元、18万元,小王通过甲、乙、丙三家公司测试的概率分别为23,12,13,通过甲公司的测试后选择签约的概率为34,通过乙公司的测试后选择签约的概率为35,通过丙公司的测试后一定签约.每次是否通过测试、是否签约均互不影响.(1)求小王通过甲公司的测试但未与任何公司签约的概率;(2)设小王获得的年薪为X (单位:万元),求X 的分布列及其数学期望. 21. 已知函数()e l R n (e ),x x f x x x a a --∈=,.(1)若()0f x ≤对(0,)∀∈+∞x 恒成立,求实数a 的取值范围;(2)若曲线()y f x =与x 轴交于A ,B 两点,且线段AB 的中点为00(),M x ,求证:01x >.22. 已知以点M 为圆心的动圆经过点1(3,0)F -,且与圆心为2F 的圆22(3)12x y -+=相切,记点M 的轨迹为曲线C .(1)求曲线C 的方程;的(2)若动直线l 与曲线C 交于11(,)A x y ,22(,)B x y 两点(其中120y y >),点A 关于x 轴对称的点为A',且直线BA'经过点()1,0P -. (ⅰ)求证:直线l 过定点;(ⅱ)若||||PA PB +=,求直线l 的方程.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|lg 0}M x x =>,{|N x y ==,则M N ⋂=( ) A. (1,2] B. (4,)+∞ C. (1,2)[4,)+∞ D. (1,2][4,)+∞【答案】D 【解析】【分析】分别化简集合,M N ,取交集即可.【详解】{|lg 0}{|1}M x x x x =>=>,{|{|4N x y x x ===≥或2}x ≤,所以{}1{|4M N x x x x ⋂=⋂≥或][()2}1,24,x ∞≤=⋃+. 故选:D .2. 已知复数z 满足2(1i)|34i |(1i)z -=++,则z 的虚部是( ) A. -25 B. -5C. 1D. 5【答案】B 【解析】【分析】由复数的模定义求得|34i |+,利用复数的四则运算求得z ,再由共轭复数定义得55i z =--即可得出结论. 【详解】由2(1i)|34i |(1i)z -=++,得(1i)52iz -=, 所以10i 10i(1i)55i 1i 2z +===-+-,所以55i z =--. 故选:B .3. 下列说法不正确的是( )A. 一组数据1,4,14,6,13,10,17,19的25%分位数为5B. 一组数据m ,3,2,5,7的中位数为3,则m 的取值范围是(,3]-∞C. 若随机变量1~(4,)3X B ,则方差(31)4D X +=D. 若随机变量2~(1,)X N σ,且(01)0.4<<=P X ,则(2)0.1P X >= 【答案】C 【解析】【分析】对于A ,先把数据从小到大排列,利用百分位定义计算即可;对于B ,根据中位数的定义讨论即可;对于C ,根据二项分布的方差公式计算即可;对于D ,根据正态分布的对称性求解.【详解】对于A ,该组数据共8个,且825%2⨯=,所以25%分位数为从小到大排列后第2个数和第3个数的平均数,即为4652+=,故A 正确; 对于B ,若5m ≥,则这组数据由小到大排列依次为2,3,5,m ,7或2,3,5,7,m ,中位数为5,不合题意;若35m <<,则这组数据由小到大排列依次为2,3,m ,5,7,中位数为3m ≠,不合题意; 若3m ≤,则这组数据由小到大排列依次为2,m ,3,5,7或m ,2,3,5,7,中位数为3,故实数m 的取值范围是(,3]-∞,故B 正确;对于C ,若随机变量1~(4,3X B ,则118()4(1)339D X =⨯⨯-=,所以28(31)3()989D X D X +==⨯=,故C 错误;对于D ,若随机变量2~(1,)X N σ,且(01)0.4<<=P X ,则(2)0.5(12)0.5(01)0.1P X P X P X >=-<<=-<<=,故D 正确.故选:C .4. 设等差数列{}n a 的前n 项和为n S ,且1248S S -=,则133S S -=( ) A. 10 B. 12C. 14D. 16【答案】A 【解析】【分析】利用等差数列求和公式化简1248S S -=可得12152a d +=,将133S S -化简可得13315(215)S S a d -=+,计算可得结果.【详解】设{}n a 的公差为d ,由1248S S -=,得1112114312(4)822a d a d ⨯⨯+-+=, 化简为12152a d +=, 所以1331111312321335(215)521022S S a d a d a d ⨯⨯⎛⎫-=+-+=+=⨯= ⎪⎝⎭. 故选:A .5. 已知,m n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是( ) A. 若m α⊥、//n α,则m n ⊥ B. 若m α⊥,//m n ,则n α⊥ C. 若//m n ,n β⊥,m α⊥,则//αβ D. 若m α⊥,m n ⊥,则//n α【答案】D 【解析】【分析】对于A ,可过n 作平面β,使l βα⋂=,则//n l ,即可判断;对于B ,由线面垂直的性质即可判断;对于C ,由条件,可得m β⊥,又m α⊥,则//αβ,即可判断;对于D ,要考虑n 可能在平面α内,即可判断.【详解】对于A ,当//n α时,过n 作平面β,使l βα⋂=,则//n l ,因为m α⊥,l ⊂α,所以m l ⊥,所以m n ⊥,故A 正确;对于B ,当m α⊥,//m n ,由线面垂直的性质可得n α⊥,故B 正确;对于C ,因为//m n ,n β⊥,所以m β⊥,又m α⊥,所以//αβ,故C 正确; 对于D ,当m α⊥,m n ⊥时,n 可能在平面α内,故D 错误. 故选:D .6. 已知0a >,且1a ≠,若函数1()(ln )x f x a x a -=-在(1,)+∞上单调递减,则a 的取值范围是( ) A. 1(0,]eB. 1[,1)eC. (1,e]D. [e,)+∞【答案】D 【解析】【分析】根据题意,转化为()0f x '≤在(1,)+∞上恒成立,令()()g x f x '=,利用导数求得函数()g x 单调递减,得到()(1)ln g x g a a a <=-,得出ln 0a a a -≤,即可求解. 【详解】由函数1()(ln )x f x a x a-=-,可得()ln x af x a a x-'=因为()f x 在(1,)+∞上单调递减,所以()0f x '≤在(1,)+∞上恒成立, 令()()ln x a g x f x a a x '==-,则22()(ln )0x ag x a a x'=--<, 所以()g x 在(1,)+∞上单调递减,所以()(1)ln g x g a a a <=-,即()ln f x a a a '<-, 则ln 0a a a -≤,解得e a ≥,即实数a 的取值范围是[e,)+∞. 故选:D .7. 已知抛物线C :24y x =的焦点为F ,动直线l 与抛物线C 交于异于原点O 的A ,B 两点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点()4,P m (0m >),则当||||AF BF +取最小值时,m =( ) A. 2B.C. 3D.【答案】B 【解析】【分析】根据题意,由抛物线的方程可得焦点坐标以及准线方程,然后分别过A 、B 、M 向准线作垂线,||||AF BF +取最小值即直线AB 过焦点()1,0F 时,再结合点差法代入计算,即可得到结果.【详解】由题可知焦点()1,0F ,准线=1x -,设线段AB 中点为00(,)M x y ,即为OP 中点, 则0422x ==,02my =.分别过A 、B 、M 向准线作垂线,垂足分别为1A ,1B ,1M ,如图所示.则||||||AF BF AB +≥,当直线AB 过焦点()1,0F 时取等号,此时10||2||2|1|426AB MM x ==+=+=.的设11(,)A x y 、22(,)B x y ,直线AB 的斜率为k ,由21122244y x y x ⎧=⎨=⎩,两式相减,得2212124()y y x x -=-,所以12121222y y y y x x +-⋅=-, 即02y k =,得00221y y ⋅=-,所以22y =,又0m >,所以02m y == 故选:B . 8.已知a =,b =,ln 44c =,其中e 2.71828= 为自然对数的底数,则( ) A. b a c << B. b c a <<C. a b c <<D. c b a <<【答案】A 【解析】【分析】首先将,,a b c 化成统一形式,构造函数()ln xf x x=()0x >,研究单调性进而比较大小即可.【详解】由题意得a ==,b ==,ln 42ln 2ln 2442c ===; 设()ln x f x x =,则21ln ()xf x x -'=, 当0e x <<时,()0f x '>,所以()f x单调递增,又02e <<<<,所以(2)f f f <<ln 22<<,所以b a c <<. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 同时抛出两枚质地均匀的骰子甲、乙,记事件A :甲骰子点数为奇数,事件B :乙骰子点数为偶数,事件C :甲、乙骰子点数相同.下列说法正确的有( ) A. 事件A 与事件B 对立 B. 事件A 与事件B 相互独立 C. 事件A 与事件C 相互独立 D. ()()P C P AB =【答案】BC 【解析】【分析】对于A ,甲骰子点数为奇数,乙骰子点数为偶数,事件可以同时发生,由对立事件的概念可判断;对于B ,计算出()()()P A P B P AB ,,根据()()()P AB P A P B =可以判定两个事件是否相互独立;对于C ,计算出()()()P A P C P AC ,,根据()()()P AC P A P C =可以判定两个事件是否相互独立;对于D ,由前面可知()()P C P AB ,,即可判断是否相等.【详解】由题意,得1()2P A =,1()2P B =,61()366P C ==, 对于A ,当甲为奇数点,且乙为偶数点时,事件可以同时发生,所以事件A 与事件B 不互斥,故事件A 与事件B 不对立,故A 错误;对于B ,由题意知11331166C C 1()C C 4P AB ==,又111()()()224P A P B P AB =⨯==,故事件A 与事件B 相互独立,故B 正确; 对于C ,31()3612P AC ==,又111()()()2612P A P C P AC =⨯==,故事件A 与事件C 相互独立,故C 正确;对于D ,由上知,11()()64P C P AB =<=,故D 错误. 故选:BC .10. 古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中给出了阿波罗尼斯圆的定义:在平面内,已知两定点A ,B 之间的距离为a (非零常数),动点M 到A ,B 的距离之比为常数λ(0λ>,且1λ≠),则点M 的轨迹是圆,简称为阿氏圆.在平面直角坐标系xOy 中,已知()()4,0,2,0A B -,点M 满足||2||MA MB =,则下列说法正确的是( )A. AMB 面积的最大值为12B. MA MB ⋅的最大值为72C. 若()88Q ,,则||2||MA MQ +的最小值为10D. 当点M 不在x 轴上时,MO 始终平分AMB ∠【答案】ABD 【解析】【分析】设点(,)M x y ,由条件可得点M 的轨迹方程,即可判断A ,由向量数量积的运算律代入计算,即可判断B ,由点与圆的位置关系,即可判断C ,由角平分线定理即可判断D【详解】对于A ,设点(,)M x y ,由||2||MA MB ==, 化为22(4)16x y -+=,所以点M 的轨迹是以点()4,0为圆心、4为半径的圆,所以AMB 面积的最大值为11||641222AB r =⨯⨯=,故A 正确; 对于B ,设线段AB 的中点为N ,2222()()||(81)(14)72MA MB MN NA MN NB MN NA ⋅=+⋅+=-≤+--+= ,当点M 的坐标为()8,0时取等号,故MA MB ⋅的最大值为72,故B 正确; 对于C ,显然点()8,8Q 在圆外,点()2,0B 在圆内,()2222220MA MQ MB MQ MB MQ BQ +=+=+≥==,当B ,M ,Q 三点共线且点M 在线段BQ 之间时,min (||2||)20MA MQ +=,故C 错误; 对于D ,由||4OA =,||2OB =,有||||2||||OA MA OB MB ==,当点M 不在x 轴上时, 由三角形内角平分线分线段成比例定理的逆定理知,MO 是AMB 中AMB ∠的平分线,故D 正确.故选:ABD . 11. 设椭圆C :22184x y +=的左、右焦点分别为1F ,2F ,坐标原点为O .若椭圆C 上存在一点P ,使得||OP = )A. 123cos 5F PF ∠=B. 125PF PF ⋅=C. 12F PF △的面积为2D. 12F PF △1-【答案】ACD 【解析】【分析】根据已知求出P 点坐标,根据两点间距离公式分布求出12,PF PF ,在12F PF △中利用余弦定理可判定A ,利用向量数量积公式可判定B ,三角形面积公式可判定C ,根据等面积法可判定D.【详解】法1:由题意得a =12||24F F c ===,则1(2,0)F -,2(2,0)F .由对称性可设00(,)P x y (00x >,00y >),1||PF m =,2||PF n =,12F PF θ∠=,由2200184x y ⎧+=⎪=,解得001x y ⎧=⎪⎨=⎪⎩1(2,0)F -,2(2,0)F ,所以m ==,n ==,所以5mn ===.由椭圆的定义得2m n a +==12F PF △中,由余弦定理,得22212||2cos F F m n mn θ=+-,即2224()22cos 2525cos m n mn mn θθ=+--=-⨯-⨯, 解得3cos 5θ=,故A 正确; 123cos 535PF PF mn θ⋅==⨯= ,故B 错误;12F PF △的面积为1211sin 5222F PF S mn θ==⨯= ,故C 正确; 设12F PF △的内切圆半径为r ,由12F PF △的面积相等,得12121(||)2F PF S m n F F r =++△,即124)2r =+,解得1r =-,故D 正确. 故选:ACD .法2:设1||PF m =,2||PF n =,12F PF θ∠=.易知a =,2c ==,由极化恒等式,得22121||||743PF PF OP OF ⋅=-=-=,故B 错误;由中线长定理得222212(||||)22m n OP OF +=+=,由椭圆定义得2m n a +== 所以222()222232m n m n mn mn +=++=+=,所以5mn =,所以123cos 5PF PF mn θ⋅== ,故A 正确;由3cos 5θ=,得4sin 5θ==,所以12114sin 52225F PF S mn θ==⨯⨯= ,故C 正确; 设12F PF △的内切圆半径为r ,由12F PF △的面积相等,得12121(||)2F PF S m n F F r =++△,在即124)2r =+,解得1r =-,故D 正确. 故选:ACD .12. 如图,正方体1111ABCD A B C D -的棱长为2,设P 是棱1CC 的中点,Q 是线段1C P 上的动点(含端点),M 是正方形11BCC B 内(含边界)的动点,且1//A M 平面1D AP ,则下列结论正确的是( )A. 存在满足条件的点M ,使11A M AD ⊥B. 当点Q 在线段1C P 上移动时,必存在点M ,使1A M BQ ⊥C. 三棱锥11C A PM -的体积存在最大值和最小值D. 