配合物的立体结构
第4章 配合物 4-1 配合物的基本概念4-2 配合物的异构现象与立体结构4-3 配合物的价键理论4-4 配
MA4B2 反式- (trans-)
顺式- (cis-)
MA3B3 经式- (mer-)
面式- (fac-)
MA2B2
反式-
顺式-
PtCl2 (NH3)2
顺式 cis-
顺式 cis-
顺式 cis-
Cl
NH3
Pt
H2O
Cl
NH3
反式 trans-
Cl
NH3 H2O
Pt
H3N Cl
H3N OH Pt
1. 内界: [AB n ]
配位数-配体名-合-中心原子(氧化数) (离子)
n
B
A (罗马数字)
例: [Cu(NH3)4]SO4 [Co(NH3)6]Cl3 [Ni(CO)4]
K3[Fe(CN)6] [Pt(NH3)6] [PtCl4]
2. 多种配体: 先无后有;先负后中;先A后B ;先简后繁。
NH3, en; Br-, NH3; NH3, H2O; NH3, NH2OH
Fe(CN)63-
价键理论
研究 M L 之间的化学键 Fe CN
价键理论的要点:
晶体场理论 配位场理论
配合物的空间构型(磁矩,内轨、外轨) 价键理论的应用和局限性
1. 价键理论的基本要点:
杂化轨道(配离子的空间构型) +配位键
①中心原子采用杂化轨道成键,决定空间构型
例: Fe(CN)63- Fe(III) 3d54s0 配位数: 6Cl[Fra bibliotek化 ]
OH
(酸) SO4
NO3
[Co(NH3)6]Cl3 [Cu(NH3)4]SO4
[Pt(NH3)6] [PtCl4]
4-2 配合物的异构现象与立体结构
化学配位化合物的立体结构与异构体练习题详解
化学配位化合物的立体结构与异构体练习题详解化学配位化合物的立体结构与异构体是化学领域中的重要概念,对于理解化学反应和化学性质起着关键作用。
在本文中,我们将详解一些关于化学配位化合物立体结构与异构体的练习题,帮助读者更好地理解这个概念。
一、以下是一些关于配位配合物立体结构的问题,请回答并说明原因:1. 对称型配合物的空间群是否一定具有反射面?2. 说一说平面六配位配合物的形状和空间构型。
3. 请画出一个具有三方截尖顶体及其等价面的四配位配合物的球棍模型。
4. 对于配位配合物[Ni(Cl)4]2-,根据VSEPR理论,它的形状是什么?5. 高配位数的配合物中,配位键倾角是否会改变?1. 对称型配合物的空间群是否一定具有反射面?答案:不一定具有反射面。
空间群是描述晶体中原子或分子排列的对称性的指标,它包含了各种对称操作,如旋转、反射、平移等。
对称型配合物的立体结构中,即使具有对称性,也不一定具有反射面。
因此,对称型配合物的空间群不一定具有反射面。
2. 说一说平面六配位配合物的形状和空间构型。
答案:平面六配位配合物具有八面体的空间构型,形状呈六角形平面。
在平面六配位结构中,配体以六个顶点均匀分布在配合物的一个平面上,而中心金属离子位于这个平面的中心。
3. 请画出一个具有三方截尖顶体及其等价面的四配位配合物的球棍模型。
答案:[球棍模型]4. 对于配位配合物[Ni(Cl)4]2-,根据VSEPR理论,它的形状是什么?答案:根据VSEPR理论,[Ni(Cl)4]2-的形状是正方形平面。
根据VSEPR理论,该配合物的中心金属离子Ni2+被四个氯离子(Cl-)配位,形成一个正方形平面结构。
5. 高配位数的配合物中,配位键倾角是否会改变?答案:是的,高配位数的配合物中配位键倾角会改变。
配位键倾角是指配体和中心金属离子之间的键角,它受到电子云的排斥作用影响。
在高配位数的配合物中,由于配体的增加,电子云之间的排斥作用增强,导致配位键倾角变小。
第 5 章 配合物结构
配位数为六配合物
配位数为六的配合物绝大多数是八面体构型,
d区过渡金属一般均为该配位构型
配位数为七及以上的配合物
高配位数的配合物一般中心离子为稀土金属离子
配位数 2
4
6
空 间 构 型
直线形 3
四面体 平面正方形 八面体 5
配位数 空 间 构 型
三角形
四方锥
三角双锥
配合物的异构现象
结构异构
原子间连接方式不同引起的异构现象
若H和H’反向,即κ<0(~-10-6)的物质称为反磁 性或抗磁性物质; 若H和H’同向,即κ>0(~10-3),顺磁性物质;
κ=103~104,铁磁性物质
