双曲线定义精品PPT教学课件

合集下载

3-2-1双曲线及其标准方程 课件(共67张PPT)

3-2-1双曲线及其标准方程 课件(共67张PPT)
【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.

双曲线-完整版PPT课件可编辑全文

双曲线-完整版PPT课件可编辑全文

∴x-32a2+y2=a22.

又 P 点在双曲线上,得ax22-by22=1.

由①,②消去 y,得
(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0.
当 x=a 时,P 与 A 重合,不符合题意,舍去.
当 x=2aa32-+abb2 2时,满足题意的 P 点存在, 需 x=2aa32-+abb2 2>a, 化简得 a2>2b2, 即 3a2>2c2,ac< 26. 又 e>1,∴离心率 e=ac∈1, 26.
考向三 [149] 双曲线的几何性质
(1)(2014·天津高考)已知双曲线ax22-by22=1(a>0,
b>0)的一条渐近线平行于直线 l:y=2x+10,双曲线的一个
焦点在直线 l 上,则双曲线的方程为( )
A.x52-2y02 =1
B.2x02 -y52=1
C.32x52-130y02 =1
二、双曲线的标准方程和几何性质
标准方程 ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0, b>0)
图形
范围
x≥a或x≤-a
对称轴: 坐标轴
对称性
对称中心: 原点
y≤-a或y≥a 对称轴: 坐标轴 对称中心: 原点
性 顶点 顶点坐标:
顶点坐标:

A1 (-a,0),A2 (a,0) A1 (0,-a,) A2 (0,a)
————————— [1 个对点练] ——————— 过点2,12能作几条与双曲线x42-y2=1 有一个公共点的 直线.
【解】 (1)当斜率不存在时,直线方程为 x=2,显然符 合题意.

3.2.2双曲线的简单几何性质 课件(共24张PPT)

3.2.2双曲线的简单几何性质 课件(共24张PPT)
2
2
=λ(λ≠0).
(5)渐近线为y=±kx的双曲线方程可设为k2x2-y2=λ(λ≠0).
(6)渐近线为ax±by=0的双曲线方程可设为a2x2-b2y2=λ(λ≠0).
跟踪训练 求适合下列条件的双曲线的标准方程:
5
(1)焦点在x轴上,虚轴长为8,离心率为3 ;ห้องสมุดไป่ตู้
跟踪训练
A.
1
4
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m等于
B.
1
2
C.2
D.4
(D)
二、求双曲线方程
例2
根据下列条件,求双曲线方程:
(1)双曲线 x
2
9

y2
1 有共同渐近线,且过点 ( 3, 2 3) ;
16
(2)与双曲线 x
2
16

y2
1 有公共焦点,且过点 (3 2 , 2) .
第三章
3.2
双曲线
3.2.2 双曲线的简单几何性质
学习目标
1.理解双曲线的简单几何性质(范围、对称性、顶点、渐近线、离心率).
2.能用双曲线的简单性质解决一些简单的问题
核心素养:数学运算、数学建模
新知学习
复习引入
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
(2)焦点在 y 轴上的双曲线的标准方程可设为
2
(3)与双曲线
2
2 +
2

2
2
2

=1(a>0,b>0).
2
2
=1 共焦点的双曲线方程可设为

双曲线及其标准方程ppt课件

双曲线及其标准方程ppt课件
所以 2 mm 1 0 ,解得 m 2 或 m 1, 即实数 m 的取值范围是,2 1, .
总结一下
1.双曲线的定义 2.双曲线的标准方程
Fresh and simple general ppt template
谢谢观看
2.焦点在y轴上的双曲线的标准方程
如图,双曲线的焦距为 2c,焦点分别是
F1(0, c) , F2 (0,c) ,a,b 的意义同上,这时
双曲线的方程是
y2 a2
x2 b2
1(a
0, b
0)
,这个
方程也是双曲线的标准方程.
y
M
F2
x O
F1
双曲线标准方程
图形
y M x
F1 O F2
y M F2
3.2.1 双曲线及其标准方程
人教A版(2019)选择性必修一
学习目标
01 经历从具体情境中抽象出双曲线模型的过程 02 了解双曲线的定义、几何图形和标准方程
03 通过双曲线标准方程的推导过程理解数形结合思想
学习重点
双曲线的定义、标准方程
学习难点
双曲线标准方程的推导
新课导入
我们知道,平面内与两个定点F1,F2的距离的和等于常数的点的轨
由双曲线的定义,双曲线就是下列点的集合:
P {M || MF1 | | MF2 || 2a , 0 2a | F1F2 |} .
因为 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2 , 所以 (x c)2 y2 (x c)2 y2 2a .①
类比椭圆标准方程的化简过程,化简①,得 (c2 a2 )x2 a2 y2 a2 (c2 a2 ) ,
x2 b2
1a