直线1A M 与平面11BCC B 所成角的余弦值的取值范围是11[,]32【答案】ABC 【解析】【分析】由已知,取11B C 的中点E ,1BB 的中点F ,并连接,可得点M 的轨迹为线段EF .对于A ,连接1AC ,1B C 交1BC 于点O ,可得1BC ⊥平面11A B C ,当M 为线段EF 中点时,11BC A M ⊥,又11//BC AD ,则可判断:对于B ,分别以向量DA ,DC ,1DD的方向为x ,y ,z 轴的正方向建立空间直角坐标系,由空间向量坐标运算可得存在10A M BQ ⋅=,即可判断;对于C ,设点M 到1C P 的距离为h ,可知当M 与E 重合时,min 11h EC ==,当M 与F 重合时,max 2h FP ==,即可求出三棱锥11C A PM -的体积存在最大值和最小值,则可判断;对于D ,由11A B ⊥平面11BCC B 知,11A MB Ð即为直线1A M 与平面11BCC B 所成的角,在1B EF 中,可得11B M ≤≤,则得2tan θ≤≤进而得1cos 3θ≤≤.【详解】取11B C 的中点E ,1BB 的中点F ,连接1A E ,1A F ,EF ,1BC ,如图所示.易知11////EF BC AD ,11//A F D P ,因为EF ⊂平面1A EF ,EF ⊄平面1D AP ,所以//EF 平面1D AP , 同理,1//A F 平面1D AP ,又1A F EF F ⋂=,又1,EF A F ⊂平面1A EF , 所以平面1//A EF 平面1D AP ,又1//A M 平面1D AP , 所以1A M ⊂平面1A EF ,故点M 的轨迹为线段EF .对于A ,连接1AC ,1B C 交1BC 于点O ,如图所示.则11BC B C ⊥,又111A B BC ⊥,1111A B B C B = ,111A B B C ⊂、平面11A B C , 所以1BC ⊥平面11A B C ,当M 为线段EF 中点时,11BC A M ⊥, 因11//BC AD ,所以11A M AD ⊥,故A 正确;对于B ,分别以向量DA ,DC ,1DD的方向为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示.为则1(2,0,2)A ,()()()()2,2,0,1,2,2,2,2,1,0,2,B E F Q m ()12m ≤≤,设EM EF λ=(01λ≤≤),得(1,2,2)M λλ+-,从而1(1,2)A M λλ=-- , 又(2,0,)BQ m =-,令10A M BQ ⋅= ,得2(1)0m λλ---=,当0λ=时,显然不合题意; 当01λ<≤时,由2212m λλ-≤=≤,解得1223λ≤≤, 即当点Q 在线段1C P 上移动时,均存在点M ,使1A M BQ ⊥,故B 正确; 对于C ,设点M 到1C P 的距离为h , 则三棱锥11C A PM -的体积为111111111111113323C A PM A C PM C PM V V S A B C P h A B h --==⨯=⨯⨯⨯=△,当M 与E 重合时,min 11h EC ==,得11min 1()3C A PM V -=;当M 与F 重合时,max 2h FP ==,得11max 2()3C A PM V -=,故C 正确;对于D ,设直线1A M 与平面11BCC B 所成的角为θ、连接1B M ,如图所示.由11A B ⊥平面11BCC B 知,11A MB θ∠=,在1B EF 中,11111B E B F B M B F EF ⨯=≤≤=,得2tan θ≤≤, 所以2222sin 1cos 48cos cos θθθθ-≤=≤,所以1cos 3θ≤≤D 错误. 故选:ABC .【点睛】关键点点睛,本题关键是先找到点M 的轨迹,对于B 选项,通过设出向量的含参坐标,借助参数的范围满足条件,得到答案;对于C 选项,利用等积转化,转化成棱锥高取得最值,可得体积最值;对于D 选项,关键是找到线面角正切的范围,进而得到余弦的范围.三、填空题:本题共4小题,每小题5分,共20分.13. 已知a ,b 均为非零向量,若|2|||2||a b b a -== ,则a 与b的夹角为________.【答案】π3【解析】【分析】根据题意,求得2||a b a ⋅= ,结合||2||b a =,利用向量的夹角公式,即可求解. 【详解】由|2|||a b b -= ,可得22|2|||a b b -= ,即2224||4||||a a b b b -⋅+= ,解得2||a b a ⋅= , 因为||2||b a = ,所以22||1cos ,2||||2||a b a a b a b a ⋅=== , 又因为0,πa b ≤≤ ,所以π,3a b = .故答案为:π3.14. 已知π0θ4<<,且πtan 2θtan(θ)44⋅+=,则cos 2θ1sin 2θ=-________. 【答案】3 【解析】【分析】先结合二倍角的正切与两角和的正切公式及角θ的取值范围,得到tan θ,再利用倍角公式把cos 2θ1sin 2θ-转化为齐次式求解.【详解】由πtan 2θtan(θ44⋅+=,得22tan θtan θ141tan θ1tan θ+⋅=--, 即22tan θ5tan θ20-+=,又π0θ4<<,所以1tan θ2=,从而2222cos 2θcos θsin θ1sin 2θsin θcos θ2sin θcos θ-=-+-2(cos θsin θ)(cos θsin θ)(cos θsin θ)+-=-cos θsin θcos θsin θ+=-111tan θ2311tan θ12++===--. 故答案为:315. 已知0x >,0y >,且满足2249630x y xy ++-=,则23x y +的最大值为________. 【答案】2 【解析】【分析】解法1、根据题意,得到22491236x y xy xy ++=+,结合基本不等式求得23(23)34x y +≤,进而求得23x y +的最大值;解法2、根据题意,得到222(96)33x y xy x +++=,利用权方和不等式得24(23)x y +≥,进而求得23x y +的最大值.【详解】解法1、由2249630x y xy ++-=,可得22491236x y xy xy ++=+, 由基本不等式得2223(23)3233()2x y x y x y ++=+⋅≤+,可得23(23)34x y +≤, 所以232x y +≤,当且仅当23x y =时取等号,联立方程组222349630x y x y xy =⎧⎨++-=⎩,解得12x =,13y =,故23x y +的最大值为2. 解法2、由2249630x y xy ++-=,可得222(96)33x y xy x +++=,因为0,0x y >>,由权方和不等式得222(3)(3)111133x y x x y x +++++≥,即24(23)x y +≥, 所以232x y +≤,当且仅当3113x y x+=,即23x y =时取等号, 联立方程组222349630x y x y xy =⎧⎨++-=⎩,解得12x =,13y =,故23x y +的最大值为2. 故答案为:2.16. 已知方程ln e 1xx mx+=+在(0,1)上有两个不相等的实数根,则实数m 的取值范围是________. 【答案】(1,e 1)- 【解析】【分析】先分离参数m ,构造函数()e ln xf x x x x =--,将问题转化为函数()y f x =的图象与直线y m =在(0,1)上有两个交点,再将()f x 变形,构造函数()ln h t t t =-,0e t <<,通过导数研究函数()h t 进而求出m 的取值范围.【详解】由ln e 1xx mx+=+,得e ln x m x x x =--,令()e ln x f x x x x =--, 则函数()y f x =的图象与直线y m =在(0,1)上有两个交点, 而()e (ln e ln )e ln(e )x x x xf x x x x x =-+=-;令()e x g x x =,(0,1)x ∈,则()(1)e 0x g x x '=+>恒成立,故()g x 在(0,1)上单调递增,故(0)()(1)g g x g <<,即0e e x x <<, 令e x t x =,函数()ln h t t t =-,0e t <<,则函数()y h t =的图象与直线y m =有两个交点,由11()1t h t t t-'=-=, 则当(0,1)t ∈时,()0h t '<,当(1,e)t ∈时,()0h t '>,故()h t 在(0,1)上单调递减,在(1,e)上单调递增,所以函数()h t 在1t =处有极小值, 且e 1(e)()(1)1ln11h h t h -=>=-=≥,当0t >且0t →时,()h t →+∞, 所以1e 1m <<-,即实数m 的取值范围是(1,e 1)-. 故答案为:(1,e 1)-.【点睛】方法点睛:()()()()e ln e ln e ln e ln e 0xxxxxf x x x x x x x x x =--=-+=->,将函数化成相同整体变量进而构造函数解决参数取值范围是解决导数问题的常用方法.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c .已知120C =︒,ABC 的周长为15,面积为.(1)求ABC 的外接圆面积;(2)设D 是边AB 上一点,在①CD 是边AB 上中线;②CD 是ACB ∠的角平分线这两个条件中任选一个,求线段CD 的长. 【答案】(1)49π3(2)答案见解析 【解析】【分析】(1)由ABC,求得15ab =,再由ABC 的周长为15,得到15a b c +=-,结合余弦定理,求得7c =,再由正弦定理,求得外接圆半径即可求解; (2)若选择①:法1:由1()2CD CA CB =+ ,结合向量的运算法则,即可求解; 法2:设b a >,列出方程组求得3,5a b ==,结合cos cos 0ADC CDB ∠+∠=,列出方程,即可求解; 若选择②,设b a >,求得3,5a b ==,根据ABC ACD BCD S S S =+△△△,列出方程,即可求解; 法2:由sin sin sin ACB BCD ACDCD AC BC∠∠∠=+,列出方程,即可求解.【小问1详解】 解:由ABC,可得1sin1202ABC S ab =︒=△15ab =, 又由ABC 的周长为15,可得15a b c ++=,即15a b c +=-, 由余弦定理得22222cos ()22cos120c a b ab C a b ab ab =+-=+--︒21(15)215215()2c =--⨯-⨯⨯-,解得7c =,设外接圆半径为R ,由正弦定理得72sin120R =︒,所以R =,所以ABC 的外接圆面积为249ππ3R =. 【小问2详解】 解:若选择①:法1:由(1)知,158a b c +=-=及15ab =,由1()2CD CA CB =+ ,可得222211||()(2cos120)44CD CA CB b a ab =+=++︒的221119[()3](8315)444a b ab =+-=⨯-⨯=,所以||CD =CD =. 法2:不妨设b a >,由158a b c +=-=及15ab =,解得3,5a b ==, 在ACD 和BCD △中,可得cos cos 0ADC CDB ∠+∠=,由余弦定理得22222277()5()3220772222CD CD CD CD +-+-+=⨯⨯⨯⨯,解得CD =. 若选择②,不妨设b a >,由158a b c +=-=及15ab =,解得3,5a b ==, 法1:由ABC ACD BCD S S S =+△△△,115sin 603sin 6022CD CD =⨯⨯︒+⨯⨯︒,解得158CD =. 法2:由张角定理,得sin sin sin ACB BCD ACDCD AC BC∠∠∠=+,即sin120sin 60sin 6053CD ︒︒︒=+,解得158CD =, 18. 在正项数列{}n a 中,已知11a =,且11(1)1n n n nna n a a a +++-=. (1)求数列{}n a 的通项公式; (2)求证:2(1)3nn a ≤+<. 【答案】(1)1n a n= (2)证明见解析 【解析】【分析】(1)根据题意,化简得到1(1)0n n n a na ++-=,得到数列{}n na 为等差数列,进而求得数列的通项公式;(2)由(1)知1n a n =,结合二项式定理,得到111(1)(1)1C n n n n a n n+=+≥+⋅,再结合1C 11!2k nk k n k -≤≤,结合等比数列的求和公式,即可得证. 【小问1详解】解:由11(1)1n n n nna n a a a +++-=,可得2211(1)0n n n n n a a a na ++++-=, 即11()[(1)]0n n n n a a n a na ++++-=,因为10,0n n a a +>>,所以1(1)0n n n a na ++-=, 所以数列{}n na 是首项为1,公差为0的等差数列,又因为11a =,所以1n na =,所以数列{}n a 的通项公式为1n a n=. 【小问2详解】 解:由(1)知1n a n=, 则121211111(1)(11C C 1C 2nnn n n n n a n n n n n+=+=+⋅+⋅+++⋅= ≥,当1n =时,取等号, 因为1C (1)(2)(1)11!!2k nk k k n n n n k n n k k ----+=≤≤ , 所以12221111111111121C C 111331222212n n n n n n n n n ---+⋅+⋅++≤+++++=+=-<- , 所以2(1)3nn a ≤+<.19. 如图,在四棱锥P-ABCD 中,已知底面ABCD 为菱形,平面PAB ⊥底面ABCD ,M 为棱BC 上异于点C 的一点,O 为棱AB 的中点,且PA PB AB ==,60ABC ∠=︒.(1)若BD PM ⊥,求证:M 为BC 的中点;(2)若平面POM 与平面PAC,求BM BC 的值.【答案】(1)证明见解析(2)14BM BC = 【解析】【分析】(1)根据题意,证得PO ⊥平面ABCD ,得到BD PO ⊥,再证得BD ⊥平面POM ,得到BD OM ⊥,进而得到//OM AC ,即可得到M 为BC 的中点;(2)以O 为原点,建立空间直角坐标系, 设BM BC λ=,分别求得平面PAC 和平面POM 的法向量,结合向量的夹角公式,列出方程求得λ的值,即可求解. 【小问1详解】证明:因为PA PB =,O 为AB 的中点,所以PO AB ⊥,又平面PAB ⊥底面ABCD ,平面PAB ⋂底面ABCD AB =,PO ⊂平面PAB , 所以PO ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD PO ⊥,因为BD PM ⊥,且PO PM P = ,,PO PM ⊂平面POM ,所以BD ⊥平面POM , 又因为OM ⊂平面POM ,所以BD OM ⊥,因为BD AC ⊥,且,OM AC ⊂底面ABCD ,所以//OM AC , 又因为O 为AB 的中点,所以M 为BC 的中点. 【小问2详解】解:连接OC ,因为,60AB BC ABC =∠=︒,所以ABC 为正三角形,所以OC AB ⊥,以O 为原点,分别以向量OB ,OC ,OP的方向为x ,y ,z 轴正方向建立空间直角坐标系,如图所示,设4AB =,则(2,0,0),(2,0,0),(0,(0,0,A B C P -,所以(0,0,OP =,(BC =-,AC =,(2,0,AP =, 设1111(,,)n x y z = 是平面PAC的一个法向量,则1111112020n AC x n AP x ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =111y z ==-,所以11,1)n =--,设(01)BM BC λλ=≤<,则(22,,0)M λ-,即(22,,0)OM λ=- , 设2222(,,)n x y z = 是平面POM的一个法向量,则22222(22)0n OM x y n OP λ⎧⋅=-+=⎪⎨⋅==⎪⎩, 取21x =,可得220y z ==,所以2(1,n = , 因为平面POM 与平面PAC所以121212cos ,n n n n n n ⋅===整理得24510λλ-+=,解得14λ=,或1λ=(舍去),所以14BM BC =.20. 