抗磁性物质中全部电子均配对,无永久磁矩,如H2,He。 顺磁性原子或分子中有未成对电子存在,如O2,NO等, 存在永久磁矩,当无外磁场时,无规则的热运动使磁 矩随机取向,当有外磁场时,磁矩按一定方向排布, 呈现顺磁性。 铁磁性在金属铁或钴等材料中,每个原子都有几个有 未成对电子,原子磁矩较大,且有一定的相互作用, 使原子磁矩平行排列,是强磁性物质。
几何异构:配体对于中心离子的不同位置。
顺式(cis)异构体 棕黄色,极性分子
反式(cis)异构体 淡黄色,非极性分子
顺铂是已经临床使用的抗癌药物
配体处于相邻位置为顺式结构(cis isomer),配体处于 相对位置,称为反式结构(trans isomer)。配位数为2的 配合物,配位数为3与配位数为4的四面体配合物, 配体 只有相对位置,因而不存在反式异构体;在平面四边 形和八面体配位化合物中,顺-反异构是很常见的。
在八面体配合物中,MA6和MA5B显然没有异构体。 在MA4B2型八面体配合物有顺式和反式两种异构体:
无机化学 第十一章配合物结构
② 先阴离子配体,后阳离子和中性配体;
K[PtCl3NH3] 三氯· 氨合铂(Ⅱ)酸钾 配体数目(一、二、三等) →配体名称→合→中心 离子名称(氧化态Ⅰ、Ⅱ、Ⅲ等)
③ 同类配体,按配位原子元素符号的字母顺序排列:
[Co(NH3)5H2O]Cl3
三氯化五氨· 水合钴(Ⅲ)
④ 同类配体而且配位原子相同时,则将含较少原子数
(2)[ 内界 ] 命名顺序:
配体数目(一、二、三等) →配体名称→合→中心 离子名称(氧化态Ⅰ、Ⅱ、Ⅲ等)
[Co(NH3)6]Cl3 [Cu(en)2]SO4 H2[SiF6] [Cu(H2O)4]2+
三氯化六氨合钴(Ⅲ) 硫酸二乙二胺合铜(Ⅱ) 六氟合硅(Ⅵ) 酸 四水合铜(Ⅱ)配离子
(3) 多种配体共存时排列顺序 ① 先无机配体,后有机配体; [PtCl2(Ph3P)2] 二氯· 二(三苯基膦)合铂(Ⅱ)
一般若分子无“对称面”或“反演中心”,则 有对映异构体。 ①Mabcd四面体分子有对映体; ②平面正方形配合物某配体中含有手性C、N、P,As 则有对映体; ③八面体没有σ或i,则有对映体。
m C A A B CC AA AA MM BB CB BC A A M B C M C M B C A A
轨道,可以和CN-离子充满电子的pz轨道重叠,而形
成离域∏98键,增强了[Ni(CN)4]2-配离子的稳定性。
Ni 2 +
CN
N C Ni C N C C
N
2Ni(CN)4
N
价键理论的应用和局限性 价键理论可用来: 1、解释许多配合物的配位数和几何构型。 2、可以说明含有离城键的配合物特别稳定。 3、可以解释配离子的某些性质,如[Fe(CN)6]4-(低 自旋型配离子)配离子为什么比[FeF6]3-(高自旋型配离 子)配离子稳定。 价键理论的局限性: 1、价键理论在目前的阶段还是一个定性的理论, 不能定量地或半定量地说明配合物的性质。 2、不能解释每个配合物为何都具有自己的特征光 谱,也无法解释过渡金属配离子为何有不同的颜色。 3、不能解释过渡金属离子的配合物的稳定性随中 心离子的d电子数的变化而变化。
高三化学配位化合物的配位数与立体构型
高三化学配位化合物的配位数与立体构型化学配位化合物是由中心金属离子和周围配体离子或分子组成的。
在配位化合物中,中心金属离子能够与不同数目的配体形成不同配位数的配合物,并且配位数的不同还可以导致配合物的立体构型发生变化。
本文将探讨高三化学中配位化合物的配位数与立体构型的关系。
一、配位数的定义和影响因素配位数指的是中心金属离子所配位的配体数目。
常见的配位数包括2、4、6以及8等。
而影响配位数的主要因素有以下几个方面。
1. 配体的种类和性质:不同的配体具有不同的配位能力,一些配体能够给予中心金属离子更多的电子密度,使得中心金属离子更容易接受更多的配位。
2. 配体的空间构型:一些配体本身的空间构型限制了其与中心金属离子的配位方式,从而影响了配位数的大小。
3. 中心金属离子的电子排布:中心金属离子的电子排布也会影响其对配位数的选择,一些电子排布不利于接受多个配位。
二、配位数与立体构型的关系配位数的不同将导致配位化合物的立体构型发生变化。
根据配位数的不同,配合物的立体构型分为以下几类。
1. 配位数为2的立体构型:配位数为2的立体构型形式上类似于线性结构,中心金属离子和配体排列在一条直线上。
常见的例子是[Ni(CO)4],其中镍离子与4个一氧化碳分子形成配位键。
2. 配位数为4的立体构型:配位数为4的立体构型形式上类似于四面体结构或平面方形结构。
四面体结构中,中心金属离子和4个配体形成四面体的形状,常见的例子是[TiCl4]。