双曲线及其标准方程课件

双曲线及其标准方程课件

音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。

双曲线的简单性质课件ppt课件

双曲线的简单性质课件ppt课件

04 双曲线的标准方程的推导
推导过程
设双曲线上任意一点为$P(x,y)$, 根据双曲线的定义,点$P$到两 个焦点的距离之差为常数,即 $2a$。
利用距离公式和双曲线的定义, 可以得到点$P$到两个焦点的距 离分别为$sqrt{(x+a)^2+y^2}$ 和$sqrt{(x-a)^2+y^2}$。
对称性
01
02
03
对称性
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
总结词
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
详细描述
双曲线上的任意一点关于 x轴和y轴的对称点都在双 曲线上。
顶点
顶点
双曲线与对称轴的交点称 为顶点。
总结词
双曲线与对称轴的交点称 为顶点。
详细描述
顶点是双曲线与对称轴的 交点,也是双曲线离准线 最远的点。
比例常数。
性质
双曲线的焦点到任意一点的距离之 差等于常数2a,即|PF1| - |PF2| = 2a。
应用
通过焦点可以计算出双曲线的离心 率和准线方程。
焦距
定义
双曲线的两个焦点之间的距离称 为焦距,记作2c。
性质
焦距与半主轴长a和半次轴长b有 关,关系为c^2 = a^2 + b^2。
应用
通过焦距可以计算出双曲线的离 心率和准线方程。
双曲线的简单性质课件ppt课件
目录
• 双曲线的定义与标准方程 • 双曲线的几何性质 • 双曲线的焦点与焦距 • 双曲线的标准方程的推导 • 双曲线的应用
01 双曲线的定义与标准方程
定义
总结词
双曲线是由两个无限延伸的分支组成的,其形状类似于开口 的抛物线。

双曲线第二定义课件

双曲线第二定义课件
常数称为双曲l的距离之比等于常数e( e>1)的点的轨迹称为双曲线。定点F称为双曲线的焦点,定 直线l称为双曲线的准线,常数e称为离心率。
离心率e反映了双曲线的离心率与椭圆的离心率之间的区别。
双曲线的标准方程
01
双曲线的一般方程为:x^2/a^2 - y^2/b^2 = 1 (a>0, b>0)
焦点性质
双曲线的焦点位置决定了 双曲线的开口方向和大小 ,同时影响着双曲线的几 何形状和性质。
03
CATALOGUE
双曲线的几何性质
面积与周长
面积
双曲线的面积可以通过其与两条直线的交点以及原点来计算。具体公式为:$S = frac{1}{2} times |AB| times d$,其中$AB$是双曲线的弦,$d$是原点到直 线的距离。
切线性质
切线方程
对于双曲线上的任意一点,其切线方程可以通过求导得到。对于一般的双曲线方 程$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$,其切线方程为:$y = mx pm frac{b^2}{a}$。
切线斜率
对于双曲线上的任意一点,其切线的斜率等于该点处的导数。
04
粒子加速器和核聚变研究
双曲线在粒子加速器和核聚变研究中也有应用,例如在粒子加速器中,双曲线结构可以用来控制粒子的运动轨迹 。
在工程学中的应用
建筑设计
双曲线结构在建筑设计中被广泛应用 ,如穹顶、桥梁等,因为其具有优异 的力学性能和美学价值。
航空航天工程
在航空航天工程中,双曲线结构被用 于制造飞机和火箭的机身和发动机部 件,因为其具有轻质、高强度的特点 。
双曲线第二定义课 件
目录
• 双曲线的定义 • 双曲线的性质 • 双曲线的几何性质 • 双曲线的应用 • 双曲线的扩展知识