据教育部统计,2024届全国高校毕业生规模预计达1179万,同比增加21万,岗位竞争激烈.为落实国务院关于高校毕业生就业工作的决策部署,搭建高校毕业生和用人单位求职招聘的双向对接通道,促进高校毕业生高质量充分就业,某市人社局联合市内高校开展2024届高校毕业生就业服务活动系列招聘会.参加招聘会的小王打算依次去甲、乙、丙三家公司应聘.假设小王通过某公司的专业测试就能与该公司签约,享受对应的薪资待遇,且不去下一家公司应聘,或者放弃签约并参加下一家公司的应聘;若未通过测试,则不能签约,也不再选择下一家公司.已知甲、乙、丙三家公司提供的年薪分别为10万元、12万元、18万元,小王通过甲、乙、丙三家公司测试的概率分别为23,12,13,通过甲公司的测试后选择签约的概率为34,通过乙公司的测试后选择签约的概率为35,通过丙公司的测试后一定签约.每次是否通过测试、是否签约均互不影响.(1)求小王通过甲公司的测试但未与任何公司签约的概率;(2)设小王获得的年薪为X (单位:万元),求X 的分布列及其数学期望. 【答案】(1)19180(2)分布列见解析,295【解析】【分析】(1)记事件A :小王通过甲公司的测试,但未通过乙公司的测试,记事件B :小王通过甲、乙公司的测试,但未通过丙公司的测试,根据相互独立事件及互斥事件的概率公式计算可得;(2)依题意X 的可能取值为0,10,12,18,求出所对应的概率,即可得到分布列与数学期望.【小问1详解】记事件A :小王通过甲公司的测试,但未通过乙公司的测试, 记事件B :小王通过甲、乙公司的测试,但未通过丙公司的测试, 则2311()(1(1)34212P A =⨯-⨯-=,231311()(1)(1)(13425345P B =⨯-⨯⨯-⨯-=, 显然A 与B 互斥,所以小王通过甲公司的测试但未与任何公司签约的概率1119()()1245180P P A P B =+=+=. 【小问2详解】依题意X 的可能取值为0,10,12,18, 则11979(0)3180180P X ==+=,231(10)342P X ==⨯=, 21131(12)342520P X ==⨯⨯⨯=,211211(18)3425390P X ==⨯⨯⨯⨯=,则X 的分布列如下表:X 0 10 12 18P7918012120 190故7911129()0101218180220905E X =⨯+⨯+⨯+⨯=. 21. 已知函数()e l R n (e ),x x f x x x a a --∈=,.(1)若()0f x ≤对(0,)∀∈+∞x 恒成立,求实数a 的取值范围;(2)若曲线()y f x =与x 轴交于A ,B 两点,且线段AB 的中点为00(),M x ,求证:01x >. 【答案】(1)(,e]-∞(2)证明见解析 【解析】【分析】(1)根据题意,把不等式()0f x ≤转化为e ln e x xx a x ≤-恒成立,令e ln ()e x xx h x x=-,求得2(1)(1ln )()e xx x x h x x-+-'=,设()1ln g x x x =+-,利用导数求得()g x 的单调性,结合()0g x >,进而得到()h x 单调性和()min e h x =,即可求解;(2)根据题意,转化为()a h x =有两个实根,设1201x x <<<,因为ln ()(ln )e x x h x x x -=-,转化为1122ln ln 1122(ln )e (ln )e x x x x x x x x ---=-,构造()e x H x x =,利用导数得到()H x 在[1,)+∞递增,得到12121ln ln x x x x -=-,转化为证1211222(1)ln 1x x x x x x ->+,令2(1)()ln 1x G x x x -=-+在利用导数求得函数()G x 的单调性,得到()0G x >,取12(0,1)x x x =∈,即可得证. 【小问1详解】解:因为函数()e ln (e )xxf x x x a =--,可得其定义域为(0,)+∞,由()0f x ≤,即e ln (e )0xxx x a --≤,化为e ln e x xxa x≤-,因为()0f x ≤对(0,)∀∈+∞x 恒成立,即e ln e x xxa x≤-恒成立,令e ln ()e x xx h x x =-,则min [()]a h x ≤,可得2221(1)ln (1)(1ln )()e e x xx x x x x x h x x x-+--+-'==, 设()1ln g x x x =+-,则11()1x g x x x-'=-=, 当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,故()g x 在区间(0,1)内单调递减,在区间(1,)+∞内单调递增,所以()(1)20g x g ≥=>, 当(0,1)x ∈时,()0h x '<,当(1,)x ∈+∞时,()0h x '>,故()h x 在区间(0,1)内单调递减,在区间(1,)+∞内单调递增,则()()min 1e h x h ==, 所以实数a 的取值范围是(,e]-∞. 【小问2详解】 证明:令()0f x =,由(1)知方程()a h x =有两个不等实根,且一根小于1,另一根大于1,不妨设1201x x <<<,因为ln e ln ()e (ln )e x xx x xh x x x x-=-=-,所以1122ln ln 1122(ln )e (ln )e x x x x x x x x ---=-,又因为ln 1x x -≥,构造函数()e x H x x =,[1,)x ∈+∞,则()(1)e 0x H x x '=+>, 得()H x 在[1,)+∞单调递增,12()()H x H x =,即1122ln ln x x x x -=-,即1212ln ln x x x x -=-,即12121ln ln x x x x -=-, 要证01x >,即证1212x x +>, 即证1212122ln ln x x x x x x +->-,即证1211222(1)ln 1x x xx x x ->+, 构造函数2(1)()ln ,(0,1)1x G x x x x -=-∈+, 则22222414(1)(1)()0(1)(1)(1)x x x G x x x x x x x -+-'=-==-<+++, 故()G x 在区间(0,1)内单调递减,则()(1)0>=G x G ,即2(1)ln 01x x x -->+, 取12(0,1)x x x =∈,则有1211222(1)ln 01x x xx x x -->+,即12121212ln ln x x x x x x +->=-,故01x >. 【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略: 1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解; 2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; 3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.22. 已知以点M 为圆心的动圆经过点1(3,0)F -,且与圆心为2F 的圆22(3)12x y -+=相切,记点M 的轨迹为曲线C .(1)求曲线C 方程;的(2)若动直线l 与曲线C 交于11(,)A x y ,22(,)B x y 两点(其中120y y >),点A 关于x 轴对称的点为A',且直线BA'经过点()1,0P -. (ⅰ)求证:直线l 过定点;(ⅱ)若||||PA PB +=,求直线l 的方程.【答案】(1)22136x y -=(2)(ⅰ)证明见解析;(ⅱ)30x y ±+= 【解析】【分析】(1)根据动圆M 与圆2F 相切,由1212||||||||6MF MF F F -=<=,利用双曲线的定义求解;(2)(ⅰ)设直线l 的方程为x my t =+(显然l 与x 轴不平行),与22136x y-=联立,由0AP BP k k +=求解;(ⅱ)由(ⅰ)知,当3t =-时,1221221m y y m +=-,12212021y y m =>-,然后由||||||||||PA PB PA PB A B ''+=+=求解.【小问1详解】圆22(3)12x y -+=的圆心坐标为2(3,0)F ,半径r =. 动圆M 与圆2F 相切有两种情况,即内切或外切,所以1212||||||||6MF MF F F -=<=,所以点M 在以1F ,2F 为焦点的双曲线上,且该双曲线的实轴长为2a =,26c =, 所以2226b c a =-=,所以曲线C 的方程是22136x y -=.【小问2详解】(ⅰ)设直线l 的方程为x my t =+(显然l 与x 轴不平行),与22136x y -=联立,得222(21)4260m y mty t -++-=,。
数学--潍坊市2023届高三第三次模拟考试
2023年普通高等学校招生全国统一考试模拟试题数 学本试卷共6页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8 小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={x ∈N|x ²-4x -5≤0},A={0,2},B ={1,3,5},则A∩(C U B )=A.{2}B.{0,5}C.{0,2}D.{0,2,4}2.已知a ,b ∈R ,i 为虚数单位,则“复数1a bi z i+=+是纯虚数”是“|a |+|b |≠0”的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知平面向量a 与b 的夹角是60°,且|a |=2,b =(1,2),则a ·(2a -b )=A.8+B.4C.8D.4+4.我国古代名著《张邱建算经》中记载:“今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?”大致意思是:“有一个正四棱锥的下底面边长为二丈,高为三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底面边长为六尺,则截去的正四棱锥的高是多少?”按照上述方法,截得的该正四棱台的体积为(注:1丈=10尺)A.11676立方尺B.3892立方尺 立方尺 5.已知函数()f x 的定义域为R , ()1f x +为偶函数, ()()4f x f x +=-,则A.函数()f x 为偶函数B. ()30f =C. 1522f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D. ()20230f =6.若P 为函数()12x f x e =-图象上的一个动点,以P 为切点作曲线()y f x =的切线,则切线倾斜角的取值范围是 A. 20,3π⎡⎫⎪⎢⎣⎭ B. 2,23ππ⎛⎫ ⎪⎝⎭ C .2,3ππ⎛⎫ ⎪⎝⎭ D.20,,23πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭7.已知事件()()()131,,,342A B P B P B A P B A ===,,则P(A)= A.14 B. 12 C. 23 D. 128.已知2024202320222022,2023,2024a b c ===,则a ,b ,c 的大小关系为A. b >c> aB. b> a > cC. a >c>bD. a > b> c二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.如图所示的几何体,是将棱长为3 的正四面体沿棱的三等分点,作平行于底面的截面所得,且其所有棱长均为1,则A.直线BD 与直线JL 所成角为3πB.直线CG 与平面EFHILK 所成角为6πC.该几何体的体积为23212D.该几何体中,二面角A-BC-D 的余弦值为13 10.将函数()()sin 066f x x πωω⎛⎫=-<< ⎪⎝⎭的图象向右平移6π个单位长度后得到函数()g x 的图象,若0,πω⎛⎫ ⎪⎝⎭,是()g x 的一个单调递增区间,则 A.()f x 的最小正周期为πB.()f x 在 24,33ππ⎛⎫ ⎪⎝⎭上单调递增 C.函数()()()F x f x g x =+的最大值为3D.方程()12f x =-在[0,2π]上有5个实数根 11.函数()0b y ax ab x =+>的图象是双曲线,且直线x =0和y=ax 是它的渐近线.已知函数313y x x=+,则下列说法正确的是 A. 420,3x y ≠≥ B.对称轴方程是33,3y x y x ==- C.实轴长为 23D.离心率为233 12.已知函数()112sin x x f x e e x ππ--=-+,实数a 满足不等式()()210f a f a +->,则a 的取值可以是A.0B.1C.2 D .3三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知()()5234560123456311x x a a x a x a x a x a x a x -+=++++++,则246a a a ++= .(用数字作答)14.已知圆C:x²+y²-4xcosθ -4ysinθ=0 ,则与圆C 总相切的圆D 的方程是 .15.已知函数()()()log log 21x a a f x x a a =-->有两个零点,则实数a 的取值范围是 .16.已知过点A(-1,0)的直线l 1与抛物线C:y²=2x 交于B ,D 两点,过点A 作抛物线的切线l 2,切点是M(在x 轴的上方),直线MB 和MD 的倾斜角分别是α,β,则tan (α+β)的取值范围为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{}n a 和{}n b 满足11113,2,2,2n n n n n n a b a a b b a b ++===+=+(1)证明:{}n n a b +和{}n n a b -都是等比数列;(2)求{}n n a b 的前n 项和S n .18.(12分)定义平面凸四边形为平面上每个内角度数都小于180°的四边形.已知在平面凸四边形ABCD 中,∠ABC=105°,∠ADB=60°,AB= 3,∠ADB 的平分线为DE ,且2AE EB =.(1)求△ABD 的面积;(2)求CD 的取值范围.19.(12分)某品牌中性笔研发部门从流水线上随机抽取100 件产品,统计其性能指数并绘制频率分布直方图(如图1).产品的性能指数在[50,70)的适合儿童使用(简称A 类产品),在[70,90)的适合少年使用(简称B 类产品),在[90,110]的适合青年使用(简称C 类产品),A ,B ,C 三类产品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的性能指数位于各区间的频率代替产品的性能指数位于该区间的概率.(1)该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x ᵢ和年销售量y ᵢ(i=1,2,3,4,5)的数据做了初步处理,得到散点图(如图2)及一些统计量的值(如下表).根据散点图判断,b y a x =可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程,求y 关于x 的回归方程;(取 4.15964e =)(2)求每件产品的平均销售利润;并用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用)参考公式:对于一组数据(u ₁,v ₁),(u ₂,v ₂),…,(u n , v n ),其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为20.(12分)如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,△ABD 为底面圆O 的内接正三角形,且边长为3 ,点E 在母线PC 上,且AE =3,CE =1.(1)求证:直线PO ∥平面BDE ;(2)求证:平面BED ⊥平面ABD ;(3)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且过点D ⎭. (1)求椭圆C 的标准方程;(2)若动直线()1:122l y x m m =-+≤≤与椭圆C 交于A ,B 两点,且在坐标平面内存在两个定点P ,Q ,使得PA PB QA QB k k k k λ== (定值),其中PA PB k k ,分别是直线PA ,PB 的斜率,QA QB k k ,分别是直线QA ,QB 的斜率.①求λ的值;②求四边形PAQB 面积的最大值.22.(12分)已知函数()()2x f x x ax e a R =+-∈有两个极值点12,x x .(1)求实数a 的取值范围;(2)证明: x ₁ +x ₂< 1n4。
