人教版高中数学必修五1.1.1正弦定理同步课堂教案

合集下载

高中数学 1.1.1正弦定理教案 新人教A版必修5

高中数学 1.1.1正弦定理教案 新人教A版必修5

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。

2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。

3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教学基本流程1、引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。

五、教学反思1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。

本设计创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。

2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下∠进行“再创造”过程。

本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A ∠的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来的正弦与B(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。

高中数学必修5公开课教案1.1.1 正弦定理

高中数学必修5公开课教案1.1.1 正弦定理

1.1正弦定理和余弦定理1.1.1正弦定理沉着说课本章内容是处理三角形中的边角联络,与初中学习的三角形的边与角的根本联络有亲近的联络,与已知三角形的边和角持平断定三角形全等的常识也有着亲近的联络.教科书在引进正弦定理内容时,让学生从已有的几许常识动身,提出探求性问题“在恣意三角形中有大边对大角,小边对小角的边角联络.咱们是否能得到这个边、角的联络准确量化的表明呢?”在引进余弦定理内容时,提出探求性问题“假如已知三角形的两条边及其所夹的角,依据三角形全等的断定办法,这个三角形是巨细、形状彻底确认的三角形.咱们依然从量化的视点来研讨这个问题,也便是研讨怎么从已知的两头和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联络的观念,重新的视点看曩昔的问题,使学生关于曩昔的常识有了新的知道,一同使新常识树立在已有常识的坚实根底上,构成杰出的常识结构.教育要点1.正弦定理的概念;2.正弦定理的证明及其根本使用.教育难点1.正弦定理的探求和证明;2.已知两头和其间一边的对角解三角形时判别解的个数.教具预备直角三角板一个三维方针一、常识与技术1.经过对恣意三角形边长和视点联络的探求,把握正弦定理的内容及其证明办法;2.会运用正弦定理与三角形内角和定了解斜三角形的两类根本问题.二、进程与办法1.让学生从已有的几许常识动身,一同探求在恣意三角形中,边与其对角的联络;2.引导学生经过调查、推导、比较,由特别到一般概括出正弦定理;3.进行定理根本使用的实践操作.三、情感情绪与价值观1.培育学生在方程思维辅导下处了解三角形问题的运算才能;2.培育学生探求数学规则的思维才能,经过三角函数、正弦定理、向量的数量积等常识间的联络来表现事物之间的遍及联络与辩证统一.教育进程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着极点C滚动.师考虑:∠C的巨细与它的对边AB的长度之间有怎样的数量联络?生明显,边AB的长度跟着其对角∠C的巨细的增大而增大.师能否用一个等式把这种联络准确地表明出来?师在初中,咱们已学过怎么解直角三角形,下面就首先来评论直角三角形中,角与边的等式联络.如右图,在Rt△ABC中,设BC =A,AC =B,AB =C,依据锐角三角函数中正弦函数的界说,有=sin A, =sin B,又sin C=1=,则.然后在直角三角形ABC中,.推动新课[协作探求]师那么关于恣意的三角形,以上联络式是否依然树立?(由学生评论、剖析)生可分为锐角三角形和钝角三角形两种状况:如右图,当△ABC是锐角三角形时,设边AB上的高是CD,依据恣意角三角函数的界说,有CD=A sin B=B sin A,则,同理,可得.然后.(当△ABC是钝角三角形时,解法相似锐角三角形的状况,由学生自己完结)正弦定理:在一个三角形中,各边和它所对角的正弦的比持平,即.师是否可以用其他办法证明这一等式?生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,依据直径所对的圆周角是直角以及同弧所对的圆周角持平,来证明这一联络.师很好!这位同学能充分使用咱们曾经学过的常识来处理此问题,咱们一同来看下面的证法.在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圆,O 为圆心,连接BO并延伸交圆于B′,设BB′=2R.则依据直径所对的圆周角是直角以及同弧所对的圆周角持平可以得到∠BAB′=90°,∠C=∠B′,∴sin C=sin B′=.∴.同理,可得.∴.这便是说,关于恣意的三角形,上述联络式均树立,因而,咱们得到等式.点评:上述证法采用了初中所学的平面几许常识,将恣意三角形经过外接圆性质转化为直角三角形从而求证,此证法在稳固平面几许常识的一同,易于被学生了解和承受,而且消除了学生所持的“向量办法证明正弦定理是仅有途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量办法证明正弦定理作了衬托.[常识拓宽]师接下来,咱们可以考虑用前面所学的向量常识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角联络,而在向量常识中,哪一常识点表现边角联络呢?生向量的数量积的界说式A·B=|A||B|C osθ,其间θ为两向量的夹角.师答复得很好,可是向量数量积触及的是余弦联络而非正弦联络,这两者之间能否转化呢?生可以经过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化.师这一转化发生了新角90°-θ,这就为辅佐向量j的增加供给了头绪,为便利进一步的运算,辅佐向量选取了单位向量j,而j笔直于三角形一边,且与一边夹角呈现了90°-θ这一方式,这是作辅佐向量j笔直于三角形一边的原因.师在向量办法证明进程中,结构向量是根底,并由向量的加法准则可得而增加笔直于的单位向量j是要害,为了发生j与、、的数量积,而在上面向量等式的两头同取与向量j的数量积运算,也就在情理之中了.师下面,咱们再结合讲义进一步领会向量法证明正弦定理的进程,并留意总结在证明进程中所用到的向量常识点.点评: (1)在给予学生恰当自学时刻后,应着重学生留意两向量的夹角是以同起点为条件,以及两向量笔直的充要条件的运用.(2)要求学生在稳固向量常识的一同,进一步领会向量常识的东西性效果.向量法证明进程:1.△ABC为锐角三角形,过点A作单位向量j笔直于,则j与的夹角为90°-A,j与的夹角为90°-C.由向量的加法准则可得,为了与图中有关角的三角函数树立联络,咱们在上面向量等式的两头同取与向量j的数量积运算,得到由分配律可得.∴|j|Co s90°+|j|Co s(90°-C)=|j|Co s(90°-A).∴A sin C=C sin A.∴.别的,过点C作与笔直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得.(此处应着重学生留意两向量夹角是以同起点为条件,避免误解为j与的夹角为90°-C,j与的夹角为90°-B)∴.2.△ABC为钝角三角形,无妨设A>90°,过点A作与笔直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C.由,得j·+j·=j·,即A·Co s(90°-C)=C·Co s(A-90°),∴A sin C=C sin A.∴别的,过点C作与笔直的单位向量j,则j与的夹角为90°+C,j与夹角为90°+B.同理,可得.∴(方式1).综上所述,正弦定理关于锐角三角形、直角三角形、钝角三角形均树立.师在证明了正弦定理之后,咱们来进一步学习正弦定理的使用.[教师精讲](1)正弦定理阐明同一三角形中,边与其对角的正弦成正比,且份额系数为同一正数,即存在正数k使A=ksin A,B=ksin B,C=ksin C;(2)等价于 (方式2).咱们经过调查正弦定理的方式2不难得到,使用正弦定理,可以处理以下两类有关三角形问题.①已知三角形的恣意两角及其间一边可以求其他边,如.这类问题因为两角已知,故第三角确认,三角形仅有,解仅有,相对简单,讲义P4的例1就归于此类问题.②已知三角形的恣意两头与其间一边的对角可以求其他角的正弦值,如.此类问题改变较多,咱们在解题时要辨明标题所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的进程叫作解三角形.师接下来,咱们经过例题剖析来进一步领会与总结.[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9 c m,解三角形.剖析:此题归于已知两角和其间一角所对边的问题,直接使用正弦定理可求出边B,若求边C,再使用正弦定理即可.解:依据三角形内角和定理,C=180°-(A+B)=180°-(32.0°+81.8°)=66.2°;依据正弦定理,b=≈80.1(c m);c=≈74.1(c m).[办法引导]1.此类问题成果为仅有解,学生较易把握,假如已知两角和两角所夹的边,也是先使用内角和180°求出第三角,再使用正弦定理.2.关于解三角形中的杂乱运算可使用计算器.【例2】在△ABC中,已知A=20c m,B=28c m,A=40°,解三角形(视点准确到1°,边长准确到1 c m).剖析:此例题归于B sin A<a<b的景象,故有两解,这样在求解之后呢,无需作进一步的查验,使学生在运用正弦定理求边、角时,感到意图很清晰,一同领会剖析问题的重要性.解:依据正弦定理,sin B=≈0.899 9.因为0°<B<180°,所以B≈64°或B≈116°.(1)当B≈64°时,C=180°-(A+B)=180°-(40°+64°)=76°,C=≈30(c m).(2)当B≈116°时,C=180°-(A+B)=180°-(40°+116°)=24°,C=≈13(c m).[办法引导]经过此例题可使学生清晰,使用正弦定理求角有两种或许,可是都不契合题意,可以经过剖析取得,这就要求学生了解已知两头和其间一边的对角时解三角形的各种景象.当然关于不契合题意的解的取舍,也可经过三角形的有关性质来判别,关于这一点,咱们经过下面的例题来领会.变式一:在△ABC中,已知A=60,B=50,A=38°,求B(准确到1°)和C(保存两个有用数字).剖析:此题归于A≥B这一类景象,有一解,也可依据三角形内大角对大边,小角对小边这一性质来扫除B为钝角的景象.解:已知B<A,所以B<A,因而B也是锐角.∵sin B=≈0.513 1,∴B≈31°.∴C=180°-(A+B)=180°-(38°+31°)=111°.∴C=≈91.[办法引导]同样是已知两头和一边对角,但或许呈现不同成果,应着重学生留意解题的灵活性,关于本题,假如没有考虑角B 所受约束而求出角B的两个解,从而求出边C的两个解,也可使用三角形内两头之和大于第三边,两头之差小于第三边这一性质从而验证而到达扫除不契合题意的解.变式二:在△ABC中,已知A=28,B=20,A=120°,求B(准确到1°)和C(保存两个有用数字).剖析:此题归于A为钝角且A>B的景象,有一解,可使用正弦定理求解角B后,使用三角形内角和为180°扫除角B为钝角的景象.解:∵sin B=≈0.618 6,∴B≈38°或B≈142°(舍去).∴C=180°-(A+B)=22°.∴ C=≈12.[办法引导](1)此题要求学生留意考虑问题的全面性,关于角B为钝角的扫除也可以结合三角形小角对小边性质而得到.(2)归纳上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两头与其间一边的对角解三角形.3.关于已知两头夹角解三角形这一类型,将经过下一节所学习的余弦定理来解.师为稳固本节咱们所学内容,接下来进行讲堂操练:1.在△ABC中(成果保存两个有用数字),1.已知C =,A=45°,B=60°,求B;2.已知B=12,A=30°,B=120°,求A.解:(1)∵C=180°-(A+B)=180°-(45°+60°)=75°,,∴B=≈1.6.(2)∵,∴A=≈6.9.点评:此题为正弦定理的直接使用,意在使学生了解正弦定理的内容,可以让数学成果较弱的学生进行在黑板上回答,以增强其自信心.2.依据下列条件解三角形(视点准确到1°,边长准确到1):1.B=11,A=20,B=30°;(2)A=28,B=20,A=45°;(3)C =54,B=39,C=115°;(4)A=20,B=28,A=120°.解:(1) ∵.∴sin A=≈0.909 1.∴A1≈65°,A2≈115°.当A1≈65°时,C1=180°-(B+A1)=180°-(30°+65°)=85°,∴C1=≈22.当A2≈115°时,C2=180°-(B+A2)=180°-(30°+115°)=35°,∴C2=≈13.2.∵sin B=≈0.505 1,∴B1≈30°,B2≈150°.因为A+B2=45°+150°>180°,故B2≈150°应舍去(或许由B<A知B<A,故B应为锐角).∴C=180°-(45°+30°)=105°.∴C=≈38.3.∵,∴sin B=≈0.654 6.∴B1≈41°,B2≈139°.因为B<C,故B<C,∴B2≈139°应舍去.∴当B=41°时,A=180°-(41°+115°)=24°,A=≈24.4.sin B= =1.212>1.∴本题无解.点评:此操练意图是使学生进一步了解正弦定理,一同加强解三角形的才能,既要考虑到已知角的正弦值求角的两种或许,又要结合标题的具体状况进行正确取舍.讲堂小结经过本节学习,咱们一同研讨了正弦定理的证明办法,一同了解了向量的东西性效果,而且清晰了使用正弦定理所能处理的两类有关三角形问题:已知两角、一边解三角形;已知两头和其间一边的对角解三角形.安置作业(一)讲义第10页习题1.1第1、2题.(二)预习内容:讲义P5~P 8余弦定理[预习提纲]1.温习余弦定理证明中所触及的有关向量常识.2.余弦定理怎么与向量发生联络.3.使用余弦定理能处理哪些有关三角形问题.板书设计正弦定理1.正弦定理:2.证明办法:3.使用正弦定理,可以处理两类问题:1.平面几许法 (1)已知两角和一边(2)向量法 (2)已知两头和其间一边的对角。