平面方形结构中,中心金属离子和4个配体形成平面方形的形状,常见的例子是[Ni(CN)4]2-。
3. 配位数为6的立体构型:配位数为6的立体构型常见的是八面体结构或正八面体结构。
八面体结构中,中心金属离子和6个配体构成八面体的形状,常见的例子是[Co(NH3)6]3+。
正八面体结构中,中心金属离子和6个配体构成正八面体的形状,常见的例子是[Cr(H2O)6]3+。
4. 配位数为8的立体构型:配位数为8的立体构型常见的是双四面体结构或正二十面体结构。
配合物的立体结构 (2)
洛阳师范学院
3. [M(AB)2] 螯合物
氨基乙酸根( NH2CH2COO- )与 Pt(II )生成的 [Pt(gly)2]配合物有2种几何异构体。
类似于[Ma2b2]
7
洛阳师范学院
二、八面体构型配合物的几何异构现象
八面体配合物的几何异构体最普遍 [Ma6], [Ma5b] 1 [Ma2b4], [Ma3b3], [Ma4bc] 2 [Ma3bcd] 4 [Ma2bcde] 9 [Ma2b2c2] 5 [Ma2b2cd] 6 [Ma3b2c] 3 [Mabcdef] 15
反式
顺式-α
顺式-β
17
洛阳师范学院
问题2:试画出以下双齿配体形成的八面体配合物, 可能存在的几何异构体? (AA)与(AB)分别代表对称和非对称的双齿配 体, c,d代表单齿配体。 [M(AA)2b2] [M(AB)2c2] [M(AB)2cd ] 2 5 6
Cl N Co N Cl N Cl N N Cl Co N N N
13
洛阳师范学院
6、[Mabcd(AA)]:有6种几何异构体。 如:[Pt(Cl)(Br)(NO2)(NH3)(en)]+ Cl Cl NO2 NO2 Pt en Pt en NH3 Br Br NH3 Cl Br NH3 NO2 Pt en Pt en Br Cl NO2 NH3
10
洛阳师范学院
3、[Ma2b2c2]: 有5种几何异构体。 如 [Pt(NH3)2(NO2)2Cl2]
11
洛阳师范学院
4、[Mabcdef]: 有15种几何异构体。 如:[Pt(NH3)(Py)(Cl)(Br)(NO2)(NO3)]
[Pt(NH3)(NH2OH)(Py)(Cl)(Br)(NO2)]X
配位化学与配合物的立体构型
配位化学与配合物的立体构型配位化学是化学领域中的一个重要分支,研究金属离子和配体之间的相互作用。
配合物是由一个中心金属离子和周围配位基团构成的化合物。
在配位化学中,配位基团的排列方式对配合物的物理和化学性质起着关键的影响。
配位化学与配合物的立体构型密切相关,本文将探讨配位化学与配合物的立体构型的研究内容和意义。
一、立体构型的定义及分类在配位化学中,立体构型指的是配合物中利用空间排列方式描述配体和金属离子之间的关系。
立体构型可以通过分子结构的确定、光谱学以及理论计算等方法进行研究和解析。
配合物的立体构型分类主要有以下几种:1. 线性构型:配位基团沿直线排列。
这种构型通常出现在两个配位基团与金属离子之间的配位数为2时,如[Ag(NH3)2]+。
2. 方阵构型:配位基团沿正方形排列。
这种构型通常出现在四个配位基团与金属离子之间的配位数为4时,如[Ni(CN)4]2-。
3. 正八面体构型:配位基团沿正八面体排列。
这种构型通常出现在六个配位基团与金属离子之间的配位数为6时,如[Co(NH3)6]3+。
4. 正四面体构型:配位基团沿正四面体排列。
这种构型通常出现在四个配位基团与金属离子之间的配位数为4时,如[PtCl4]2-。
5. 正十二面体构型:配位基团沿正十二面体排列。
这种构型通常出现在八个配位基团与金属离子之间的配位数为8时,如[UO2(C2O4)4]4-。
二、配位化学与配合物的立体构型研究方法在配位化学中,研究配合物的立体构型的方法主要包括实验方法和理论计算方法。
1. 实验方法:实验方法是通过使用各种各样的实验手段来确定配合物的立体构型。
其中最常见的方法包括X射线晶体衍射、核磁共振、红外光谱等。
通过这些实验手段,可以确定配合物的原子间距离、键角等参数,从而推断立体构型。
2. 理论计算方法:理论计算方法是通过数学建模和计算机模拟来推测和预测配合物的立体构型。
其中最常用的方法包括量子化学计算和分子力场计算。
配位化学第4章 配合物的立体化学与异构现象
迄今为止, 罕有五配位化合物异构体的实例报道, 无 疑这与TBP←→SP两种构型容易互变有关, 因为互 变将使得配体可以无差别的分布于所有可能出现的 位置.