湖北省黄冈市高三数学模拟考试试题(三)
湖北省黄冈市高三数学模拟考试试题(三)2002.6说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =3sin(32π+x )的周期、振幅依次是 A.4π,3 B.4π,-3 C.π,3 D.π,-3 2.A ,B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为A.2x -y -1=0B.x +y -5=0C.2x +y -7=0D.2y -x -4=03.已知集合A ={1,2,3},B ={-1,0,1},满足条件f (3)=f (1)+f (2)的映射f :A →B 的个数是A.2B.4C.6D.7 4.若直线a ⊥b ,且a ∥平面α,则直线b 与平面α的位置关系是 A.b ⊂α B.b ∥αC.b ⊂α或b ∥αD.b 与α相交或b ∥α或b ⊂α都有可能5.函数y =|tg x |·cos x (0≤x <23π,且x ≠2π)的图象是6.(理)在极坐标系中,圆锥曲线ρsin 2θ=4cos θ绕极点逆时针旋转2π所得曲线的极坐标方程是A.ρcos 2θ=4sin θB.ρcos 2θ=-4sin θC.ρcos 2θ=8sin θD.ρsin 2θ=-4cos θ(文)直线x +7y =10把圆x 2+y 2=4分成两段弧,则这两段弧长之差的绝对值为A.πB.32π C. 2πD.2π 7.已知奇函数f (x ),g (x ),f (x )>0的解集为(a 2,b ),g (x )>0的解集为(2,22ba ),则f (x )g (x )>0的解集是A.(2,22ba ) B.(-b 2,-a 2) C.(a 2,),2()22a bb --⋃ D.(2,22ba )∪(-b 2,-a 2) 8.等比数列{a n }中,a 1+a 2+a 3=16,a 1+a 2+…+a 6=14,S n =a 1+a 2+…+a n ,则n n S ∞→lim =A.3128 B.9128C.128D.329.已知圆柱的上下两底面圆都在球面上,底面一条直径的两个端点间的球面距离是球大圆周长的41,圆柱的母线长为l ,则这个球的半径长为 A.22l B.l C.2 l D.2l10.已知双曲线192522=-y x 的左支上有一点M 到右焦点F 1的距离为18,N 是MF 1的中点,O 为坐标原点,则|ON |等于A.4B.2C.1D.32 11.函数f 1(x )=x x f x f x x f x +=+=-=-1)(,1,1)(,1432的图象分别是点集C 1,C 2,C 3,C 4,这些图象关于直线x =0的对称曲线分别是点集D 1,D 2,D 3,D 4,现给出下列四个命题:①D 1⊆D 2;②D 1∪D 3=D 2∪D 4;③D 4⊆D 3;④D 1∩D 3=D 2∩D 4.其中,正确命题的序号是A.①,③B.①,②C.③,④D.②,④ 12.(理)设n 满足C 0n +C 1n +2C 2n +…+n C nn <450的最大自然数,则n 等于 A.4 B.5 C.7 D.6(文)设S= C 0n +C 1n +2C 2n +…+n C nn ,则S 等于A.n ·2n -1B.n ·2n -1-1 C.n 2n -1+1 D.n 2n第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,请将答案填写在题中横线上) 13.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.50元的邮件一件,为使粘贴的邮票张数最少,且资费恰为7.50元,则至少要购买_______张邮票.14.抛物线的准线为y 轴,焦点运动的轨迹为y 2-4x 2+8y =0(y ≠0),则其顶点运动的轨迹方程为_______.15.关于复数z =cosπααα2,0(,2sin2∈+i ]有下列命题:①若z =z ,则α=2π;②将复数z 在复平面内对应的向量OP 逆时针旋转90°得到向量OQ ,则OQ 对应的复数是-si nπααα2,0(,2cos 2∈+i ];③复数z 在复平面内对应的轨迹是单位圆; ④复数z 2的辐角主值是α.其中,正确命题的序号是_______. (把你认为正确的命题的序号都填上).16.如图,在正方形ABCD —A 1B 1C 1D 1中,选出两条棱和两条面的对角线,使这四条线段所在的直线两两都是异面直线,如果我们选定一条面的对角线AB 1,那么另外三条线段可以是_______(只需写出一种情况即可).三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f (x)=2a cos 2x +b sin x cos x ,且f (0)=2,f (2321)3+=π. (Ⅰ)求f (x )的最大值与最小值.(Ⅱ)若α-β≠k π,k ∈Z ,且f (α)=f (β),求tan(α+β)的值. 18.(本小题满分12分) 已知数列{a n }为等差数列,公差为d ,{b n }为等比数列,公式为q ,且d =q =2,b 3+1=a 10=5,设c n =a n b n .(Ⅰ)求数列{c n }的通项公式;(Ⅱ)设数列{c n }的前n 项和为S n ,求nnn S nb ∞→lim的值.19.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,AC =AD =CD =DE =2,AB =1,F 为CE 的中点.(Ⅰ)求证:BF ⊥平面CDE ; (Ⅱ)求多面体ABCDE 的体积;(Ⅲ)(理)求平面BCE 和平面ACD 所成的锐二面角的大小.20.(本小题满分12分)某商场以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格,市场调查发现:①购买人数是羊毛衫标价的一次函数; ②旺季的最高价格是淡季最高价格的23倍; ③旺季商场以140元/件价格销售时,商场能获取最大利润.问:在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少? 21.(本小题满分12分)如图,A ,B 是两个定点,且|AB |=2,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,直线k 垂直于直线AB ,且B 点到直线k 的距离为3.(Ⅰ)求证:点P 到点B 的距离与点P 到直线k 的距离之比为定值;(Ⅱ)(理)若P 点到A ,B 两点的距离之积为m ,当m 取最大值时,求P 点的坐标;(Ⅲ)若|PA |-|PB |=1,求cos APB 的值. 22.(本小题满分14分)定义在(-1,1)上的函数f (x )满足:(Ⅰ)对任意x ,y ∈(-1,1)都有f (x )+f (y)=f (xyyx ++1);(Ⅱ)当x ∈(-1,0)时,有f (x )>0. (Ⅰ)判定f (x )在(-1,1)上的奇偶性,并说明理由. (Ⅱ)判定f (x )在(-1,0)上的单调性,并给出证明.(Ⅲ)(理)求证:).)(21()131()111()51(2N n f n n f f f ∈>+++++(文)求证:).)(21()11()131(2N n n f n f n n f ∈+-+=++湖北省黄冈市高三数学模拟考试试题(三)答案一、1.A 2.B 3.D 4.D 5.C 6.(理)A (文)B 7.C 8.B 9.A 10.A 11.D 12.C二、13.8 14.y 2-16x 2+8y =0(y ≠0) 15.①②16.BC 1,CD ,A 1D 1或CC 1,BD ,A 1D 1或BC ,C 1D 1,A 1D 或BC ,DD 1,A 1C 1(任选填一种) 三、17.解:(Ⅰ)由f (0)=2a =2,∴a =1,f (,23214321)3+=+=b a π∴b =2 ∴f (x )=2cos 2x +2sin x cos x =sin2x +cos2x +1=1)42sin(2++πx∴f (x )最大值为2+1,最小值为1-2.6分(Ⅱ)若f (α)=f (β),则sin(2α+4π)=sin(2β+4π), ∴2α+4π=2k π+2β+4π或2α+4π=2k π+π-(2β+4π),即α-β=k π(舍去)或α+β=k π+4π,k ∈Z ,∴tan(α+β)=tan(k π+4π)=1. 12分 18.解:(Ⅰ)由已知,有⎩⎨⎧=⨯+=+⋅.592,512121a b 解得b 1=1,a 1=-13. 2分从而a n =-13+(n -1)·2=2n -15,b n =1×2n -1=2n -1, c n =a n b n =(2n -15)2n -1 5分(Ⅱ)∵S n =a 1b 1+a 2b 2+…+a n b n , ①∴aS n =a 1b 2+a 2b 3+…+a n -1b n +a n b n +1. ②7分①-②得(1-q )S n =a 1b 1+d (b 2+b 3+…+b n )-a n b n +1=a 1b 1+d ·qq b n ---1)1(12-a n b n +1=-13+2·21)21(21---n -(2n -15)·2n =-[(2n -17)·2n +17],∴S n =(2n -17)·2n+17.10分∴)12.(412172)172(1lim172)172(2lim lim 11分=⋅+⋅-=+⋅-⋅=∴-∞→-∞→∞→n n n n n nn n n n n n S nb 19.解:(Ⅰ)取CD 中点G ,连AG ,FG ,则有FG AB DE 21.∴AG BF ,又△ACD 为正三角形,∴AG ⊥CD ,又DE ⊥平面ACD , ∴FG ⊥平面ACD .∴FG ⊥AG .∴AG ⊥平面CDE ∴BF ⊥平面CED .4分 (Ⅱ)V ABCDE =V B —ACD +V B —CDE =.32233233222131243312=⋅⋅+=⋅⋅⋅⋅+⋅⋅⋅BF AB (Ⅲ)由(1)知AB 21DE,延长DA ,EB 交于P ,连P C ,则可证得A ,B 分别为PD ,PE 中点,∴PC ∥BF ∥AG ,∴PC ⊥平面CDE ,∴∠DCE 为平面BCE 和平面ACD 所成二面角的平面角,又∠DCE =45°,即所成锐二面角为45°.12分20.解:设羊毛衫出售价格为x 元/件,购买人数为y 人,最高价格为x 0,则存在 a ,b 使y =ax +b .由条件知:a <0且0=ax 0+b∴x 0=-ab.因此y =a (x -x 0)=-a (x 0-x ),商场利润s =y (x -100)=-a (x 0-x )(x -100)≤-a (2020)2100()2100+-=++-x a x x x∥ = ∥ = ∥ = ∥ =当且仅当x 0-x =x -100,即x =50+2x 时“=”成立. 6分 因此商场定价x =50+2x 时能获最大利润,设旺、淡季的最高价格分别为a ,b .淡季能获最大利润的价格为c ,则140=50+2a,a =180, 9分 ∴b =32a =120.∴c=50+2b=110(元/件)12分 21.(Ⅰ)证明:以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则点A ,B 的坐标分别为(-1,0),(1,0).∵l 为MB 的垂直平分线,∴|PM |=|PB |,|PA |+|PB |=|PA |+|PM |=|MA |=4.∴P 点的轨迹是以A ,B 为两个焦点,长轴长为4的椭圆,其方程为.13422=+y x 根据椭圆的定义可知,点P 到点B 的距离与点P 到直线k :x =4(恰为椭圆的右准线)的距离之比为离心率e =21.4分 (Ⅱ)解:m =|PA |·|PB |≤(2)2PBPA +=4,当且仅当|PA |=|PB |时,m 最大,这时P 点的坐标为(0,3)或(0,-3).8分(Ⅲ)解:由|PA |-|PB |=1及|PA |+|PB |=4,得 |PA |=25,|PB |=23. 又|AB |=2,所以△APB 为直角三角形,∠ABP =90°.故cos APB =53=PAPB . 22.解:(Ⅰ)x ,y ∈(-1,1).f (x )+f (y )=f (xyyx ++1),令x =y =0,得f (0)=0.令y =-x ,得f (x )+f (-x )=f (0)=0, ∴f (-x )=-f (x )∴f (x )在(-1,1)上是奇函数.4分 (Ⅱ)设-1<x 1<x 2<0,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --),∵x 1-x 2<0,1-x 1x 2>0, ∴-1<21211x x x x --<0.x ∈(-1,0)时f (x )>0∴f (x 1)-f (x 2)>0,从而f (x )在(-1,0)上是单调减函数. 8分(Ⅲ)(理)∵f (1312++n n )。
_数学丨2023届高考全国甲卷乙卷全真模拟(三)数学试卷及答案