高中数学《1.1.1 正弦定理》教案 新人教A版必修5(2)

高中数学《1.1.1 正弦定理》教案 新人教A版必修5(2)

课题:1.1.1正弦定理
【学习目标】
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。

2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

【学习重点】正弦定理的探索和证明及其基本应用。

【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。

【授课类型】新授课
【教具】课件、电子白板
【学习方法】
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形
ABC中,设BC=a,AC=b,AB=c, 根可分为锐角三角形和钝角三角形两种情况:
课题:1.1.1正弦定理
课题:1.1.1正弦定理。

【公开课教案】必修5《1.1.1 正弦定理》教学设计

【公开课教案】必修5《1.1.1 正弦定理》教学设计

必修5《1.1.1 正弦定理》教学设计一、教材分析正弦定理是高中新教材人教A版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系。

提出两个实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:(1)已知两角和一边,解三角形:(2)已知两边和其中一边的对角,解三角形。

二、学情分析本节授课对象是高二学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高二学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标1.知识与技能:(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题2.过程与方法:通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法.3.情感、态度与价值观:(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养.四、教学重点、难点教学重点: 1.正弦定理的推导. 2.正弦定理的运用教学难点:1.正弦定理的推导. 2.正弦定理的运用.五、学法与教法学法与教学用具学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。