尽管X-射线衍射和红外光谱结果显示, 在[Fe(CO)5] 和PF5中, 处于轴向(z轴)的配体和处于赤道平面(xy 平面)的配体, 其环境是不等价的, 但NMR研究却证 实, [Fe(CO)5]或PF5中所有五个配位位置的配体都 是完全等价的, 这些结果揭示出这些分子在溶液中 具有流变性(fluxional molecules), 即分子结构在溶 液中的不确定性.
217 pm 187 187
Ni
187 184
199 pm 183
190 Ni
185 191
四方锥
变形三角双锥
图 4–3 在配合物[Cr(en)3][Ni(CN)5]1.5H2O中, 配阴离 子[Ni(CN)5]3–的两种结构
b) 三角双锥结构
五配位的非金属化合物如PF5具有三角双锥结构, 轴向 和赤道平面的P–F键键长是非等价的. 一般说来, 在PX5 分子中, 轴向键长比赤道平面的键长要稍长些. 但在配 合物[CuCl5]3−中赤道平面的键长反而比轴向键长稍微长 一些, 见图 4–2.
欲从四方锥(SP)构型转变成三角双锥(TBP)构型的话, 结构上看, 只需要挪动其中一个配体的位置即可, 反之 亦然.
在图 4–3中列出了[Ni(CN)5]3−既可以采取四方锥结构也 可以采取歪曲的三角双锥结构. 将四方锥底的两个对位 配体向下弯曲可转变成三角双锥结构的两个赤道配体, 在这个扭变的三角双锥结构中, 赤道平面的另一个配体 源于原先的锥顶配体, 赤道平面上的其中一个C–Ni–C 夹角(142°)要明显大于另外两个C–Ni–C的夹角 (107.3°和111
配合物的立体化学
O
O
N
N
N
N
Co
Co
O
N
O
O
O
N
mer-
f ac-
[Co(gly)3](Hgly = 甘氨酸)
2、2 配合物得异构现象
2、 构象异构
[Cr(en)3][Ni(CN)5]1、5H2O:三角双锥 & 四方锥 [NiBr2(EtPPh2)2] :四面体(顺磁性) & 平面型(抗磁性)
3、 配体异构
可以互相讨论下,但要小声点
2、1 配合物得空间结构
5. 配位数5 构型:三角双锥(TBP)、四方锥(SP),常见于第一过渡系
三角双锥: d0、d8-d10电子组态,如: [Fe(CO)5]、[CdCl5]3-、[CuI(bpy)2]、 [CoH(N2)(PPh3)3] 等
四方锥: [VO(acac)2]、[NiBr3(PEt)2]、[MnCl5]3- 、[Cu2Cl8]4-等
双帽十二面体 (D2)
实例
[Mo(CN)6]4[Zr(ox)4] [TaF8]3[ReF8]3[UO2(acac)3]-
中心原子 d电子数
d2 d0
d0 d2
d0
[TeH9]2-
d0
[La(H2O)9]3+
d0
[Er2(Glu)2(NO3)2(H2O)4](N 4f6 O3)2·5H2O
[B-12-C-4]Pr(NO3)3
2、1 配合物得空间结构
10. 配位数10 构型:双帽四方反棱柱 (D4d)、双帽十二面体 (D2)、十四面体 (C2v)
2、1 配合物得空间结构
11. 更高配位数 配位数11:罕见,单帽五角棱柱体 / 单帽五角反棱柱体,[Th(NO3)4(H2O)3] 配位数12:二十面体,(NH4)3[Ce(NO3)6] 配位数14:双帽六角反棱柱体,多与U有关
配位化学配合物立体构型练习题配位键数和配合物的八面体构型
配位化学配合物立体构型练习题配位键数和配合物的八面体构型配位化学是研究过渡金属离子与配体之间形成化学键的一门学科。
配合物是由中心金属离子和与其形成化学键的配体组成的。
在配位化学中,研究配合物的立体构型常常是一个重要的课题。