《双曲线几何性质》课件

《双曲线几何性质》课件

生活中的双曲线应用
总结词
双曲线在日常生活中也有很多应用,如建筑设计、工程制造和艺术创作等。
详细描述
在建筑设计中,双曲线用于构建优美的曲线形状,如桥梁、建筑物的外观和内部结构。在工程制造中 ,双曲线用于制造各种零部件和工具,如机械零件、光学仪器等。在艺术创作中,双曲线用于创作优 美的图案和造型,如绘画、雕塑和音乐作品等。
双曲线的轴对称性
总结词
双曲线的轴对称性是指以通过双曲线中心的直线为对称轴,双曲线上的任意一 点关于该对称轴的对称点也在双曲线上。
详细描述
对于双曲线上的任意一点P,关于通过双曲线中心的直线(称为对称轴)的对称 点P'也在双曲线上。这种对称性使得双曲线在对称轴两侧保持一致的形状和方 向。
04
双曲线的面积与周长
这两个定点称为双曲线的焦点,焦点之间的距离称为焦距。
双曲线的标准方程
焦点在x轴上
$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$ ,其中$a > 0$,$b > 0$,$c = sqrt{a^2 + b^2}$。
VS
焦点在y轴上
$frac{y^2}{a^2} - frac{x^2}{b^2} = 1$ ,其中$a > 0$,$b > 0$,$c = sqrt{a^2 + b^2}$。
双曲线的面积
总结词
详细描述
总结词
详细描述
双曲线的面积可以通过特定 的公式进行计算,该公式基 于双曲线的参数方程和定义 域。
双曲线的面积计算公式为 (A = piab),其中 (a) 和 (b) 分 别是双曲线的实半轴和虚半 轴长度。这个公式基于双曲 线的参数方程和定义域,通 过积分运算得出。

双曲线的性质PPT优秀课件

双曲线的性质PPT优秀课件
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。

双曲线的基本知识点PPT

双曲线的基本知识点PPT

按方程形式分类
双曲线方程的对称性 双曲线的标准方程是(x-a)²/b² - (y-b)²/a² = 1,其具有中心对称性,即点 (a, b)为中心。 双曲线的焦距与实轴长度的关系 在双曲线中,焦距c与实轴长度2a有固定的数学关系:c² = a² + b²,此 式被称为双曲线的基本性质之一。
T 双曲线关于其轴和中心点均具有对称性,这是由其定义决定的。 双曲线的渐近线性质 双曲线的渐近线是一条直线,该直线与双曲线交于两个无穷远点,这是双 曲线的重要特性之一。
05 双曲线的实际应用
双曲线的实际应用:物理中的应 用
双曲线的几何特性 双曲线是二次曲线的一种,其 双曲线的几何特性 双曲线是二次曲线的一种,其几何特性包括焦点在两个固定点,且所有到两 焦点距离之和为定长的点的集合。 双曲线的方程式 双曲线的标准方程是(x^2)/a^2 - (y^2)/b^2 = 1,其中a, b > 0, a^2 + b^2 = c^2 双曲线在物理中的应用 双曲线广泛应用于物理学中,如电磁场理论、光学、量子力学等,例如,双 曲线的焦散线就是光学中的一条重要概念。 双曲线与实际问题的联系 双曲线的许多性质,如离心率、焦点等,可以用于解决实际问题,如测量物 体的距离、角度等。
双曲线的图形特征:焦点和准线
双曲线定义 双曲线是平面内到两个定点的距离之差的绝对值等于常数的点的轨迹。 焦点性质 双曲线的两个焦点位于实轴两端,距离实轴相等。 准线特征 双曲线有两条互相垂直的准线,分别交坐标轴于原点和渐近线点。
04 双曲线的性质解析
双曲线的性质解析:主要性质
双曲线的焦点特性 双曲线有两焦点位于其对称轴上,距离中心等距。 双曲线的对称性 双曲线具有旋转对称性和平移对称性。 双曲线的渐近线 双曲线有两个渐近线,分别代表双曲线在x轴和y轴上的极限状态。 实数双曲线的面积 实数双曲线的面积是πab/4。

人教版选修2-1【数学】1双曲线定义与标准方程 (共33张PPT)教育课件

人教版选修2-1【数学】1双曲线定义与标准方程 (共33张PPT)教育课件
















































过高Biblioteka 的奢望,

































































































(x c)2y2(x c)2y2 2 a
2
2
(x c )2 y 2 2 a (x c )2 y 2

双曲线ppt课件

双曲线ppt课件

题型二 双曲线的标准方程
【例2】已知双曲线的渐近线方程为2x±3y=0.
(1)若双曲线经过P( 6 ,2),求双曲线方程; (2)若双曲线的焦距是2 13 ,求双曲线方程; (3)若双曲线顶点间的距离是6,求双曲线方程.
思维启迪 用定义法或待定系数法求方程.