高中数学必修5《1.1.1正弦定理》教学设计

高中数学必修5《1.1.1正弦定理》教学设计

高中数学必修5《1.1.1 正弦定理》教学设计1000字【教学设计】【教学目标】1. 理解正弦定理的概念,掌握求解三角形边长的方法。

2. 学会运用正弦定理求解实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

【教学内容】《数学必修5》第1章第1节,“正弦定理”(1.1.1)。

【教学过程】一、导入1. 引导学生思考:“三角形的边有什么特点?”2. 让学生回忆一下高中数学所学的定理,比如勾股定理和角平分线定理。

3. 引入正弦定理的概念,让学生对正弦定理有个初步的了解。

二、知识讲授1. 讲解正弦定理的概念及其公式。

2. 分别对三角形中的三角函数进行讲解,让学生对它们的定义有一个清晰的认识。

3. 通过图示让学生知道在不同情况下如何使用正弦定理解决问题。

4. 给学生提供几个具体例子,让他们练习运用正弦定理解决实际问题。

三、练习1. 让学生自主完成课本上的练习题,巩固所学知识。

2. 可以组织学生进行小组竞赛,比赛项目为用正弦定理解决实际问题,以此提高学生的兴趣和参与度。

四、复习与总结1. 以课堂小测验的形式检查学生对所学知识的掌握情况。

2. 对所学知识进行概括性总结,让学生对正弦定理的应用有更全面的了解。

【教学重点】1. 正确掌握正弦定理的概念和公式。

2. 熟练掌握正弦定理的运用方法。

【教学难点】1. 正弦定理的应用在实际问题中的具体运用。

2. 正确判断在不同情况下使用正弦定理的方法。

【教学方法】1. 讲解法:通过讲解,让学生明白正弦定理的概念和公式。

2. 案例法:通过实例让学生知道如何使用正弦定理解决问题。

3. 组织竞赛法:通过小组竞赛,让学生更加积极主动地参与课堂活动。

【学情分析】学生学习高中数学是从基础数学知识逐步深入的,正弦定理是高中数学重点内容之一,更为复杂的三角函数内容的基础。

学习正弦定理需要有良好的基础数学知识,同时也需要良好的逻辑思维能力,因此需要从基础知识入手,渐进进行教学。

【教学建议】1. 为了保证课堂效果,教师应该采用多样化的教学法,如讲解法、案例法、练习法等。

人教版高中必修5(B版)1.1.1正弦定理课程设计

人教版高中必修5(B版)1.1.1正弦定理课程设计

人教版高中必修5(B版)1.1.1正弦定理课程设计一、前言正弦定理是高中数学中重要的几何知识点之一,它可以应用于解决各种三角形问题。

本课程设计旨在通过引导学生的实践操作,加深对正弦定理的认识和理解,提高学生的数学运算能力和解决实际问题的能力。

二、教学目标1.理解正弦定理的含义和应用场景;2.掌握使用正弦定理求解三角形内角、外角、边长的方法;3.能够熟练应用正弦定理解决实际问题。

三、教学内容1.正弦定理的定义及三角形内角、外角、边长的关系;2.正弦定理的应用场景及解题方法;3.正弦定理在实际问题中的应用。

四、教学过程1. 课前预习复习三角函数的相关知识点,如正弦函数和余弦函数的定义及其图像。

2. 导入新知通过讲解正弦定理的定义及应用场景,引导学生了解正弦定理的概念和使用方法。

3. 自主探究在学生独立完成本课程设计中的练习题后,引导学生思考如何应用正弦定理解决习题中的问题,并引导学生互相交流讨论解题思路。

4. 师生互动在学生完成课堂练习后,由教师出示一些课外实际问题,并通过师生互动的方式引导学生运用正弦定理解决问题,同时也可以与学生分享教师个人经历中的实际问题。

5. 作业布置布置相关练习题,并鼓励学生结合实际问题,进一步巩固所学内容。

五、教学资源1.《人教版高中数学必修5(B版)》教材;2.教师自编习题;3.课件及黑板。

六、评价标准1.能够独立使用正弦定理解决三角形问题;2.能够掌握使用正弦定理解决实际问题的方法;3.能够在课外适当运用所学知识。

七、教学反思通过课程设计,学生能够熟练掌握正弦定理的应用,并培养了运用数学工具解决实际问题的能力。

同时,通过师生互动的方式,让学生不仅仅局限于纸上解题,而是能够运用所学知识解决实际问题,让学生更好地体会到数学知识的实际应用。

高中数学《1.1.1 正弦定理》教案 新人教A版必修5

高中数学《1.1.1 正弦定理》教案 新人教A版必修5

福建省长乐第一中学高中数学必修五《1.1.1 正弦定理》教案第一课时 1.1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数.教学过程:一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =cb sin C =1 即c =sin sin sin a b c A B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B=. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b c A B C==. ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin c C . 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a a CD R A D===, 同理 sin b B =2R ,sin c C=2R . 证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…..④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:① 出示例1:在∆ABC 中,已知045A =,060B =,42a =cm ,解三角形.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边 ② 出示例2:045,2,,ABC c A a b B C ∆===中,求和.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角 ③练习:060,1,,ABC b B c a A C ∆===中,求和.在∆ABC 中,已知10a =cm ,14b =cm ,040=A ,解三角形(角度精确到01,边长精确到1cm ) ④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论.三、巩固练习:1.已知∆ABC 中,∠A =60°,a ,求sin sin sin a b c A B C ++++. 2. 作业:教材P5 练习1 (2),2题.。

高中数学 1.1.1 正弦定理教案 新人教A版必修5

高中数学 1.1.1 正弦定理教案 新人教A版必修5

第一章解三角形 1.1.1 正弦定理(第一课时)【教学目标】:1.了解正弦定理的推导过程,掌握正弦定及其变形2.能初步用正弦定理解三角形,并能判断三角形的形状.(第一种类型)【新课导入】工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【预习收获】1.正弦定理定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A =b sin B=______.2.解三角形一般地,把三角形的三个角和它们的______叫做三角形的元素.已知三角形的几个元素求__________的过程叫做解三角形.【问题解决】对定理的证明,课本给出了锐角三角形的情况.对于钝角三角形,应如何证明?(引导学生证明钝角三角形的情况,并总结归纳正弦定理的适应范围)【几何意义】在Rt△ABC中,若C=90°,你能借助所学知识导出asin A的具体值吗?在锐角三角形中这个结论成立吗?钝角三角形中呢?【探究结论】设任意△ABC的外接圆的半径为R,都有a sin A =bsin B=csin C=2R.【定理变形】1.正弦定理(1)定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A=bsin B=______.(2)变形:设△ABC的外接圆的半径为R,则有a sin A =bsin B=csin C=_____.①a:b:c=sin A:_____:sin C .②ab=sin Asin B,ac=sin Asin C,bc=______.③asin A=bsin B=csin C=a+b+csin A+sin B+sin C.④a=2R sin A,b=2R sin B,c=________.【例题讲解】类型一已知两角及一边解三角形[例1] 在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.【探究拓展】[例2] 在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知A:B:C=1:2:3,则a:b:c=________.【智能训练】今天的概念你清楚了吗?1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC中,sin A:sin B:sin C=a:b:c.其中正确的个数是( )A.1 B.2 C.3 D.4结合初中的概念,你的基础牢固吗?2.在△ABC中,sin A=sin C,则△ABC是( )A.直角三角形 B.等腰三角形C.锐角三角形 D.钝角三角形三角形中最重要的定理是什么?3.在△ABC中,sin2A+sin2B=sin2C,则C=________. 今天的知识你可以参加高考了吗?4.(2012·广东卷)在△ABC中,若A=60°,B=45°,BC=32,则AC=( )A.4 3 B.2 3C. 3D.3 2你知道如何判断最小边吗?5.在△ABC中,A=60°,B=45°,c=1,求此三角形的最小边.【探究发现】可以实际应用了吗?解决开头提出的问题:工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【课后作业】1.课本P4.1、(1)(2)2.课本 P10 1、(1)(2)3.配套课时作业1.1.1正选定理(一)精美句子1、善思则能“从无字句处读书”。