配位键数是指一个配合物中中心金属离子与配体之间形成的化学键的数量。
在常见的配合物中,常见的配位键数有2、4、6和8等。
不同配位键数下,配合物的立体构型也不尽相同。
首先,我们来看看配位键数为2的配合物。
在这种情况下,配合物的立体构型通常是线性的。
典型的例子是二氯银配合物(AgCl2)。
在这个配合物中,银离子与两个氯离子形成两个配位键,配合物的形状为直线。
接下来,是配位键数为4的配合物,它们的立体构型通常是平面四方形。
典型的例子是四氯合钯(II)配合物(PdCl4)。
在这个配合物中,钯离子与四个氯离子形成四个配位键,配合物的形状为平面四方形。
进一步,当配位键数增加到6时,配合物的立体构型通常是八面体。
最典型的例子是六氯合铜(II)配合物(CuCl6)。
在这个配合物中,铜离子与六个氯离子形成六个配位键,配合物的形状为八面体。
最后,当配位键数增加到8时,配合物的立体构型也是八面体,但是与六配位的八面体不同,通常存在一些失衡的情况。
这种立体构型被称为扭曲八面体。
常见的例子是八氯化铜配合物(CuCl8)。
在这个配合物中,铜离子与八个氯离子形成八个配位键,但由于排斥力的影响,配合物的形状是扭曲的八面体。
除了上述的常见配位键数和立体构型外,还存在一些特殊的配位键数和配合物的立体构型。
例如,三配位键数下的配合物通常是线性的,五配位键数下的配合物可以有三角双锥、方双锥和正八面体等不同的构型。
总结来说,配位化学中配合物的立体构型与配位键数密切相关。
常见的配位键数有2、4、6和8等,分别对应线性、平面四方形、八面体和扭曲八面体等立体构型。
对于配位化学的学习来说,掌握不同配位键数下配合物的立体构型是十分重要的。
配合物的立体结构
要求: 1. 三或四人组成一个研究小组,选择上述课题中的 一项,共同进行相关领域的文献调研;
2. 小组每位成员在限定日期内上交一篇论文,字数 1000-2000,A4纸打印。正文格式:中文宋体,英 文Times New Roman,小四号字,1.5倍行间距;
3. 每个小组选出一位组长,全体成员的调研内容由 组长整理、归纳。并给每个成员的论文打分(包括 自己,满分20分),收齐后交给班长。最后再以 PPT的形式准备五分钟左右的演讲。
中心原子一般是d10和d0组态的离子
某些两配位配合物中,由于其中心原子含有孤
对电子且排斥力较强,因而也可能形成“V”型
的空间结构,如:SnCl2
10
11
中心原子电子组态:d10 Cu(I), Ag(I), Au(I), Hg(II) 直线型,采取 sp 杂化
Cu(NH3)2+, AgCl2, Au(CN)2,HgCl2–,[Ag(NH3)2]+ 中心原子的电子组态: d0 U6+、V5+
1. 配合物在化妆品中的应用 2. 生物中的配位化学 3. 多孔金属有机框架的应用 4. 壳聚糖金属配合物的应用 5. 金属卟啉配合物的应用 6. 配合物在环境化学中的应用 7. 维尔纳配位理论的创立、发展及配位化学诞生的历 史对我们的启示 8. 标志性金属有机化合物--二茂铁发现、研究以及应 用 9. 金属配合物在催化氧化领域的应用 10. 配合物在医药领域的应用 11. 金属配合物在农业方面的应用 12. 无机--有机杂化材料的设计、研究以及应用
第二章 配合物的立体结构
Coordination geometry
4
§2.1 配合物的空间构型 §2.2 分子构型的预测 §2.3 配合物的对称性 §2.4 结构异构现象 §2.5 几何异构现象 §2.6 旋光异构现象
第二章-配位化合物的立体结构
(2)若以a式配位,其可能有的异构体情况如何?