方法一
由双曲线的渐近线方程y=±
2 3
解得ba
23或ba
3 9. 2
故所求双曲线方程为 x2 y2 1或 y2 4x2 1.
94
9 81
探究提高 待定系数法是求曲线方程最常用的方
法之一.
(1)与双曲线
x2 a2
y2 b2
1有共同渐近线的双曲
线方程可表示为
x2 a2
y2 b2
t(t 0).
(2)若双曲线的渐近线方程是y=±
2
,2),∴
(3 2)2 a2
4 b2
1.
又∵a2+b2=(2 5)2,∴a2=12,b2=8.
故所求双曲线的方程为 x2 y2 1. 12 8
题型三 双曲线的性质 【例3】中心在原点,焦点在x轴上的一椭圆与一
双曲线有共同的焦点F1,F2,且|F1F2|=2 13 , 椭圆的长半轴与双曲线实半轴之差为4,离心率 之比为3∶7. (1)求这两曲线方程; (2)若P为这两曲线的一个交点,求cos∠F1PF2 的值.
5.若m>0,点
P
m,
5 2
在双曲线
x2 y2 1 上,则 45 13
点P到该双曲线左焦点的距离为 2 .
解析
P
m,
5 2
在双曲线 x2 y2 1上,且m>0, 45
代入双曲线方程解得m=3,双曲线左焦点F1(-3,0),

《二讲双曲线》课件

《二讲双曲线》课件

添加 标题
双曲线的图像:双曲线有两个分支,在平 面坐标系中呈现出“马蹄形”的形状。
添加 标题
参数方程与图像的关系:通过参数方程可 以绘制出双曲线的图像,而通过图像也可 以读取出双曲线的参数方程。
添加 标题
参数方程的应用:双曲线的参数方程在物理学、 工程学等领域有着广泛的应用,例如在研究天体 运动、电磁波传播等问题时常常会用到双曲线的 参数方程。
预习内容建议:回 顾双曲线的定义、 性质和图像
所需准备材料:笔 记本、笔、教材等
预习时间安排:建 议提前一周开始预 习
感谢观看
汇报人:PPT
图像特征:与双曲 线渐行渐远
双曲线的离心率
离心率的定义:离心率是双曲线的一个重要几何性质,它表示双曲线与焦点的距离与双曲线实 轴长度的比值。
离心率的取值范围:离心率的取值范围是大于1,表示双曲线与焦点的距离大于双曲线实轴长度。
离心率与双曲线形状的关系:离心率越大,双曲线的开口越宽,形状越扁平;离心率越小,双 曲线的开口越窄,形状越接近于椭圆。
双曲线的性质
双曲线是平面上的两条曲线,它们在两个不同的方向上弯曲。 双曲线的两个焦点位于其对称轴上,并且离原点的距离相等。 双曲线的渐近线是与双曲线无限接近的直线,它们与双曲线在同一直线上。 双曲线的离心率大于1,这是双曲线与椭圆和圆的区别之一。
双曲线的几何性质
双曲线的对称性
定义:双曲线关 于原点对称
双曲线的渐近线:双曲线与坐标轴的交点为渐近线,其斜率为b/a。
双曲线的离心率:离心率e是描述双曲线离散程度的参数,其值为c/a, 其中c为焦点到原点的距离。
双曲线的焦点位置:对于中心在原点的双曲线,其焦点位置为x轴正负 方向上,距离原点为c的点。