2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,22.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和893.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.26.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c<<B .a c b<<C .c<a<bD .c b a<<7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i i yy =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.20.已知抛物线()2:20C x pyp =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B 两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,2【答案】C【分析】根据一元一次不等式可解得集合A ,再根据函数值域求法可求得集合B ,由交集运算即可得出结果.【详解】由题意可得{}2A x x =>,由函数值域可得{}0B y y =≥,所以{}2A B x x ⋂=>.故选:C 2.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和89【答案】C【分析】根据中位数的概念即可求得.【详解】解:由题意得:所有成绩从小到大排列,第二十位是78,第二十一位是80,则中位数为7880792+=.故选:C 3.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-【答案】C【分析】根据复数的除法运算与减法运算得2i z =+,进而根据复数的概念求解即可.【详解】解:由题意可知()()()41i 4i i 2i 1i 1i 1i z +=-=-=+--+,所以,z 的虚部为1.故选:C.4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=【答案】B【分析】由离心率可得12b a =,从而可得渐近线方程,根据焦点到渐近线的距离为1可得c ,从而可求a ,故可得双曲线的方程.【详解】由题可知c a =,222514b e a =+=,得12b a =,则渐近线方程为20x y ±=,焦点到渐近线的距离为1,1=,可解得c =,所以2a =,由222c a b =+得1b =.所以双曲线方程为2214x y -=.故选:B.5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.2【答案】A【分析】玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,将圆柱侧面展开,线段AB 的长就是沿该圆柱表面由A 到B 的最短距离.【详解】本题考查传统文化与圆柱的侧面展开图.由题意,将玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,现沿该圆柱表面由A到B ,如图,将圆柱侧面展开,可知()min 8.4AB =≈.故选:A .6.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c <<B .a c b<<C .c<a<bD .c b a<<【答案】B【分析】由偶函数的性质可得m 的值,即可得函数()f x 的解析式,分析函数单调性,结合对数的运算性质比较大小.【详解】()21x mf x -=-(m 为实数)是R 上的偶函数,∴()()f x f x -=,即2121x m x m ----=-,∴--=-x m x m ,即()()22x m x m --=-,∴0mx =,则0m =,此时()21xf x =-,0.5log 30a =<,()2log 540b f ==>,()(0)0c f m f ===,则a c b <<.故选:B7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱【答案】C【分析】根据三视图还原出立体图形即可得到答案.【详解】根据其三视图还原出其立体图形如下图所示,易得其为五棱柱,故选:C.8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件及不等式的性质可得解.【详解】由22||12||||2ab a b a b ≥⇒+≥≥,而222a b +≥不一定能得到1ab ≥,例如,0,2a b ==,所以“1ab ≥”是“222a b +≥”的充分而不必要条件.故选:A 9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形【答案】D【分析】根据已知得到22cos c bc A =,利用正弦定理可求得sin 2sin cos =C B A ,结合三角形内角和为π以及两角和的正弦公式可求得in 0()s A B -=,即可确定三角形形状.【详解】解:根据22AB BA CA =⋅得到:22cos c bc A =,由正弦定理2sin sin b cR B C==,可得2sin 2sin sin cos C B C A =,又C 为三角形的内角,得到sin 0C ≠,可得sin 2sin cos =C B A ,又[]sin sin ()sin()C A B A B π=-+=+,∴sin()sin cos cos sin 2sin cos A B A B A B B A +=+=,即sin cos cos sin 0A B A B -=,∴in 0()s A B -=,且A 和B 都为三角形的内角,∴A B =,则ABC 的形状为等腰三角形.故选:D .10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种【答案】D【分析】首先分析将5个人分为三小组且每小组至少有一人,则可能分法有:(2,2,1),(3,1,1)两种情况,每种情况利用分步计数原理计算情况数,最后相加即可.【详解】当5个人分为2,2,1三小组,分别来自3个年级,共有2213531322C C C A 90A ⋅=种;②当5个人分为3,1,1三小组时,分别来自3个年级,共有3113521322C C C A 60A ⋅=种.综上,选法共有9060150+=.故选:D.11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点【答案】D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.x ππ,23⎛⎫-- ⎪⎝⎭π3-ππ,33⎛⎫- ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭()f x '-0+0-所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为24M =-,最小值为24m =--,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1【答案】C【分析】由()11f =,()31f =-解出,a b 的值可判断①;由周期和奇偶函数的性质计算()20231f =-可判断②;作出函数()f x 在[]0,4上的图象,根据图象可判断③;讨论当0m >和0m <,方程()mx m f x -=的解的个数可判断④.【详解】因为()()110f x f x -+-=,所以()()f x f x -=-,所以函数()f x 为奇函数,()00f =.因为()()8f x f x +=,所以()f x 的周期为8.又()()21111f a =-++=,所以10a +=,所以1a =-,()3311f b =+-=-,所以3b =-,故①正确.因为,()()()()202325381111f f f f =⨯-=-=-=-,故②错误.易知()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩,作出函数()f x 在[]0,4上的图象,根据函数()f x 为奇函数,及其周期为8,得到函数()f x 在R 上的图象,如图所示,由()f x 的图象知,当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ,故③正确.由题意,知直线()1y mx m m x =-=-恒过点()1,0,与函数()f x 的图象在y 轴右侧有3个交点根据图象可知当0m >时,应有51m m ⨯-<,即14m <,且同时满足()mx m f x -=,[]8,10x ∈无解,即当[]8,10x ∈时,()()()108f x x x =--,()()108x x mx m --=-无解,所以Δ0<,解得1616m -<<+所以1164m -<<.当0m <时,应有31m m ⨯->-,即12m >-,且同时满足()mx m f x -=,[]6,8x ∈无解,即当[]6,8x ∈时,()()()68f x x x =--,()()58x x mx m --=-无解,所以Δ0<,解得1212m --<<-+1122m -<<-+综上,1164m -<或1122m -<<-+.故选:C.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.【答案】45【分析】求导,求出斜率,进而可得倾斜角.【详解】()212f x x '=-+,则()11211f '=-+=,即函数()12f x x x=+在1x =处切线的斜率为1,则倾斜角为45 故答案为:45 14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.【答案】【分析】表示出(3,a b x -=- ,其与b =数量积为0,可算得出x .【详解】解:因为(2,)a x =-,b = ,所以(3,a b x -=-又()a b b -⊥,则()30a b b x -⋅=-= 故x =故答案为:15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.【答案】3【分析】根据题意可得12EF EF ⊥,利用椭圆性质可得()()22222a b b c -+=,结合222a b c =+,即可求得22c a .【详解】如图所示,连接2EF ,易得12EF EF ⊥,圆2F 的半径r b =,所以2EF b =,而122EF EF a +=,所以12EF a b =-,122F F c =,所以()()22222a b b c -+=,且有222a b c =+,化简可得23a b =,所以()22249a a c =-,所以2259a c =,可得22c a =.故答案为:16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.【答案】(),1e -∞-【分析】图象恰有两对关于x 轴对称的点,即0x ∃>,使得()()f x g x -=,即ln e 1xax x x -+=-有两解,对等式全分离,构造()ln e 1x x x h x x-+=,求导求单调性,求出值域,对图象进行判断,即可得出a 的取值范围.【详解】因为函数()f x 与()g x 的图象上恰有两对关于x 轴对称的点,所以0x >时()()f x g x -=有两解,即ln e 1x ax x x -+=-有两解,所以ln e 1x x x a x-+=有两解,令()ln e 1x x x h x x -+=,则()()()2e 11x x h x x --'=,所以当()0,1x ∈时,()0h x '>,函数()h x 单调递增;当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()h x 在1x =处取得极大值,()11e h =-,且()0,1x ∈时,()h x 的值域为(),1e -∞-;()1,x ∈+∞时,()h x 的值域为(),1e -∞-,因此ln e 1x x x a x-+=有两解时,实数a 的取值范围为(),1e -∞-.故答案为:(),1e -∞-三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.【答案】(1)21n a n =+(2)证明见解析【分析】(1)公式法列方程组解决即可;(2)运用裂项相消解决即可.【详解】(1)由题知,设{}n a 的公差为d ,由题意得42527222250S S S a a a d =++⎧⎪=⎨⎪≠⎩,即11121112(46)(2)(510)5(6)()(21)0a d a d a d a d a d a d d +=++++⎧⎪+=++⎨⎪≠⎩,解得132a d =⎧⎨=⎩,所以1(1)3(1)221n a a n d n n =+-=+-⨯=+,所以{}n a 的通项公式为21n a n =+.(2)证明:由(1)得21n a n =+,所以111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭,所以1111111111123557212323236n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-<⎪ ⎪+++⎝⎭⎝⎭.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i iy y =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)答案见解析;(2)ˆ471yx =+;预测2024年该市新能源汽车充电站的数量为424个.【分析】(1)利用相关系数的计算公式即可得解;(2)先利用已知数据和公式得到y 关于x 的线性回归方程,再将2024年所对应的年份编号代入线性回归方程即可得解.【详解】解:(1)由已知数据得()11234535x =⨯++++=,17101425y =⨯=,()()()2222152101210i i x x=-=-+-+++=∑,()()55115260053142470iii i i i x x yy x y x y ==--=-=-⨯⨯=∑∑,所以4700.993.16149.89r ≈≈⨯.因为y 与x 的相关系数近似为0.9,接近1,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()51215470ˆ4710iii ii x x y y bx x ==--===-∑∑,ˆˆ1424731ay bx =-=-⨯=,放所求线性回归方程为ˆ471yx =+.将2024年对应的年份编号9x =代人回归方程得ˆ4791424y=⨯+=,故预测2024年该市新能源汽车充电站的数量为424个.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.【答案】(1)证明见解析(2)22【分析】(1)已知条件求出AB ,BD ,AD 的长度,勾股定理证得BD AD ⊥,取AD 的中点O ,连接OP ,OC ,有PO AD ⊥,得PO ,勾股定理证得PO OC ⊥,从而PO ⊥平面ABCD ,有BD OP ⊥,所以BD ⊥平面APD .(2)建立空间直角坐标系,求相关点的坐标,求相关向量的坐标,求平面APD 和平面CEP 的一个法向量,利用向量夹角公式求平面APD 和平面CEP 的夹角的余弦值【详解】(1)在直角梯形ABCD 中,易得AB =4,BD =AD =,∴222AD BD AB +=,∴BD ⊥AD .取AD 的中点O ,连接OP ,OC ,易得PO ⊥AD ,PO =,如图所示,在△CDO 中,易得OC ==,又PC =,∴222OC PO PC +=,∴PO ⊥OC ,又PO ⊥AD ,AD OC O = ,,AD OC ⊂平面ABCD ,∴PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥OP ,又BD ⊥AD ,AD OP O ⋂=,,AD OP ⊂平面APD ,∴BD ⊥平面APD .(2)如图,以D 为坐标原点,DA ,DB 所在直线分别为x ,y 轴,过点D 且与PO 平行的直线为z 轴建立空间直角坐标系,则D (0,0,0),()A ,()0,B ,)E,P,()C ,∴(CP =,()CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为()10,1,0n =.设平面CEP 的法向量为()2,,n x y z =u u r,则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩,得00⎧+=⎪⎨=⎪⎩,取y =1,得()20,1,1n = ,∴122cos ,2n n =,∴平面APD 和平面CEP 的夹角的余弦值为22.20.