二、化学结构异构
结构异构是因为配合物分子中原子与原子间成键的顺序 不同而造成的, 常见的结构异构包括电离异构, 键合异构, 配 位体异构和聚合异构。
1 电离异构:在溶液中产生不同离子的异构体。 [Co(NH3)5Br]SO4紫红色和[Co(NH3)5SO4]Br(红色), 它们在溶液中分别能产生SO42-和Br-。 2 溶剂合异构 当溶剂分子取代配位基团而进入配离子的内界所产 生的溶剂合异构现象。与电离异构极为相似, 如: 它们各含有6、5、4个配位水分子, 这些异构体在 物理和化学性质上有显著的差异,如它们的颜色分别为 绿、蓝绿、蓝紫。
[MA3(BC)D](其中BC为不对称 二齿配体)也有面式和经式的区别。 在面式的情况下三个A处于一个三 角面的三个顶点, 在经式中, 三个A 在一个四方平面的三个顶点之上。
A A A D C 面式 B A D A A B C 经式
A A
面式
B A A B
B A A B A A
ห้องสมุดไป่ตู้
对称经式
不对称经式
[MABCDEF]型配合物应该有15 种几何异构体, 有兴趣的同学可以自 己画一下。
NO2 en Co NO2 en en en NO2 O2N Co NO2 O2N en Co en
反式-[Co(en)2(NO2)2], 无旋光对映体
顺式-[Co(en)2(NO2)2] 有旋光对映体
旋光异构体的拆分
定义:从两个旋光异构体的混合物中分离出单一异构体的过程。
1)自然拆分法:
若混合物从溶液中析出结晶时,d体和l体的晶体分别结晶出来, 且两种结晶外形不同,则可将其分开。
沿三重轴向左旋转
第2讲 配合物的立体结构
配位数为7的配合物不稳定,且这三种结构之间能量 差别很小,一个转变到另一个只需要很小的键角弯曲。
26
洛阳师范学院
五角双锥
单帽八面体 单帽三角棱柱体 (帽在八面体的 (帽在三棱柱的 一个三角面上) 矩形面上)
27
洛阳师范学院
可以发现: ①在中心离子周围的七个配位原子所构成的几何 体远比其它配位形式所构成的几何体对称性要差得多。 ②这些低对称性结构要比其它几何体更易发生畸 变, 在溶液中极易发生分子内重排。 ③含七个相同单齿配体的配合物数量极少, 含有两 个或两个以上不同配位原子所组成的七配位配合物更 趋稳定, 结果又加剧了配位多面体的畸变。
实例:单核的平面3配位的配合物不多。
如:[HgI3]- , [Pt0(PPh3)3]
13
洛阳师范学院
多核配合物为3配位的情形稍多一些,如组成式像2 配位而实际是3配位的。 如:二氰合铜(I)酸钾KCu(CN)2
N C Cu C N Cu C N C N C Cu C N Cu C
(2) 三角锥 中心原子具有非键电子对,并占据三角锥的顶点。 例如:[SnCl3]-,[AsO3]314
28
洛阳师范学院
二、 高配位数配合物 8配位及以上的配合物都是高配位化合物。 一般而言, 形成高配位化合物必须具有以下4个条件: ①中心金属离子体积较大, 而配体小, 以便减小空间位阻; ②中心金属离子的 d电子数一般较少, 一方面可获得较多 的配位场稳定化能, 另一方面也能减少d电子与配体电子间 的相互排斥作用; ③中心金属离子的氧化数较高; ④配体电负性大, 变形性小。 因此,中心离子通常是有d0-d2电子构型的第二、三过渡 系列的离子及镧系、锕系元素离子; 常见配体主要是F-,O2-,CN-,NO3-,NCS-,H2O等。
配合物的立体结构
由中心原子(或离子)和几个配位分
子(或离子)以配位键相结合而形成的复 杂分子或离子,通常称为配位单元(或配 合单元),含有配位单元的化合物称为配 位化合物。
中心原子 配体
抗衡阳离子
[Co(NH3)6]Cl3 Fe4[Fe(CN)6]3.nH2O
配阳离子 抗衡阴离子
配阴离子 结晶水
内界
外界 Ni(CO)4
** 非螯合多齿配体与配位聚合物。
MN
NMN
NMN
N
MN
NM N
NM N
N
N
N
N
N
MN
NM N
NM N
N
N N
N N
O NO
O
M
O
M
NO
O
硝酸根的IR光谱
O
NO
O
M
单齿配位的
游离的NO3-:
1384cm-1;
M
双齿配位的
O NO
O
草酸根配位的多样性
丰富多彩的芳香族多元酸
三足体(三角架)配体
4、配位聚合物(coordination polymer)
一维链状
一维分子梯
二维 网 状
三维空间结构
1.2.2 配合物的命名
一 、配体的命名法 1、只含1种配体的简单配合物
内界:配体数目+配体名+合+中心原子及其氧化数
第一章 配合物的立体结构