人教版高中必修5(B版)1.1.1正弦定理教学设计

人教版高中必修5(B版)1.1.1正弦定理教学设计

人教版高中必修5(B版)1.1.1正弦定理教学设计1. 教学内容和目标1.1 教学内容正弦定理是三角函数的重要概念之一,本次教学内容主要包括:1.正弦定理的概念及其推导过程2.正弦定理的应用实例:求三角形边长和角度3.正弦定理与勾股定理的综合应用1.2 教学目标通过本次课程的学习,学生应该能够:1.掌握正弦定理的概念及其推导过程2.能够运用正弦定理解决实际问题,如求三角形边长和角度3.能够理解正弦定理与勾股定理的联系,运用两者综合解决问题2. 教学过程及安排2.1 教学过程1.引入(5分钟):通过简单的实例或图片来引导学生回忆三角形的基本概念、角度和边长的定义及勾股定理。

2.学习正弦定理(30分钟):介绍正弦定理的概念,讲解其推导过程,并通过实例演示如何运用正弦定理求解三角形的边长和角度。

3.练习(20分钟):提供一些练习题目,让学生在课堂上进行练习,观察学生练习情况,在学生练习完后进行讲解并指导学生,激发学生的学习兴趣和创造力。

4.综合应用(20分钟):介绍正弦定理与勾股定理的联系,演示如何综合运用两者解决问题,通过实例让学生掌握综合应用的方法和技巧。

5.总结(5分钟):对本节课所学的知识点进行总结归纳,提醒学生掌握基本概念、加强练习和思考,在人教版高中必修5(B版)1.1.1正弦定理学习中取得更好的成绩。

2.2 安排1.教材:人教版高中必修5(B版)1.1.1正弦定理。

2.时间:1课时(45分钟)。

3.教学方式:多媒体课件+讲解+练习+讨论。

3. 教学评估和反思3.1 教学评估1.学生练习题目解答情况,是否理解正弦定理的概念和应用方法。

2.课后作业的完成情况,能否熟练运用正弦定理解决问题。

3.学生的课堂参与度和表现情况。

3.2 教学反思1.本节课内容清晰,思路明确,符合学生的认知规律,但在举例操作过程中有一些练习较为复杂,需要老师提前做好示范。

2.在整个课堂过程中,讲师讲解清晰、运用多媒体较好,但应让学生更好地理解定理背后的设计思想,注重锻炼学生所获取的知识的应用能力。

高二数学人教A版必修5教学教案1-1-1正弦定理(2)

高二数学人教A版必修5教学教案1-1-1正弦定理(2)

《正弦定理》教学设计一、教学背景分析 1.教材地位分析《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的内容,比较系统地研究了解三角形这个课题。

《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。

正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。

通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。

2.学生现实分析(1)学生在初中已学过有关直角三角形的一些知识:①勾股定理: ②三角函数式,如: (2)学生在初中已学过有关任意三角形的一些知识:① ②两边之和大于第三边,两边之差小于第三边 ③大边对大角,大角对大边(3)学生在高中已学过必修4(包括三角函数与平面向量)(4)学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型 3.教学目标分析 知识目标:(1)正弦定理的发现 (2)证明正弦定理的方法 (3)正弦定理的简单应用 能力目标:(1)培养学生观察、分析问题、应用所学知识解决实际问题的能力(2)通过向量把三角形的边长和三角函数建立起关系,在解决问题的过程中培养学生的联想能力、综合应用知识的能力 情感目标:(1)设置情景,培养学生的独立探究意识,激发学生学习兴趣 (2)鼓励学生探索规律、发现规律、解决实际问题(3)通过共同剖析、探讨问题,推进师生合作意识,加强相互评价与自我反思 二、教学展开分析1.教学重点与难点分析教学重点是发现正弦定理、用几何法和外接圆法证明正弦定理。

正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。

正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应用问题,这些知识的掌握,有助于培养分析问题和解决问题能力,所以一向为数学教育所重视。

高一数学 必修5系列教案:1.1.1正弦定理1

高一数学  必修5系列教案:1.1.1正弦定理1

第一章 解斜三角形1.1.1正弦定理1[创设情景]如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B2[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥, C由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅ j()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥j BC ,可得 sin sin =b c B C从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。

高一数学 必修五 1.1.1正弦定理 教案

高一数学  必修五 1.1.1正弦定理 教案

课题: §1.1.1正弦定理●教学目标●教学过程Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又s i n 1c C c ==, A则sin sin sin abc c A B C === b c从而在直角三角形ABC 中,sin sin sin abcA B C == C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin ab A B =sinc C = A c B (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥,由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅()(00cos 900cos 90-=+j AB A j CB ∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥j BC ,可得 sin sin =b c B C 从而 sin sin abA B =sin cC =类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。

【高中教育】高中数学 1.1.1 正弦定理教案 新人教A版必修5.doc

【高中教育】高中数学 1.1.1 正弦定理教案 新人教A版必修5.doc

1.1.1 正弦定理【教学目标】:1.了解正弦定理的推导过程,掌握正弦定及其变形2.能初步用正弦定理解三角形,并能判断三角形的形状.(第一种类型)【新课导入】工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【预习收获】1.正弦定理定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,a sin A =bsin B=______.2.解三角形一般地,把三角形的三个角和它们的______叫做三角形的元素.已知三角形的几个元素求__________的过程叫做解三角形.【问题解决】对定理的证明,课本给出了锐角三角形的情况.对于钝角三角形,应如何证明?(引导学生证明钝角三角形的情况,并总结归纳正弦定理的适应范围)【几何意义】在Rt△ABC中,若C=90°,你能借助所学知识导出asin A的具体值吗?在锐角三角形中这个结论成立吗?钝角三角形中呢?【探究结论】设任意△ABC的外接圆的半径为R,都有a sin A =bsin B=csin C= 2R.【定理变形】1.正弦定理(1)定理:在一个三角形中,各边和它所对角的_____的比相等,即在△ABC中,asin A =bsin B=______.(2)变形:设△ABC的外接圆的半径为R,则有a sin A =bsin B=csin C=_____.①a:b:c=sin A:_____:sin C .②ab=sin Asin B,ac=sin Asin C,bc=______.③asin A=bsin B=csin C=a+b+csin A+sin B+sin C.④a=2R sin A,b=2R sin B,c=________.【例题讲解】类型一已知两角及一边解三角形[例1] 在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.【探究拓展】[例2] 在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知A:B:C =1:2:3,则a:b:c=________.【智能训练】今天的概念你清楚了吗?1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC中,sin A:sin B:sin C=a:b:c.其中正确的个数是( )A.1 B.2 C.3 D.4结合初中的概念,你的基础牢固吗?2.在△ABC中,sin A=sin C,则△ABC是( )A.直角三角形 B.等腰三角形C.锐角三角形 D.钝角三角形三角形中最重要的定理是什么?3.在△ABC中,sin2A+sin2B=sin2C,则C=________. 今天的知识你可以参加高考了吗?4.(2012·广东卷)在△ABC中,若A=60°,B=45°,BC=32,则AC=( )A.4 3 B.2 3C. 3D.3 2你知道如何判断最小边吗?5.在△ABC中,A=60°,B=45°,c=1,求此三角形的最小边.【探究发现】可以实际应用了吗?解决开头提出的问题:工程师为了测定河岸A点到对岸C点的距离,在岸边选定100米长的基线AB,并测得∠B=120o,∠A=45o,你可以求出A、C两点的距离吗?【课后作业】1.课本P4.1、(1)(2)2.课本 P10 1、(1)(2)。