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()010*******y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d ,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y +∈,4,PAB S ⎡∈⎣△21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.【答案】(1)2(2)1,1e ⎡⎫⎪⎢⎣⎭【分析】(1)由()e e g =可求出1ea =,则()1e xf x x -=+,然后对函数求导,由导数的正负可求出函数的单调区间,从而可求出函数的极小值;(2)令()1log 1x a F x ax -=--(0x >),则()111ln ln x F x xa a x a -⎛⎫'=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,利用导数可求出其单调区间和最小值,然后分11ln 10ln a a a----≥和10ea <<讨论函数的零点即可.【详解】(1)由()1e e e 1log e e ea g a =⇒++=⇒=,所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >),()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+,令()10ln x x aϕ'=⇒=-,当10ln x a<<-时,()0x ϕ'<;当1ln x a>-时,()0x ϕ'>,所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增,所以()11ln min 11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,①若11ln 10ln aa a----≥,即111ln ln ln ln a a a ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭,令1ln t a-=,所以()111ln ln 10t t t t t ⎛⎫--≤⇒-+≥ ⎪⎝⎭,所以1t ≥,所以11ln a -≥,即11ea <时,()()min 00x F x ϕ'≥⇒≥,所以()F x 在()0,∞+上递增,注意到()10F =,所以()F x 存在唯一的零点,符合题意②当10e a <<时,()100ln aϕ=->,()min 0x ϕ<,()22213(ln )133ln ln ln a a a a a aϕ-=-=,令22()3(ln )1t a a a =-,10ea <<,则221()3[2(ln )2ln ]6ln (ln 1)t a a a a a a a a a'=+⋅⋅=+,因为10ea <<,所以ln 1a <-,所以()6ln (ln 1)0t a a a a '=+>,所以22()3(ln )1t a a a =-在10,e ⎛⎫⎪⎝⎭上单调递增,所以2221113()3(ln 110e e e e t a t ⎛⎫⎛⎫<=-=-< ⎪ ⎪⎝⎭⎝⎭,所以()22213(ln )133ln 0ln ln a a a a a aϕ-=-=>所以()x ϕ即()F x '在10,ln a ⎛⎫- ⎪⎝⎭和1,ln a ⎛⎫-+∞ ⎪⎝⎭上各有一个零点1x ,2x ,()F x 在()10,x 上递增,()12,x x 上递减,()2,0x 上递增,而()11ln 0ln F a a'=-<,所以121x x <<,()1log 1x a F x a x -=--,当110a x a -<<时,()111log 11(1)0a F a a x a x -------<-=<;当1x a >时,()10log 10a F x a>--=,而()()110F x F >=,()()210F x F <=,所以()F x 在()10,x ,()12,x x 和()2,x +∞上各有一个零点,共3个零点了,舍去.综上,a 的取值范围为1,1e ⎡⎫⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB = ,求直线l 的斜率.【答案】(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则121222221,cos 4sin cos 4sin t t t t ααααα+=-=-++,∵2AM MB = ,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x m g x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
2025届北京市人民大学附属中学高三第三次模拟考试数学试卷含解析
2025届北京市人民大学附属中学高三第三次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为2a 的正方形模型内均匀投点,落入阴影部分的概率为p ,则圆周率π≈( )A .42p +B .41p +C .64p -D .43p +2.设实数满足条件则的最大值为( ) A .1B .2C .3D .43.在边长为1的等边三角形ABC 中,点E 是AC 中点,点F 是BE 中点,则AF AB ⋅=( ) A .54B .34C .58D .384.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过135.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种B .36种C .54种D .72种6.已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则3=3f f ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A .22B .12C .3log 2-D .3log 27.设,,D E F 分别为ABC ∆的三边BC,CA,AB 的中点,则EB FC +=( ) A .12AD B .AD C .BCD .12BC 8. 若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)9.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<10.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知函数()sin 3cos f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.已知函数()xf x a =(0a >,且1a ≠)在区间[],2m m 上的值域为[],2m m ,则a =( )A .2B .14C .116或2 D .14或4 二、填空题:本题共4小题,每小题5分,共20分。
2025届福建省福州市三校联考高三第三次模拟考试数学试卷含解析
2025届福建省福州市三校联考高三第三次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B.[-C.(-D.⎡⎣2.若关于x 的不等式1127kxx ⎛⎫≤⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9B .8C .7D .63.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( ) A .[1,2]-B.[C.⎡⎤⎢⎥⎣⎦D.[4.已知点()11,A x y ,()22,B x y 是函数()2f x bx =的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数 C .a 、b 均为任意实数D .不存在满足条件的实数a ,b5.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =,则m =( )A .0B .1C .2D .46.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 作双曲线C 的一条渐近线的垂线,分别交两条渐近线于点A 、B ,过点B 作x 轴的垂线,垂足恰为1F ,则双曲线C 的离心率为( ) A .2BC.D7.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .128.已知命题p :,x R ∃∈使1sin 2x x <成立. 则p ⌝为( ) A .,x R ∀∈1sin 2x x ≥均成立 B .,x R ∀∈1sin 2x x <均成立 C .,x R ∃∈使1sin 2x x ≥成立D .,x R ∃∈使1sin 2x x 成立 9.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .1010202111.已知向量(,1),(3,2)a m b m ==-,则3m =是//a b 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件12.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
江苏省盐城中学2023届高三第三次模拟考试数学试题及参考答案
江苏省盐城中学高三年级第三次模拟考试数学试卷(2023.5)命题人:胥容华沈巍龑审题人:蔡广军试卷说明:本场考试时间120分钟,总分150分.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数i z i +=-331)(,其中i 为虚数单位,则=z ()A .14B .12C .1D .22.如图所示的Venn 图中,B A ,是非空集合,定义集合B A ⊗为阴影部分表示的集合,若{},4,,12|≤∈+==n N n n x x A {}765432,,,,,=B ,则=⊗B A (){}6421.,,,A {}9642.,,,B {}765432.,,,,,C {}96421.,,,,D 3.已知公差不为零的等差数列{}n a 满足:2781a a a +=+,且248,,a a a 成等比数列,则2023a =()A .2023B .2023-C .0D .120234.在△ABC 中4AB AC ⋅= ,2BC = ,且点D 满足BD DC = ,则||AD =()B.C.D.325.已知函数f (x )的导函数3)(x x f =',)2(),2(31(log 34432-===-f c f b f a ,则()A .a <b <cB .b <c <aC .b <a <cD .a <c <b 6.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为()A .24181B .26681C .27481D .6702437.设函数()f x 的定义域为R ,其导函数为()f x ',若()()()(),2223f x f x f x f x -=+'-=',则下列结论不一定正确的是()A.()()113f x f x -++=B.()()22f x x f ''=+-C.()()()()11f f x f f x -='+' D.()()()()2ff x f f x ''+=8.已知B A ,是椭圆()222210x y a b a b+=>>与双曲线()222210,0x y a b a b -=>>的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan 3AMB ∠=-,则双曲线的离心率为()A .2B .3C D 二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知(),,0,1a b c ∈,随机变量ξ的分布列为:()ξ123Pabc则A .()()2E E ξξ-=B .()()2D D ξξ-=C .()()22[]E E ξξ≥D .()()22[2]D D ξξ-=10.已知曲线2:14x x C y +=,则()A.曲线C 关于原点对称B.曲线C 上任意点P 满足1OP ≥(O 为坐标原点)C.曲线C 与2240x y -=有且仅有两个公共点D.曲线C 上有无数个整点(整点指横纵坐标均为整数的点)11.已知正方体1111D C B A ABCD -的棱长为1,H 为棱1AA (包含端点)上的动点,下列命题正确的是()A .BDCH ⊥B .二面角C ABD --11的大小为3πC .点H 到平面11CD B 距离的取值范围是332,33[D .若⊥CH 平面β,则直线CD 与平面β所成角的正弦值的取值范围为]2233[,12.已知函数()(1)x f x x e =+,()(1)g x x lnx =+,则()A .函数()g x 在(0,)+∞上存在唯一极值点B .)(x f '为函数)(x f 的导函数,若函数a x f x h -'=)()(有两个零点,则实数a 的取值范围是)1,11(2e -C .若对任意0x >,不等式)(ln )(2x f ax f ≥恒成立,则实数a 的最小值为2eD .若12()()(0)f x g x t t ==>,则12(1)lnt x x +的最大值为1e 三.填空题:本大题共4小题,每小题5分,共20分.13.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有____种.14.已知点)(y x P ,为圆5)1()2(:22=-+-y x C 上任意一点,且点P 到直线042:1=+-y x l 和02:2=+-m y x l 的距离之和与点P 的位置无关,则实数m 的取值范围是.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,2a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是______.16.已知正四面体ABCD 的棱长为3,点E 满足AE AB λ=(01)λ<<,过点E 作平面α平行于AC 和BD ,设α分别与该正四面体的棱BC ,CD ,DA 相交于点F ,G ,H ,则四边形EFGH 的周长为______,四棱锥A EFGH -的体积的最大值为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{a n }中,a 1=1,S n 是其前n 项和,且满足S n +1=(S n +S 1)2.(1)求数列{a n }的通项公式;(2)已知数列{b n }满足111)1(+++-=n n n n n a a a b ,设数列{b n }的前n 项和为T n ,求T n 的最小值.18.如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.19.如图,在平面四边形ABCD 中,2AB BC CD ===,23AD =.(1)若DB 平分ADC ∠,证明:A C π+=;(2)记ABD △与BCD △的面积分别为1S 和2S ,求2212S S +的最大值.20.2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有)(*N k k ∈发子弹,甲每次打靶的命中率均为21,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量X ,求X 的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有m 发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行)(N n n ∈次射击后,记弹巢中空包弹的发数为n X ,①当*N n ∈时,请直接写出数学期望)(n X E 与)(1-n X E 的关系;②求出)(n X E 关于n 的表达式.21.