1.1 配合物的分类、命名
配位化合物(coordination compound) 的定义:由可以给出孤对电子或多个不 定域电子的一定数目的离子或分子(简称 配体ligand)和具有接受孤对电子或多个 不定域电子的空位的原子或离子(统称中 心原子)按一定的组成和空间构型所形成 的化合物。简称配合物(complex)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
五配位配合物有两种主要构型 三角双锥形 四方锥形
三角双锥形结构和四方锥形结构间的能量差 值很小,很容易互相转换。
22
三角双锥 (trigonal bipyramid, TBP)
6 八面体
Oh
三棱柱
D3h
[Ag(CN)2]+, [Cu(NH3)2]+, [Ag(NH3)2]+ [HgI3][ZnCl4]2-, [BaCl4]2- , [FeCl4]2- , [CoCl4]2[Ni(CN)4]2-, [Pt(NH3)4]2[Fe(CO)5], [CdCl5]3-, [Ni(CN)5]3[Ni(CN)5]3-, [TiF5]2-, [MnCl5]2[Co(NH3)6]3+, [PtCl6]2Re[S2C2(CF3)2]3, ThI2
化轨道配位成键 37
38
三角十二面体: 可由立方体结构变形而得
[Mo(CN)8]4、[ZrF8]4 中心原子是d4sp3 杂化轨道配位成键
39
O
六角双锥
[UO2(Ac)3]
中心原子是 s2p3d2f 杂化轨 道配位成键
U O
O
C CH3
O
三个醋酸根占据赤道平面的六个配位位置, 平面上下两个位置由UO22+中的两个O分别占据
40
配位数为9
九配位配合物不多见,它成键 时要求过渡金属中s、p、d九 个轨道完全被利用。
Tc(VII)、Re(VII)和某些镧、 锕系金属离子,可满足要求, 如[ReH9]2和[Nd(H2O)9]3+形 成加三冠三棱柱结构的配合物
41
高配位数的配合物
由于只有中心原子的 f 轨道参与成键,才能提 供足够多的轨道,所以配位数为十或更高的配合 物都是镧系、锕系的配合物,如 [La(Hedta)(H2O)4]·3H2O
现的Na3[PaF8] 及[NEt4][U(NCS)8]中金属的配 位构型为立方结构外,其余并不多见。
镤
36
四方反棱柱: 由立方体结构变形而得,立方体的 下底保持不变时,将上底转45,然后将上、下底 (都是正方形)的角顶相连而构成的。
[UF8]4、[ReF8]2
中心原子是d4sp3(d4是dz2、dxy、dyz、dxz)杂
8
1、配位数为一的配合物
2,4,6-triphenylphenylcopper(I)
2,4,6-三苯基苯基合铜(I)
H
H
2,4,6-triphenylphenylsilver(I)
属于金属有机化合物,中心原子与一个大体 积的单齿配体键合。
9
2、配位数为二的配合物
当不含孤对电子的中心原子与两个配体配位时, 为使两配体成键电子对间的斥力最小,通常形 成键角为1800的直线型配合物。
如[Ni(CN)4]2、[AuCl4]、 [Pt(NH3)4]2+、[PdCl4]2、 [Rh(PPh3)3Cl]
中心原子以 dsp2 或 d2p2 杂化轨道与合适的配体 轨道成键
18
四面体与平面正方形的转变
四面体结构经过对角扭转的操作之后,可以转化 成平面正方形构型
当配合物的中心原子是 具有部分d(d7,d8,d9) 电子的过渡金属离子时, 平面正方形结构的能量 可低于或相当于正四面 体的能量。
第二章 配合物的立体结构
Coordination geometry
4
§2.1 配合物的空间构型 §2.2 分子构型的预测 §2.3 配合物的对称性 §2.4 结构异构现象 §2.5 几何异构现象 §2.6 旋光异构现象
5
§2.1 配合物的空间构型
配位原子在中心原子周围的分布具有某种特 定空间几何形状,称为中心原子的配位几何构型 或简称配位构型( Coordination geometry )。
中心原子以 d2sp2 杂化 轨道与合适的配体轨道 成键
[Fe(CO)5]
BiF5
C4v
24
6、配位数为六的配合物
六配位的配合物有较多的成键数目,相对较稳定, 在众多的配合物中最常见。
六配位配合物有三种主要构型
八面体
三角棱柱
平面六边形
25
三角棱柱结构
六配位配合物中,近年还发现有三角棱柱结构 (D3h)的配合物。
直线型,采取sp或sd杂化 [UO2]2+, [VO2]2+
12
3、配位数为三的配合物
配位数为三的配合物构型有三种可能
平面三角形