人教版高中必修51.1正弦定理和余弦定理课程设计

人教版高中必修51.1正弦定理和余弦定理课程设计

人教版高中必修5-1.1 正弦定理和余弦定理课程设计一、引言正弦定理和余弦定理是高中数学中的基础概念,在解决三角形相关问题时经常会用到。

本课程设计将围绕正弦定理和余弦定理展开,旨在通过讲解和丰富的实例,帮助学生深入理解这两个概念,提高学生解决实际问题的能力。

二、教学目标本课程设计主要的教学目标包括:1.理解正弦定理和余弦定理的定义和含义,并能运用正确公式计算相关量;2.能解决使用正弦定理和余弦定理求解三角形中各角度和边长的问题,并能熟练运用所学知识解决类似问题;3.培养学生对数学概念的深刻理解,提高数学分析、解题和推理的能力。

三、教学重点和难点1. 教学重点•正弦定理和余弦定理的定义和含义;•正弦定理和余弦定理的公式和运用;•求解三角形相关问题的思路和方法。

2. 教学难点•正弦定理和余弦定理的理解与运用;•正弦定理和余弦定理的推导过程说明;•如何分析实际问题,确定合适的求解方法。

四、教学内容和方法1. 教学内容1) 正弦定理•正弦定理的概念和含义;•正弦定理的公式和运用;•正弦定理的推导过程说明;•正弦定理的实际应用。

2) 余弦定理•余弦定理的概念和含义;•余弦定理的公式和运用;•余弦定理的推导过程说明;•余弦定理的实际应用。

2. 教学方法本课程设计将采用以下教学方法:•讲授法:通过对正弦定理和余弦定理的原理、公式和运用的讲解,向学生阐述相关概念并理解其原理;•实例分析法:通过较为典型的实例分析、讨论问题,帮助学生理解正弦定理和余弦定理的实际应用;•独立思考法:通过举例让学生通过自己的思考和分析实际问题,确定求解方法解决问题,培养学生分析问题、解决问题的能力。

五、教学评价教学评价主要从以下方面进行:•学生课堂发言和问题讨论表现;•学生课后作业完成情况;•学生课后课程练习题完成情况以及参与竞赛、奥数活动表现;•学生在考试中的表现。