已知抛物线C :()220y px p =>的焦点在圆E :221x y +=上.(1)设点P 是双曲线2214y x -=左支上一动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,证明:直线AB 与圆E 相切;(2)设点T 是圆E 上在第一象限内且位于抛物线开口区域以内的一点,直线l 是圆E 在点T 处的切线,若直线l 与抛物线C 交于M ,N 两点,求TM TN ⋅的最大值.22.已知函数()e cos xf x x =,()()cos 0g x a x x a =+<,曲线()y g x =在6x π=处的切线的斜率为32.(1)求实数a 的值;(2)对任意的,02x ⎡⎤∈-⎢⎥⎣⎦π,()()0tf x g x '-≥恒成立,求实数t 的取值范围;(3)设方程()()f x g x '=在区间()2,232n n n ππππ⎛⎫++ ⎪⎝⎭∈+N 内的根从小到大依次为21x x 、、L 、n x 、L ,求证:12n n x x +->π.江苏省盐城中学高三年级第三次模拟考试数学答案(2023.5)一、单选题:CDAA CBCB8.【解析】如图,设00(,)P x y ,点,,P M A 共线,点,,P B N 共线,所在直线的斜率分别为,PA PB k k ,点P 在双曲线上,即2200221x y a b -=,有200200y y b x a x a a ⋅=-+,因此22PA PB b k k a⋅=,点11(,)M x y 在椭圆上,即2211221x y a b +=,有211211y y b x a x a a⋅=--+,直线,MA MB 的斜率,MA MB k k ,有22MA MB b k k a ⋅=-,即22PA MB b k k a⋅=-,于是MB PB BN k k k =-=-,即直线MB 与NB 关于x 轴对称,又椭圆也关于x 轴对称,且,M N 过焦点F ,则MN x ⊥轴,令(c,0)F ,由22221x c x yab =⎧⎪⎨+=⎪⎩得2||b y a =,显然222tan ac a ac AMF b b a++∠==,222tan a c a acBMF b b a--∠==,22222222222tan tan 2tan 31tan tan 1a ac a acAMF BMF a b b AMB a ac a ac AMF BMF b a b b +-+∠+∠∠====-+--∠⋅∠--⋅,解得2213b a =,所以双曲线的离心率22221231133a b b e a a +==+=+=.故选:B二、多选题:BC BC ACD BCD12.【解析】对于A:x xx g ln 11)(++=',21()x g x x -''=,令()0g x ''>,解得:1x >,令()0g x ''<,解得:01x <<,故()g x '在(0,1)递减,在(1,)+∞递增,故()min g x g '='(1)20=>,故()g x 在(0,)+∞递增,函数()g x 在(0,)+∞上无极值点,故A 错误;对于B :函数ax f x h -=)()(/得到a x f =')(作出)(x f y '=的图象注意渐近线1=y B正确对于C:由A得:()f x在(0,)+∞递增,不等式)(ln)(2xfaxf≥恒成立,则2ln xax≥恒成立,故xxa ln2≥,设2()lnxh xx=,则22(1)()lnxh xx-'=,令()0h x'>,解得:0x e<<,令()0h x'<,解得:x e>,故()h x在(0,)e递增,在(,)e+∞递减,故()maxh x h=(e)2e=,故ea2≥,故C正确;对于D:若12()()(0)f xg x t t==>,则1122(1)(1)xx e x lnx t+=+=,t>,1x∴>,21x>,且12xx e=,12xx e=时,111121[(1)](1)(1)xxln x elntx x x e+=++,设11(1)xk x e=+,设()lnkg kk=,则21()lnkg kk-'=,令()0g k'>,解得:0k e<<,令()0g k'<,解得:k e>,故()g k在(0,)e递增,在(,)e+∞递减,故()maxg k g=(e)1e=,此时1122(1)(1)xe x e x lnx=+=+,故12(1)lntx x+的最大值是1e,故D正确;故选:.BCD三、填空题:2168-≤m22⎛⎝6,22315.【解析】由于34Aπ=,所以04Bπ<<,由正弦定理得223sin sin sin sin4b c aB C Aπ====,所以2sinb B=,2sinc C=,所以2sin2sin2sin2sin4b c B C B Bπλλλ⎛⎫+=+=+-⎪⎝⎭2sin 2cos sin (222B B B B B λλ⎛⎫=+-=+ ⎪ ⎪⎝⎭.当20λ=,即22λ=时,b c B λ+=,没有最大值,所以22λ≠,则sin()b c B λϕ+=+,其中tanϕ=要使b c λ+有最大值,则B ϕ+要能取2π,由于04B π<<,所以42ππϕ<<,所以tan 1ϕ>,即1,>,解得22λ<<.所以λ的取值范围是2⎛ ⎝.16.【解析】//AC 平面α,平面α 平面ABC EF =,平面α 平面ADC GH =则//AC EF ,//AC GH ,则//EF GH又//BD 平面α,平面α 平面ABD EH =,平面α 平面BDC GF =则//BD EH ,//BD GF ,则//EH GF 则四边形EFGH 为平行四边形.由AE AB λ=,可得:=AE AB λ,则:=HE DB λ,:=1EF AC λ-又正四面体ABCD 的棱长为3,则=3HE GF λ=,()=31EF GH λ=-四边形EFGH 的周长为()=23+316HE GF EF GH λλ⎡⎤+++-=⎣⎦.由AE AB λ=,MQ =可得点A 到平面EFGH 的距离为,又平行四边形EFGH 为矩形,则四棱锥A EFGH -的体积2133(1)(1)3V λλλ=⨯⨯-=-令2()(1)(01)f x x x =-<<,则()(23)f x x '=-由()0f x '>得203x <<,由()0f x '<,得213x <<则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,在2,13⎛⎫⎪⎝⎭单调递减,在23x =时取最大值222222()()(1)3333f =-=2(1)λ-的最大值为223四、解答题:17.【解析】(1)由题意可知11=-+n n S S ,则数列}{n S 为等差数列,可得2,n S n S n n ==,当2≥n 时,121-=-=-n S S a n n n ,当1=n 时也成立,所以12-=n a n ;(2)12)1(12)1([21)12)(12(2)1(1)1(1111+----=+--=+-=-+++nnnnnaaab nnnnnnnn,]121)1(1[211+-+=+nT nn,当n为奇数时211211(21>++=nTn,当n为偶数时)1211(21+-=nTn,单调递增,则522=≥TT n,则T n的最小值为52.18.【解析】(1)过G作//GH CB,交底面弧于H,连接HB,易知:HBCG为平行四边形,所以//HB CG,又G为弧CD的中点,则H是弧AB的中点,所以45HBA∠=︒,而由题设知:45ABF∠=︒,则90HBF HBA ABF∠=∠+∠=︒,所以FB HB⊥,即FB CG⊥,由CB⊥底面ABF,FB⊂面ABF,则CB⊥FB,又CB CG C⋂=,所以FB⊥面BCG,又FB⊂面BDF,所以面⊥BDF面BCG.(2)由题意,构建如下图示空间直角坐标系A xyz-,令半圆柱半径为r,高为h,则(0,2,0)B r,(2,0,0)F r,(0,0,)D h,(,,)G r r h-,所以(2,0,)FD r h=-,(0,2,)BD r h=-,(0,2,0)AB r=,(,,)AG r r h=-,若(,,)m x y z=是面BDF的一个法向量,则2020m FD rx hzm BD ry hz⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z r=,则(,,2)m h h r=,若(,,)n a b c=是面ABG的一个法向量,则20n AB rbn AG ra rb hc⎧⋅==⎪⎨⋅=-++=⎪⎩,令c r=,则(,0,)n h r=,所以2215|cos,|||5||||m nm nm n⋅<>===,整理可得2222(4)(2)0h r h r-+=,则2h r=,由题设可知,此时点)0,0,2(),2,0,0(),2,1,1(FDG-,可求得26=d.19.【解析】(1)DB平分ADC∠,ADB CDB∴∠=∠,则cos cosADB CDB∠=∠,由余弦定理得:22222222AD BD AB CD BD BCAD BD CD BD+-+-=⋅⋅,即22444BD BD +-=,解得:)241BD =;2221244131cos22AD AB BD A AD AB+-+-==⋅ ,22244411cos 282CD BC BD C CD BC +-++-===⋅,cos cos A C ∴=-,又()0,A π∈,()0,C π∈,A C π∴+=方法二:由正弦定理可得CBDCDB BC A BD ADB AB sin sin ,sin sin =∠=∠,代入数据可得C A sin sin =,又两角不相等,故A C π∴+=(2)222222cos 2cos AB AD AB AD A BC BC CD C =+-⋅=-⋅,1688cos A C ∴-=-,整理可得:cos 1C A =-;2222221211sin sin 12sin 4sin 22S S AD AB A BC CD C A C⎛⎫⎛⎫+=⋅+⋅=+ ⎪ ⎪⎝⎭⎝⎭)22221212cos 44cos 1612cos 41A C A A =-+-=---22324cos 1224cos 146A A A ⎛⎫=-++=--+ ⎪ ⎪⎝⎭,()0,A π∈ ,∴当cos 6A =时,2212S S +取得最大值,最大值为14.20.【解析】(1)由题意,X 的所有可能取值为k k ,1,,2,1,0- ,k m k X P k m m X P 21()(),1,,2,1,0)(211()21()(==-=-== ,所以X 的分布列为X 012…1-k kP212)21(3)21(…k )21(k )21(所以X 的数学期望为kkk k X E21()21)(1()21(2)21()(32+-+++= 化简可得kX E21(1)(-=.(2)①第n 次射击后,可能包含两种情况:第n 次射出空包弹或第n 次射出实弹,第n 次射击前,剩余空包弹的期望是)(1-n X E ,若第n 次射出空包弹,则此时对应的概率为6)(1-n X E ,因为射击后要填充一发空包弹,所以此时空包弹的数量为)(11)(11--=+-n n X E X E ,若第n 次射出实弹,则此时对应的概率为6)(11--n X E ,所以此时空包弹的数量为1)(1+-n X E ,综上,1)(65]1)(6)(1[)(6)()(11111+=+-+⋅=-----nnnnnnXEXEXEXEXEXE.②当0=n时,弹巢中有m-6发空包弹,则mXE-=6)(,由1)(65)(1+=-nnXEXE可得]6)([656)(1-=--nnXEXE,则)()65(6)(,)65)((6)(NnmXEmXE nnnn∈-=-=-.21.【解析】(1)抛物线C:()220y px p=>的焦点为,02p⎛⎫⎪⎝⎭,故可知122p p=⇒=,设00(,)P x y,PA的直线方程为()00x m y y x=-+,PB的直线方程为()00x n y y x=-+,m n≠,则()22000044440y xy my my xx m y y x⎧=⎪⇒-+-=⎨=-+⎪⎩,由于PA与抛物线相切,所以()2200001644400m my x m my x∆=--=⇒-+=,故方程的根为2y m=,将其代入抛物线方程得2x m=,故()2,2A m m,同理2000n ny x-+=,()2,2B n n,因此,m n是方程200x y x x-+=的两个根,故00,m n y mn x+==,直线AB的方程为()222222m ny x m mm n-=-+-,化简得()222y x m my=-+,圆心(0,0)到直线AB的距离为d=由于22014yx-=,200m my x=-,将其代入得212xd rx====,故直线AB与圆E相切(2)联立2222441021y x x x xx y⎧=⇒+-=⇒=-+⎨+=⎩,设(,)T a b,且满足221ab+=,21a-<<,则OTbka=,则MNakb=-,此时MN的直线方程为()ay x a bb=--+,联立直线MN与抛物线方程()22444y x by ya a ay x a bb⎧=⎪⇒+-=⎨=--+⎪⎩,设()()1122,,,M x y N x y,所以121244,by y y ya a+=-=-,高三年级第三次模拟考试进而222221212121222241,416y y y y a b x x x x a a +++====,()()1122,,,MT a x b y TN x a y b =--=-- ,因此()()()()22212121212121MT TN x a a x y b b y ax x x a ax by y y b by ⋅=--+--=--++--+ ()()22221122112222241441411a b b MT TN a x x x x b y y y y b a a b a a a aa a +⎛⎫⋅=+-++---=⨯-+-+-=-+ ⎪⎝⎭ 2125a ⎛⎫=--+ ⎪⎝⎭,由于21a -<≤,当12a =时,12a =时MT TN ⋅ 取最大值5,由于T 是圆E 上在第一象限内且位于抛物线开口区域以内的一点,所以,M N 在T 的两侧,故MT TM N T T N =⋅⋅ ,故此时TM TN ⋅的最大值为5,22.【解析】(1)因为()()cos 0g x a x x a =+<,则()1sin g x a x '=-,由已知可得131622g a π⎛⎫'=-= ⎪⎝⎭,解得1a =-.(2)由(1)可知()1sin g x x '=+,对任意的,02x ⎡⎤∈-⎢⎥⎣⎦π,()()0tf x g x '-≥恒成立,即e cos 1sin x t x x ≥+对任意的,02x ⎡⎤∈-⎢⎥⎣⎦π恒成立,当2x π=-时,则有00≥对任意的R t ∈恒成立;当02x π-<≤时,cos 0x >,则1sin e cos x x t x +≥,令()1sin e cos x x h x x +=,其中02x π-<≤,()()()()()()222e cos e cos sin 1sin 1cos 1sin 0e cos e cos x x x x x x x x x x h x x x --+-+'==≥且()h x '不恒为零,故函数()h x 在,02π⎛⎤-⎥⎝⎦上单调递增,则()()max 01h x h ==,故1t ≥.综上所述,1t ≥.(3)证明:由()()f x g x '=可得e cos 1sin x x x =+,令()e cos sin 1x x x x ϕ=--,则()()e cos sin cos x x x x x ϕ'=--,因为()2,232x n n n ππππ⎛⎫∈++ ⎪⎝⎭∈+N ,则sin cos 0x x >>,所以,()0x ϕ'<,所以,函数()x ϕ在()2,232n n n ππππ⎛⎫++ ⎪⎝⎭∈+N 上单调递减,因为2233132e cos 2sin 21e 133322n n n n n πππππππϕπππ++⎛⎫⎛⎫⎛⎫+=+-+-=-- ⎪ ⎪⎝⎭⎝⎭⎝⎭试数学试题·第4页共4页23e31022ππ+≥-->,2202n πϕ⎛⎫+=-< ⎪⎝⎭,所以,存在唯一的()02,232x n n n ππππ⎛⎫∈++ ⎪⎝⎭∈+N ,使得()00x ϕ=,所以,()2,232n x n n n ππππ⎛⎫∈++ ⎪⎝⎭∈+N ,则()122,232n x n n n πππππ+⎛⎫-∈++∈ ⎪⎝⎭+N ,所以,()()()121112e cos 2sin 21n x n n n x x x πϕπππ+-+++-=----()()1111122211111e cos sin 1e cos e cos e e cos 0n n n n n x x x x x n n n n n n x x x x x x πππϕ+++++---+++++=--=-=-<=因为函数()x ϕ在()2,232n n n ππππ⎛⎫++ ⎪⎝⎭∈+N 上单调递减,故12n n x x +-π>,即12n n x x +->π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学模拟试卷3一:选择题。