T形
三角锥形
13
无孤对电子的中心原子与三个配 体配位时,为保证配休间斥力最小, 它们要保持120的键角而形成等边三 角形的配位化合物。
中心原子以 sp2、dp2 或 d2s 杂化轨道与配体成键
1. 配合物在化妆品中的应用 2. 生物中的配位化学 3. 多孔金属有机框架的应用 4. 壳聚糖金属配合物的应用 5. 金属卟啉配合物的应用 6. 配合物在环境化学中的应用 7. 维尔纳配位理论的创立、发展及配位化学诞生的历 史对我们的启示 8. 标志性金属有机化合物--二茂铁发现、研究以及应 用 9. 金属配合物在催化氧化领域的应用 10. 配合物在医药领域的应用 11. 金属配合物在农业方面的应用 12. 无机--有机杂化材料的设计、研究以及应用
配体有较小的体积,中心原子有较高的氧化态 (氧化数一般大于+3)
配位数为八的配合物有四种可能的立体结构:
立方体(Oh)
较少
四方反棱柱(D4d) 常见
三角十二面体(D2d)常见
六角双锥(D6h) 较少
35
配位数为八的配合物中,立方体构型是最简 单对称性最高的构型
由于立方体结构中配体间的斥力较大,除发
AlF4 (d0) , SnCl4 (d0), TiBr4 (d0), FeCl4 (d5), ZnCl42 (d10), VCl4 (d1), FeCl42 (d6) , NiCl42 (d8)
中心原子以 sp3 或 d3s 杂化轨道与 合适的配体轨道成键
17
第二、第三过渡系的金属离子,如Rh+、Ir+、 Pd2+、Pt2+及Au3+和第一过渡系的Ni2+等易形成 平面正方形配合物。
八面体Oh 三棱柱 D3h
26
第一个合成出来的三角棱柱结构是[Re(S2C2Ph2)3] 三(顺-1,2二苯乙烯-1,2-二硫醇根)合铼
[Re(S2C2Ph2)3]的中心原子以d4sp杂化轨道与配 体相适合的轨道配位成键的
此后,以R2C2S22为配体的Mo、W、V、Zr等 金属的三角棱柱配合物陆续被合成出来。
配位数10 双冠四方反棱柱(D4d) 配位数11 全冠三角棱柱(D3h) 配位数12 二十面体(Oh)
[Ce(NO3)6]2-, CN=1422
配位数和空间构型
配位数 空间构型 点群符号 典型实例
2 直线型
D∞h
3 三角形
D3h
四面体
Td
4
平面正方形 D4h
三角双锥 D3h
5
四方锥
C4v
6
规律:
(1)中心原子在中间, 配体围绕中心原子排 布;
(2)配体倾向于尽可 能远离,能量低,配 合物稳定
7
1、配位数为一的配合物
配 合
2、配位数为二的配合物
物 3、配位数为三的配合物
的 空
4、配位数为四的配合物
间 5、配位数为五的配合物 构 型 6、配位数为六的配合物
7、配位数为六以上的配合物
27
配位数6 (D3h 点群)
R R
同一螯环内 S-S 305pm
S S
S范德华半径180pm
Re S S
R
R
存在S—S键
S 两个S原子间的成
S
R 键作用利于三角棱
R
柱构型的稳定
Re(S2C2Ph2)3三角棱柱结构,R为Ph
28
八面体
29
7、配位数大于六的配合物
配位数大于6的高配位数配合物,其多面异构 体之间的能量非常相近,相互转变的可能性较 大,因而有可能采取几种构型。
7 五角双锥 D5h
[ZrF7]3-, [HgF7]3-
8 十二面体 D2d
[Mo(CN)8]4-
43
9 三冠三棱柱 D3h
[Ia(H2O)9]3+, [ReH9]2-
各配合物都有其相对稳定的空间构型。就其 本质而言,金属和配体的配位特性是确定配合物 空间构型的决定性因素。
44
当中心原子与配体进行配位时,为了使整个 体系能量更低:
32
H3C
CH3
N
Fe2+、Fe3+ +
N
N
中心原子与
大环在一个
平面
NH
HN
平面上下的两个位置被小分子占据,如H2O、SCN 、Cl 、 ClO4等,形成五角双锥的结构
33
34
配位数为8
形成配位数为八的配合物的中心原子是IV、V、 VI族的重金属,如锆、铪、铌、钽、钼、钨及
镧系、锕系。它要求中心原子有较大的体积,
要求: 1. 三或四人组成一个研究小组,选择上述课题中的 一项,共同进行相关领域的文献调研;
2. 小组每位成员在限定日期内上交一篇论文,字数 1000-2000,A4纸打印。正文格式:中文宋体,英 文Times New Roman,小四号字,1.5倍行间距;
3. 每个小组选出一位组长,全体成员的调研内容由 组长整理、归纳。并给每个成员的论文打分(包括 自己,满分20分),收齐后交给班长。最后再以 PPT的形式准备五分钟左右的演讲。