六、教学资源为了更好地实行授课过程中,需要准备以下资源:•课程讲义;•课件尠存储设备:如电脑、U盘等;•相关参考资料:如教材、习题集等。

人教课标版高中数学必修五《正弦定理和余弦定理(第1课时)》教案(1)-新版

人教课标版高中数学必修五《正弦定理和余弦定理(第1课时)》教案(1)-新版

第一章解三角形1.1.1正弦定理一、教学目标1.核心素养通过学习正弦定理,初步形成基本的数学抽象和逻辑推理能力.2.学习目标(1)通过特殊三角形,了解三角形的边与角的对应关系.(2)能证明正弦定理.(3)应用正弦定理解决三角形相应问题.3.学习重点理解正弦定理,会用正弦定理解两类三角形问题.4.学习难点正弦定理的证明与三角形解的个数的判断.二、教学设计(一)课前设计1.预习任务任务1阅读教材P1-P4.思考:正弦定理的内容是什么?你还有哪些方法可以证明正弦定理?正弦定理有哪些应用?任务2默写正弦定理的具体内容,查阅三角形面积的计算公式并进行整理.2.预习自测1.在一个三角形中,各边和它对角的()的比相等.A.正弦B.余弦C.正切D.角度答案:A.解析:考查正弦定理的定义: 一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形 外接圆的直径长度.2.下列各式可以表示△ABC 的面积的是( ) A.12ab sin A B.12ab sin B C.12ab sin C D.ab sin C 答案:C.3.在正弦定理中asin A 的值表示△ABC 的( ) A.内切圆半径 B.内切圆直径 C.外接圆半径 D.外接圆直径 答案:D.解析:一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径长度. (二)课堂设计 1.知识回顾(1)三角形内角和为180o .(2)三角形中两边之和大于第三边,两边之差小于第三边. (3)在三角形中大边对大角.(4)三角形的面积:S =111222a b c ah bh ch ==(其中h a ,h b ,h c 分别为边a ,b ,c 上的高). (5)我们预习本课的正弦定理是什么?有哪些方法可以证明呢? 2.问题探究问题探究一 直角三角形的边角有哪些关系? ●活动一 回顾旧知,回忆边角关系在初中,我们已经学习过如何解直角三角形,那么在直角三角形中的边角关系有哪些呢?通过作出直角三角形,寻找直角三角形中的边角关系. 在直角三角形中,若C 为直角,锐角A 的正弦sin A ==ac对边斜边.同理,sin B =b c .●活动二 整合旧知,探求边角新关系 结合三角函数,你有哪些与众不同的发现? 在以上直角△ABC 中,根据正弦函数的定义有:sin a A c =,sin b B c =,sin 1C =,即sin a c A =,sin b c B =,sin c c C=. ∴sin sin sin a b cA B C==.问题探究二 上述边角关系对任意三角形都成立吗?试证明. ●活动一 大胆猜想,几何画板来帮忙 我们猜想在任意三角形中,都有sin a A =sin bB =sin c C. 为提高直观认识,我们先利用几何画板先作出一个三角形,度量出三个内角大小及三边的长度, 分别计算,,sin sin sin a b cA B C的值,并观察三个值的关系. 然后,再改变三角形形状,再观察三个比值的变化情况. 可以看到,不论三角形如何变化,sin a A =sin bB =sin c C. ●活动二 集思广益,证明正弦定理 你能在一般的三角形中证明sin a A =sin b B =sin c C这个结论吗? 在锐角△ABC 中,你能找出a sin B ,b sin A 表示的具体线段吗?它们的几何意义是什么?在锐角△ABC 中,sin ,sin a B b A 表示的线段都是AB 边上的高CD . 因而,有a sin B =b sin A ,则sin sin a b A B=,同理,我们可以得到sin a A =sin bB =sin cC . 在钝角三角形中是否也能用类似方法证明呢?不妨设∠B 为钝角,如图,()sin 180sin CD a B b A =-=o ,因而,有sin sin a B b A =,则sin aA =sin b B, 同理,我们可以得到sin a A =sin bB =sin c C. 正弦定理:对于任意的一个三角形,都有sin a A =sin bB =sin c C. ●活动三 反思过程,发现面积新公式结合a sin B ,b sin A 的几何意义,你能不能得到三角形的面积公式的另外一种形式? 由以上探究活动,a sin B ,b sin A 的几何意义为AB 边上的高CD ,则由三角形面积111222a b c S ah bh ch ===, 有11sin 22c S ch ac B ==,或11sin 22c S ch bc A ==,以此类推,还有1sin 2S ab C =.所以111sin sin sin 222S ab C ac B bc A ===.●活动四 利用外接圆,重新认识正弦定理 结合△ABC 的外接圆,试探究sin aA的几何意义.设⊙O 为△ABC 的外接圆,连接CO 并延长交⊙O 于点A ′,连接A ′B ,则∠A =∠A ′, 在△A ′BC 中,A ′C 为直径,则∠A ′BC 为直角,2sin a A C R A '==',故2sin aR A=,其中R 为三角形外接圆的半径.通过转化与化归的思想,将∠A 转化为∠A ′,最关键的是将一般三角形中a 与∠A 的关系转化为直角三角形中的a 与∠A ′的关系,不难得到sin aA=2R ,则2sin sin sin a b cR A B C===. 以上过程也是证明正弦定理的另一种方法,你还能想出哪些证明正弦定理的方法?结合活动三得到的三角形的面积公式,我们还可以哪些形式多样的面积公式? 我们可以得到21sin 2sin sin sin 24abc S ab C R A B C R===等形式. 问题探究三 利用正弦定理能解决哪些三角形的问题?●活动一 初步运用,运用定理解三角形一般地,我们把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 利用正弦定理可以解决一些怎样的解三角形问题? 例1 在△ABC 中,已知A =30°,B =45°,a =2,解此三角形. 【知识点:正弦定理,解三角形;数学思想:数形结合】 详解:根据三角形内角和定理,C =180°-(A +B )=105°,根据正弦定理,b =sin sin a B A =c =sin sin a CA. 点拨:正弦定理是对边对角的关系,在已知一内角的条件下,找出该角的对边,或知道一边的情况下,寻求该边的对角,注意三角形内角和为180°这个条件的运用.在解三角形时,我们在知道三角形的三个元素(至少有一边)时,可以求出另三个元素,称“知三求三”.例2 在△ABC 中,已知A =60°,a =3,b 解三角形. 【知识点:正弦定理,解三角形;数学思想:数形结合】详解:根据正弦定理,sin sin b A B a ==,且b <a ,则B <A ,故B =45°,所以C =75°,sin sin a C c A ==. 点拨:在已知一角和两边(其中一边为该角的对边)的条件下,用正弦定理求出另一边对角的正弦值,一般可以运用大边对大角或三角形内角和定理对结果进行筛选或排除,当然可以两者结合使用.例3在△ABC 中,已知A =45°,a =2,b 解三角形.【知识点:正弦定理,解三角形;数学思想:分类讨论、数形结合】详解:根据正弦定理,sin B =sin b Aa,且b >a ,则B >A ,故B =60°或120°,当B =60°时,C =75°,解得sin c=1sin a CA;当B =120°时,C =15°,解得sinc=1sin a CA. 点拨:和例2类似,已知两边和其中一边的对角,用正弦定理求出另一边对角的正弦值,此时这个角有锐角和钝角两种情况,注意分类讨论,切不可先入为主的认为B =60°而造成漏解.●活动二 对比提升,判断三角形解的个数比较例2和例3,对于任意给定两边和其中一边的对角,三角形唯一确定吗?如何讨论满足条件的三角形的解的个数?在△ABC 中,已知a ,b ,A ,结合例2、例3分析,在求出sin B 后,B 的解的个数决定了三角形解的个数.不难看到,当A 为直角或钝角时,a >b ,B 必为锐角,有唯一解;a ≤b ,无解. 当A 为锐角时,我们可以用以下方法判断解的个数.A以C 为圆心,a 为半径作圆弧,观察该圆弧能否与c 边相交,(1)当a <b sin A 时,无解; (2)当a =b sin A 时,一解; (3)当b sin A <a <b 时,两解; (4)当a≥b 时,一解.通过这个方法,我们进一步可以验证当A 为直角或钝角时的情形,(1)当a ≤b 时,无解; (2)当a >b 时,一解.●活动三 归纳提升,综合应用新知识利用正弦定理,我们可以解哪些已知条件下的三角形? 1.已知两角和任意一边,求其他的边和角; 2.已知两边和其中一边的对角,求其他的边和角.例4 在△ABC 中,已知A=60°,b =2,c =3,求△ABC 的面积S . 【知识点:正弦定理】 详解:1sin 2S bc A ==. 点拨:直接应用三角形的面积公式即可.例5在△ABC 中,已知A =120°,a =3,b 判断三角形的解的个数,如有解,求△ABC 的面积S .【知识点:正弦定理,解三角形;数学思想:数形结合】 详解:由A 为钝角,且a >b ,故此三角形有唯一解.根据正弦定理,sin 1sin 2b A B a ==,则B =30°,C =180°-(A +B )=30°,所以1sin 2S ab C ==. 点拨:三角形的面积求解需要两边及夹角,因此要先通过正弦定理求B ,再用内角和定理求C ,再用公式即可.例6 已知△ABC 的外接圆半径为1,41sin ,cos 53A B ==-,求△ABC 的面积S . 【知识点:正弦定理,两角和的正弦公式;数学思想:转化与化归】详解:由()113sin sin sin cos cos sin 535C A B A B A B ⎛⎫=+=+=⋅-+= ⎪⎝⎭则242sin sin sin 25S R A B C ==⋅=点拨:在已知三角形外接圆半径时,通过正弦定理转化面积公式显得更快一些,当然也可以利用a =2R sin A ,b =2R sin B 求出C 的两条夹边再求面积,是一样的道理. 3.课堂总结 【知识梳理】 (1)在△ABC 中,2sin sin sin a b c R A B C===(R 为△ABC 的外接圆半径). (2)在△ABC 中,111sin sin sin 222S ab C ac B bc A ===. (3)设A 为△ABC 的最大角,已知a ,b ,A ,解三角形时解的个数判定为:若A 为锐角,①a <b sin A ,无解;②a =b sin A ,一解;③b sin A <a <b ,两解;④a ≥b ,一解.若A 为直角或钝角,①a ≤b ,无解;②a >b ,一解. 【重难点突破】(1)运用正弦定理时,有时需对它进行变形,如::sin :sin :sin a b c A B C =等,不论怎么变形,最终都需要将2R 约去.(2)运用正弦定理求解三角形时,若已知条件是两边和其中一边的对角,则可能无解、一解或两解,判断方法是三角形中大角对大边,大边对大角.(3)用正弦定理来解边角关系问题时,基本思路是统一角或统一边,这是三角形的变形问题常用的方法. 4.随堂检测1.在△ABC 中,A =45°,a =则sin sin sin a b cA B C++++等于( )A.1C.2D.4【知识点:正弦定理;数学思想:数形结合】 解:D 根据s i n a A =sin b B =sin cC=2R ,a =2R sin A ,b =2R sin B ,c =2R sin C ,则sin sin sin a b c A B C ++++=2R =sin aA=4,故选D.2.在△ABC 中,已知b c =1,B =45°,则a =( )11【知识点:正弦定理;数学思想:数形结合】 解:B 根据正弦定理,sin C =sin c B b =12,因为c <b ,则C <B ,故C =30°,则A =105°,所以a =sin sin c AC,故选B.3.在△ABC 中,已知b cos A =a cos B ,则△ABC 的形状为( ) A.直角三角形 B.等腰三角形 C.正三角形 D.等腰直角三角形【知识点:正弦定理的应用,两角差的正弦公式;数学思想:数形结合】 解:B 根据sin a A =sin b B=2R ,a =2R sin A ,b =2R sin B ,则2R sin B cos A =2R sin A cos B ,即sin(A -B )=0,得A =B ,故△ABC 为等腰三角形,故选B.4.