双曲线的简单性质课件

双曲线的简单性质课件

双曲线的焦点和准线
焦点:双曲线上的一点使得双曲线 上任意一点到该点的距离等于该点 到双曲线中心的距离
焦点和准线的定义
焦点和准线的关系:焦点和准线是 双曲线的两个基本性质它们决定了 双曲线的形状和位置
添加标题
添加标题
添加标题
添加标题
准线:双曲线上的一条直线使得双 曲线上任意一点到该直线的距离等 于该点到双曲线中心的距离
焦点和准线的应用:在解决双曲线 问题中经常需要利用焦点和准线的 性质来简化计算或证明结论
焦点和准线的几何意义
焦点:双曲线上的一点到两个定点的距离相等 准线:双曲线上的一点到两个定点的距离之差等于常数 几何意义:焦点和准线是双曲线的基本性质决定了双曲线的形状和位置 应用:在几何学、物理学、工程学等领域有广泛应用
双曲线的对称性使得其具 有旋转对称性
双曲线的对称性使得其具 有反射对称性
双曲线的对称性在几何学中具有重 要意义可以用来证明许多几何定理。
对称性的应用
在艺术和设计中双曲线的对称性可 以用来创造优美的图案和形状。
添加标题
添加标题
添加标题
添加标题
在物理中双曲线的对称性可以用来 描述某些物理现象如电磁场、引力 场等。
添加副标题
双曲线的简单性质
汇报人:
目录
CONTENTS
01 添加目录标题
02 双曲线的定义和标 准方程
03 双曲线的焦点和准 线
04 双曲线的渐近线
05 双曲线的离心率
06 双曲线的对称性
添加章节标题
双曲线的定义和标准方 程
双曲线的定义
双曲线是平面上到 两个定点的距离之 差的绝对值等于一 个常数(常数大于 0)的点的轨迹。
渐近线的定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) y2 x2 1 25 16
x y (3)4
29
2
36
(4)4x29y236
x2 y2 1
94
2020/12/6
(4) y2 x2 1 49 14
例:方程x2 y2 1表示 m1 2m
焦点在 y轴上的双曲,m线 的范围
(A)m>2 (C)1<m<2
(B)m<1或m>2 (D)m<1
2020/12/6
18
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
2020/12/6
3
3、椭圆的标准方程有几类?
[两类]
x2 a2
y2 b2
1(焦点x在 轴上 )
x2 b2
y2 a2
1(焦点y在 轴上 )
2020/12/6
4
[思考]
到平面上两定点F1,F2的距离之差(小于 |F1F2|)为常量的点的轨迹是什么样的图 形?
2020/12/6
5
双曲线的定义
双曲线的第一定义:平面内与两个定点F1、F2的距离
离之差的绝对值用 2a(a>0)表示。
9
5
P(x,y)
三、将几何条件化为 代数条件。
-5
F2(-c,0)
F1(c,0)
5
根据两点的间的距离公式得:
-5
(x c)2y2(x c)2y2 2 a
2020/12/6
10
四、化简
代数式化简得: (c2 a 2 )x2 a 2y2 a 2(c2 a 2 )
F1(0,c)
y2 a2
x2 b2
1
-5
5
F2(0,-c)
C2=a2+b2
-5
2020/12/6
12
双曲线的标准方程
x2 a2
y2 b2
1
y2 a2
x2 b2
1
C2=a2+b2
2020/12/6
13
[练习一] 判断下列各双曲线方程焦点所 在的坐标轴;求a、b、c各为多少?
(1) x2 y2 1 25 16
-5
F2(-c,0)
F1(c,0)
-5
2020/12/6
5
注:设两焦点之间的距离 为2c(c>0), 即焦点F1(c,0),F2(-c,0)
8
5
P(x,y)
二、根据双曲线的定 义找出P点满足的几 何条件。
-5
F2(-c,0)
|P2F ||P1F | 2a
F1(c,0)
5
-5
2020/12/6
注:P点到两焦点的距
差的绝对值是常数(小于|F1F2|)
2020/12/6
6
定义的应用
1 方程 x5 2y2x5 2y2 6
表示的曲线是
2方程 x52y2x52y2 10
表示的曲线是
A双曲线的右B支两条射线 C双曲线D不表示任何曲线
2020/12/6
7
双曲线标准方程的推导
5
一、建立坐标系;设动
P(x,y)
点为P(x,y)
双曲线的定义及标准方程
2020/12/6
1
[复习] 1、求曲线方程的步骤
一、建立坐标系,设动点的坐标; 二、找出动点满足的几何条件;
三、将几何条件化为代数条件;
四、化简,得所求方程。
2020/12/6
2
2、椭圆的定义
到平面上两定点F1,F2的距离之和(大于 |F1F2|)为常数的点的轨迹
P1 F PF 22a
2020/12/6
15
应 用
例、求适合下列条件的双曲线的标准方 两程个.焦点的坐标分别是(-4,0)、(4,0),双曲线上
举 一点到两焦点距离的差的绝对值等于6;

及 变式1:两个焦点的坐标分别是(0,-4)、(0,4),双曲

线 上一点到两焦点距离的差的绝对值等于6;

反 变式2:两焦点距离是8,双曲线上一点P到两焦
5
P(x,y)
因2a<2c, a<c, a2<c2, c2a2>0
-5
F2(-c,0)
于是令:c2-a2=b2
F1(c,0)
5
代入上式得:b2x2-a2y2=a2b2
-5
2020/12/6
即:
x2 a2
y2 b2
1
C2=a2+b2
11
思考 如果双曲线的焦点在y轴上,焦点的
方程是怎样?
5
P(x,y)

点距离之差的绝对值为6.
2020/12/6
16
应 用
变式3:与双曲线 且经过点
x2 y 2 1 相同焦点,并 5


及Байду номын сангаас
演 练 变式4:双曲线经过两点
与(2,1) .


2020/12/6
17
总结提炼
1、理解双曲线的概念及其方程的推导过程 2、掌握双曲线标准方程的两种形式 3、灵活运用定义及待定系数法求双曲线 标准方程
相关文档
最新文档