1.已知集合{|1}A x x =<,2{|320}B x x x =++≤,则(A B ⋂= ) A. ∅ B. {|1}x x < C. {|21}x x -≤≤- D. {|2x x <-或11}x -<<2.设复数z 满足()212(z i i i ⋅+=-+为虚数单位),则(z = )A. i -B. iC. 1-D. 13.设函数ln ,1(),1x x x f x e x -⎧≤-⎪=⎨>-⎪⎩,则()()2f f -的值为( )A. 1eB. 2eC. 12D. 24.已知m n ,是空间中两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A. 若m α⊂,n α⊂,//m β,//n β,则//αβ B. 若αβ⊥,//n α,则n β⊥C. 若//αβ,//m α,则//m βD. 若m α⊥,n β⊂,//m n ,则αβ⊥5.已知实数x y ,满足约束条件2220220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则x y +的最大值为( )A. 1B. 4C. 2D. 326.已知双曲线C :22221(0,0)x y a b a b-=>>,则“a b >”是“双曲线C 的焦点在x 轴上”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7.函数()()2sin 1xf x x x ππ=-≤≤+的图象可能是( ) A. B. C. D.8.已知1F ,2F 是椭圆与22221(0)x y a b a b+=>>的左、右焦点,过左焦点1F 的直线与椭圆交于A ,B 两点,且满足112AF BF =,2AB BF =,则该椭圆的离心率是( )A.12B.3 C.3 D.59.已知实数a b c d ,,,均为正数,满足1a b +=,1c d +=,则11abc d+的最小值是( ) A. 10B. 9C. 2D.3310.已知三棱锥P ABC -的所有棱长为1.M 是底面ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,PAC 的距离1h ,2h ,3h 成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( ) A. αβ=B. βγ=C. αβ<D. βγ<二:填空题。
11.已知随机变量ξ的分布如表所示,则()E ξ=______,()D ξ=______.12.某几何体的三视图如图所示,则该几何体的体积为______,表面积为______13.若621ax x ⎛⎫+ ⎪⎝⎭的展开式中,3x 的系数为6,则a =______,常数项的值为______.14.在ABC 中,角,,A B C 所对的边分别为a ,,b c ,60A =,且ABC ,则a =______,若b c +=则ABC的面积为______.15.沿着一条笔直的公路有9根电线杆,现要移除2根,且被移除的电线杆之间至少还有2根电线杆被保留,则不同的移除方法有______种.16.已知向量a ,b 满足2a b =,2a b -=,则a b ⋅的取值范围为______.17.设函数()()2,f x x a x b a b R =+++∈,当[]2,2x ∈-时,记()f x 的最大值为(),M a b ,则(),M a b 的最小值为______.三:解答题。
18.已知函数()22sin .f x x x =+(Ⅰ)求()f x 的最小正周期及单调递增区间;(Ⅱ)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值.4正视图侧视图俯视图19.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,4CD =,2PA AB BC AD ====,Q 为棱PC 上的一点,且13PQ PC =.(Ⅰ)证明:平面QBD ⊥平面ABCD ;(Ⅱ)求直线QD 与平面PBC 所成角正弦值.20.已知数列{}n a 的前n 项和为n S ,且满足21nn S a bn =⋅+-(,a b R ∈且*n N ∈)(Ⅰ)当1a =,1b =时,求数列{}n S 的前n 项和n T :(Ⅱ)若{}n a 是等比数列,证明:312122311n n n a a a S S S S S S ++++⋯+<.21.已知抛物线22(0)y px p =>的焦点为F ,点()2,8M -,且MF =(Ⅰ)求抛物线方程;(Ⅱ)设,A B 是抛物线上的两点,当F 为ABM 的垂心时,求直线AB 的方程.22.设a R ∈,已知函数()()2ln 11f x x x ax a x =+-++,()1,x ∈+∞.(Ⅰ)若()0f x >恒成立,求a 的范围(Ⅱ)证明:存在实数a 使得()f x 有唯一零点.高三数学模拟试卷3一:选择题。
1.已知集合{|1}A x x =<,2{|320}B x x x =++≤,则(A B ⋂= ) A. ∅B. {|1}x x <C. {|21}x x -≤≤-D. {|2x x <-或1}x l -<<【答案】C 【解析】 【分析】利用一元二次不等式的解法化简集合B ,再由交集的定义求解即可. 【详解】集合{|1}A x x =<,2{|320}{|21}B x x x x x =++≤=-≤≤-, {|21}A B x x ∴⋂=-≤≤-.故选C .【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.设复数z 满足()212(z i i i ⋅+=-+为虚数单位),则(z = ) A. i - B. iC. 1-D. 1【答案】B 【解析】 【分析】把已知等式变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,从而可得结果.【详解】由()212z i i ⋅+=-+, 得()()()()1221252225i i i iz i i i i -+--+====++-.故选B . 【点睛】本题考查了复数代数形式的乘除运算,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.设函数()ln ,1,1x x xf x e x ≤--⎧⎪=>-⎨⎪⎩,则()()2f f -的值为( )A.1eB.2eC.12D. 2【答案】C 【解析】 【分析】由分段函数,先求()2f -=ln2,然后根据判断范围再由分段函数另一段求出值 【详解】21-≤-,()2f -=ln2, ln21>-,即()()()2ln2ff f -==1 2【点睛】本题主要考察分段函数求函数值,这类题目,需要判断自变量所在范围,然后带入相应的解析式解答即可4.已知m n ,是空间中两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A. 若m α⊂,n α⊂,//m β,//n β,则//αβ B. 若αβ⊥,//n α,则n β⊥ C. 若//αβ,//m α,则//m βD. 若m α⊥,n β⊂,//m n ,则αβ⊥ 【答案】D 【解析】 【分析】利用α与β相交或平行判断A ;根据n 与β相交、平行或n β⊂判断B ;根据//m β或m β⊂判断C ;由面面垂直的判定定理得αβ⊥.【详解】由m ,n 是空间中两条不同的直线,α,β是两个不同的平面,得: 若m α⊂,n α⊂,//m β,//n β,则α与β相交或平行,故A 错误; 若αβ⊥,//n α,则n 与β相交、平行或n β⊂,故B 错误; 若//αβ,//m α,则//m β或m β⊂,故C 错误;若m α⊥,n β⊂,//m n ,则由面面垂直判定定理得αβ⊥,故D 正确.故选D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5.已知实数x y ,满足约束条件2220220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则x y +的最大值为( )A. 1B. 4C. 2D.32【答案】B 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出实数,x y 满足约束条件2220220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩对应的平面区域如图(阴影部分)由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点A 时,直线y x z =-+的截距最大,此时z 最大.由2220y x y =⎧--=⎨⎩解得()2,2A .代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4.故选B .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.已知双曲线C :22221(0,0)x y a b a b-=>>,则“a b >”是“双曲线C 的焦点在x 轴上”的( )A. 充分不必要条件B. 必要不充分条件 C .充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据充分条件和必要条件的定义,结合22221(0,0)x y a b a b-=>>总表示焦点在x 轴上判断即可.【详解】双曲线C 的焦点在x 轴上a b ⇔≥或a b <,a b a b >⇒≥或a b <, a b ≥或a b <推不出a b >,∴“a b >”是“双曲线C 的焦点在x 轴上”的充分不必要条件.故选A .【点睛】判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 7.函数()()2sin 1xf x x x ππ=-≤≤+的图象可能是( ) A.B.C.D.【答案】A 【解析】 【分析】利用排除法,由()f x 是奇函数排除C ;03f π⎛⎫>⎪⎝⎭排除D ;103f π⎛⎫-<-< ⎪⎝⎭排除B ;从而可得结果. 【详解】因为()()()()22sin ()11x sinxf x f x x x x ππ--==-=--≤≤-++,可得()f x 奇函数.排除C ;当3x π=时,03f π⎛⎫>⎪⎝⎭,点在x 轴的上方,排除D ; 当3x π=-时,103f π⎛⎫-<-< ⎪⎝⎭,排除B ;故选A . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8.已知1F ,2F 是椭圆与22221(0)x y a b a b+=>>的左、右焦点,过左焦点1F 的直线与椭圆交于A ,B 两点,且满足112AF BF =,2AB BF =,则该椭圆的离心率是( ) A.12B.3 C.3 D.5 【答案】B 【解析】 【分析】由112AF BF =,2AB BF =,利用椭圆的定义,求得1AF a =,2AF a =,32AB a =, 可得2112cos 332aBAF a ∠==,1sin c OAF a ∠=,由二倍角公式列方程可得结果. 【详解】由题意可得:122F B BF a +=,2AB BF =,可得1AF a =,2AF a =,32AB a =,122F F c =, 2112cos 332aBAF a ∠==,1sin c OAF a ∠=,212BAF OAF ∠=∠, 可得2112()3c a =-,可得3c e a ==.故选B . 【点睛】本题考查椭圆的简单性质的应用以及椭圆的离心,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.9.已知实数a b c d ,,,均为正数,满足1a b +=,1c d +=,则11abc d+的最小值是( ) A. 10 B. 9C. 2D. 33【答案】B【解析】【分析】 利用基本不等式求得14ab ≥,则()1111414c d abc d c d c d ⎛⎫+≥⋅+=+⋅+ ⎪⎝⎭,展开后再利用基本不等式可求得11abc d+的最小值. 【详解】1a b +=,1c d +=,21()24a b ab +∴≤=,14ab ∴≥,当且仅当12a b ==时,取等号. 则()1111414445529d c d c c d abc d c d c d c d c d ⎛⎫+≥⋅+=+⋅+=++≥+⋅= ⎪⎝⎭, 当且仅当12a b ==时,且23c =,13d =时,11abc d +的最小值为9,故选B . 【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).10.已知三棱锥P ABC -的所有棱长为1.M 是底面ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,PAC 的距离1h ,2h ,3h 成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A. αβ=B. βγ=C. αβ<D. βγ<【答案】D【解析】【分析】 利用公式cos cos cos θαβ=将问题转化为:比较MO 与AB ,BC ,AC 夹角的大小,然后判断M 到AB ,BC ,AC 的距离123d d d <<,在ABC 中确定M 所在区域,利用数形结合可以解决.【详解】依题意知正四面体P ABC -的顶点P 在底面ABC 的射影是正三角形ABC 的中心O ,则cos cos cos PMO MO α=∠⋅<,AB >,其中MO <,AB >表示直线MO 、AB 的夹角,cos cos cos PMO MO β=∠⋅<,BC >,其中MO <,BC >表示直线MO 、BC 的夹角,cos cos cos PMO MO γ=∠⋅<,AC >,其中MO <,AC >表示直线MO AC 、的夹角,由于PMO ∠是公共的,因此题意即比较MO 与AB ,BC ,AC 夹角的大小,设M 到AB ,BC ,AC 的距离为1d ,2d ,3d 则11sin h d θ=,其中θ是正四面体相邻两个面所成角22sin 3θ=, 所以1d ,2d ,3d 成单调递增的等差数列,然后在ABC 中解决问题由于123d d d <<,结合角平分线性质可知M 在如图阴影区域(不包括边界)从图中可以看出,MO 、BC 所成角小于MO AC 、所成角,所以βγ<,故选D .【点睛】本题考查了异面直线及其所成角,以及公式cos cos cos θαβ=的应用,考查了转化思想与数形结合思想的应用,属于难题.若直线l 与其在平面γ内的射影'l 所成的角为θ,平面内任意直线m 与l 、'l 成的角为,αβ,则cos cos cos θαβ=.二:填空题。