在△ABC 中,A =30°,B =105°,c =4,则△ABC 的外接圆的面积为( ) A.4πB.8πC.16πD.32π【知识点:正弦定理的应用;数学思想:数形结合】解:B 由C =180°-(A +B )=45°,得2R =sin cC=R =圆面积S =πR 2=8π,故选B.5.在△ABC 中,若a =C =13,S △ABC =则b =_________ . 【知识点:正弦定理的应用;数学思想:数形结合】解 由cos C =13,得sin C ,根据S =12ab sin C =得b =(三)课后作业基础型 自主突破1.已知在10,45,30,,ABC c A C a b B ∆==︒=︒中,求和. 【知识点:正弦定理,解三角形;数学思想:数形结合】 解:由A a sin =B b sin =sin cC,180()105B A C =︒-+=︒,解得210=a ,2565+=b .2.在60,1,ABC b B c a ∆=︒=中,求.【知识点:正弦定理,解三角形;数学思想:数形结合】 解:由B b sin =sin cC,得sin C =12,因为c <b ,所以C <B ,则C =30°,则A =90°,故△ABC 为直角三角形,所以222=+=c b a .3.45,2,,ABC c A a b B C ∆==︒=中,求和.【知识点:正弦定理,解三角形;数学思想:数形结合】解:sin ,sin sin sin a c c A C A C a =∴===Qsin ,60c A a c C <<∴=︒Q 或120︒.sin6075,1sin c BC B b C ∴=︒=︒===当时,,sin12015,1sin c B C B b C ∴=︒=︒===当时,,1,75,60b B C ∴==︒=︒或1,15,120b B C =︒=︒.4.ABC ∆中,222sin sin sin A B C =+,则ABC ∆为( )A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形【知识点:正弦定理;数学思想:转化与化归】解:A 由正弦定理得a 2=b 2+c 2,则故△ABC 为直角三角形,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B =( )A.-12B.12C.-1D.1【知识点:正弦定理,同角三角函数间的基本关系】解:D 由正弦定理及a cos A =b sin B ,得sin A cos A =sin 2B .则sin A cos A +cos 2B =sin 2B +cos 2B =1.6.在△ABC 中,C =120°,c 2-c 2cos 2A =3,则a =________.【知识点:正弦定理,同角三角函数间的基本关系】解:2 由c 2-c 2cos 2A =c 2sin 2A =3,故c sin A ,由正弦定理,a =sin sin c A C=2. 能力型 师生共研7.在ABC ∆中,B A sin sin >是B A >的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【知识点:必要条件、充分条件与充要条件的判断,正弦定理】解:C 首先,由正弦定理得2R sin A >2R sin C ,故a >c ,由大边对大角,有A >C ;其次,由A >C ,得a >c ,即2R sin A >2R sin C ,故sin A >sin C .故选C.8.在锐角ABC ∆中,若2,1==b a ,则边c 的取值范围是( ) A.)5,0( B.)5,1( C.)5,3(D.(1,3)【知识点:正弦定理,解三角形;数学思想:数形结合】解:C 应用极端原理,当B 为直角时,c = 3 ,当C 为直角时,c =5,因△ABC 为锐角三角形,故 3 <c <5,故选C.9.在ABC ∆中,已知︒===45,2,B b x a ,如果利用正弦定理解三角形时有两解,则x 的取值范围是( ) A.222<<x B.222≤<xC.2>xD.2<x【知识点:正弦定理,解三角形;数学思想:数形结合】解:A 因三角形有两解,则a sin B <b <a ,x <2<x ,解得2<x <故选A. 10.在ABC ∆中,求证:2222112cos 2cos ba b B a A -=-. 【知识点:二倍角的余弦,正弦定理;数学思想:转化与化归】解:sin sin a b A B =⇒sin sin A B a b =⇒22sin sin ()()A B a b= ⇒2222sin sin A B a b =⇒221cos 21cos 2A B a b --=⇒2222cos 2cos 211A B a b a b-=-. 探究型 多维突破11.已知ABC ∆,B ∠的平分线交AC 于点D ,求证:DC AD BC AB ::=.【知识点:正弦定理的应用;数学思想:数形结合】证明:在ABD ∆内,利用正弦定理得:sin sin sin sin AB AD AB ADB ADB ABD AD ABD∠==∠∠∠即 在BCD ∆内,利用正弦定理得:sin ,.sin sin sin BC DC BC BDC BDC DBC DC DBC∠==∠∠∠即 ∵BD 是B 的平分线,∴sin sin ABD DBC ∠=∠.∵sin sin ADB BDC ∠=∠, ∴sin sin sin sin AB ADB BDC BC AD ABD DBC CD ∠∠===∠∠,∴AB AD BC DC =. 12.在ABC ∆中,已知)sin()sin(sin sin C B B A C A --=,求证:222,,c b a 成等差数列. 【知识点:两角和与差的正弦函数,二倍角的余弦,正弦定理,等差数列;数学思想:转化与化归】证明:由已知得sin()sin()B C B C +-sin()sin()A B A B =+-,cos 2cos 2cos 2cos 2B C A B -=-,1cos 21cos 21cos 22222B A B ---⋅=+, ∴2222sin sin sin B AC =+,由正弦定理可得2b 2=a 2+c 2,故a 2,b 2,c 2成等差数列.自助餐1.在ABC ∆中,45a b B ===︒,则A 为( )A.233ππ或 B.3πC.566ππ或 D.6π 【知识点:正弦定理,解三角形;数学思想:数形结合、分类讨论】 解:A 由sin a A =sin b B,得sin A,则A =60°或120°,故选A. 2.在ABC ∆中,2sin b A =,则B =( )A.3πB.6πC.233ππ或 D.566ππ或【知识点:正弦定理】解:C 由sin aA =sin bB ,得sin B ,故选C.3.在ABC ∆中,已知2,60a b A ==︒,则符合条件的三角形的个数有() A.2个B .1个C . 0个D.无数个【知识点:正弦定理,解三角形;数学思想:数形结合】解:B 由a >b ,故A >B ,则三角形只有一解,故选B.4.在△ABC 中,cos A =-13,a =3,b ,则符合条件的三角形的个数有()A.2个B .1个C . 0个D.无数个【知识点:正弦定理,解三角形;数学思想:数形结合】解:C 由cos A <0,得A 为钝角,又a <b ,故此三角形无解,故选C.5.在ABC ∆中,45B =︒,60C =︒,1c =,则最短边的边长等于( )C.12【知识点:正弦定理,解三角形;数学思想:数形结合】解:A 由三角形内角和为180°知A =75°,故B 角最小,从而b 为最小边,由正弦定理,b故选A. 6.在△ABC 中,a cos A =b cos B ,则△ABC 的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【知识点:正弦定理】解:D 由a cos A =b cos B 及正弦定理,得sin A cos A =sin B cos B ,即sin2A =sin2B , 则2A =2B 或2A +2B =180°,则A =B 或A +B =90°,△ABC 为等腰或直角三角形,故选D.7.在△ABC 中,若b =10,B =π4,tan A =2,则a =________.【知识点:正弦定理,同角三角函数间的基本关系】解:410 由tan A =sin A cos A =2,得sin A =255,又∵b =10,B =π4,根据正弦定理,得a =b sin A sin B =10×25522=410. 8.已知函数()sin()6f x x π=+,ABC △三个内角,,A B C 的对边分别为,,a b c .若()1f B C +=,a =3,b =1,则ABC △的面积S =__________.【知识点:正弦定理】解:34 由()1f B C +=,得()sin 1B C π++=,又()7,666B C πππ++∈,所以62B C ππ++=, 得23A π=,由正弦定理sin sin B A b a =,得1sin 2B =,则6B π=,6C π=,则面积1s i n 2S ab C =9.如图所示,扇形AOB 中,∠AOB =60°,OB =1,在弧AB 上有一动点P ,过P 作平行于OB 的直线和OA 交于点C ,则△POC 面积的最大值为______________.【知识点:正弦定理,解三角形,三角恒等变换;数学思想:数形结合】解:312 设∠AOP =θ,∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∴∠OCP =120°.在△POC 中,由正弦定理,得1sin120°=CP sin θ,有CP =23sin θ. 又OC sin(60°-θ)=1sin120°,有OC =23sin(60°-θ). 因此△POC 的面积为S =12CP ·OC sin120°=12·23sin θ·23sin(60°-θ)×32=13sin θsin(60°-θ)=13sin θ(32cos θ-12sin θ)=123[cos(2θ-60°)-12],θ∈(0°,60°). 故当θ=30°时,S 取得最大值为312.10.已知在ABC ∆中,452A a c ∠=︒==,,,解此三角形.【知识点:正弦定理,解三角形;数学思想:分类讨论】解:由sin a A =sin c C,得sin C C =60°或120°,sin6075,1sin c B C B b C =︒=︒===+当时,,sin12015,1sin c B C B b C =︒=︒===当时,,所以16075b C B =+=︒=︒,,或112015b C B =︒=︒,,. 11.在ABC ∆中,如果lg lg lgsin a c B -==-且B 为锐角,试判定三角形的形状.【知识点:对数的运算性质,正弦定理,解三角形;数学思想:数形结合】解:由条件有sin B 及c ,因为B 为锐角,则B =45°,A =135°-C ,由c ,得sin C A -C )=cos C +sin C ,则cos C =0,C =90°,A =45°,故△ABC 为等腰直角三角形.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2cos A cos C (tan A tan C -1)=1.(1)求B 的大小;(2)若b =3,求△ABC 的周长l 的最大值.【知识点:正弦定理,三角恒等变换,正弦函数的值域;数学思想:转化与化归】解:(1)由2cos A cos C (tan A tan C -1)=1,得2cos A cos C (sin A sin C cos A cos C -1)=1.∴2(sin A sin C -cos A cos C )=1,∴cos(A +C )=-12,∴cos B =12.又0<B <π,∴B =π3.(2)由正弦定理,得2R =b sin B =2,则a =2R sin A =2sin A ,c =2R sin C =2sin(2π3-A ),∴l =a +b +c =2sin A +2sin(2π3-A )+3=2sin A +3cos A +sin A + 3=3sin A +3cos A +3=23sin(A +π6)+ 3.∵A ∈[0,2π3],且A ≠π6,A ≠π2,∴当A =π3时,l max =3 3.故△ABC 的周长的最大值为3 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1正弦定理
●教学目标
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明
方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关
系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学
生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点
正弦定理的探索和证明及其基本应用。

●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 一.课题导入
如图1.1-1,固定ABC 的边CB 及B ,使边AC 绕着顶点C 转动。

思考:C 的大小与它的对边AB 的长度之间有怎样的数量关系?
显然,边AB 的长度随着其对角C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来?
二.讲授新课
[探索研究]
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图,在Rt ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,
有,
,又,

从而在直角三角形ABC 中,
∆∠∠∠∆sin a
A c
=sin b
B c
=sin 1c C c
==
sin sin sin a
b
c
c A
B
C
=
=
=sin sin sin a
b
c
A
B
C
=
=
C A B
B C
A
思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,(1)当ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,
有CD=,则, C
同理可得, b a 从而
A c B
(2)当ABC 是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导) 思考2:还有其方法吗?
由于涉及边长问题,从而可以考虑用向量来研究这问题。

(证法二):过点A 作单位向量, 由向量的加法可得
则 ∴
∴,即
同理,过点C 作,可得 从而 从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,
即存在正数k 使,,; (2)
等价于


思考:正弦定理的基本作用是什么?
①已知三角形的任意两角及其一边可以求其他边,如; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。

∆sin sin a B b A =sin sin a
b
A
B
=
sin sin c
b
C
B =
sin sin a
b
A
B
=
sin c
C
=
∆j AC ⊥u r u u u r AB AC CB =+u u r u u u r u u r
()j AB j AC CB ⋅=⋅+u r u u r u r u u u r u u r
j AB j AC j CB ⋅=⋅+⋅u r u u r u r u u u r u r u u r
()()0
0cos 900cos 90-=+-r u u u r r u u u r j AB A j CB C sin sin =c A a C sin sin =a c
A C ⊥r u u u r j BC sin sin =b c
B
C sin sin a b A B =sin c
C
=sin sin a
b
A
B
=
sin c
C
=
sin a k A =sin b k B =sin c k C =sin sin a
b
A
B
=
sin c
C
=
sin sin a
b
A
B
=
sin sin c
b
C
B
=
sin a
A
=
sin c
C
sin sin b A
a B
=
sin sin a A B b
=C
A
B
j
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]
例1.在中,已知,,cm ,解三角形。

解:根据三角形内角和定理,

根据正弦定理, ;
根据正弦定理, 评述:对于解三角形中的复杂运算可使用计算器。

练习:在中,已知下列条件解三角形。

(1),,, (2),,
例2. 在中,已知cm ,cm ,,解三角形(角度精确到,边长精确到1cm )。

解:根据正弦定理,
因为<<,所以,或
⑴ 当时, ,
⑵ 当时,,
应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

课堂练习
第4页练习第2题。

思考题:在ABC 中,
,这个k 与ABC 有什么关系?
三.课时小结(由学生归纳总结) (1)定理的表示形式:

或,,
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

四.课后作业:P10面1、2题。

∆ABC 032.0=A 081.8=B 42.9=a 0180()=-+C A B 000180(32.081.8)=-+066.2=0
0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A 0
sin 42.9sin66.274.1().sin sin32.0
==≈a C c cm A ∆ABC ο45=A ο30=C cm c 10=ο60=A ο45=B cm c 20=∆ABC 20=a 28=b 040=A 0
10
sin 28sin40sin 0.8999.20
==≈b A B a 00B 0180064≈B 0116.≈B 0
64≈B 00000
180()180(4064)76=-+≈-+=C A B 0
sin 20sin76
30().sin sin40==≈a C c cm A 0
116≈B 00000
180()180(40116)24=-+≈-+=C A B 00
sin 20sin24
13().sin sin40==≈a C c cm A ∆sin sin a
b
A
B
=
(>o)sin c
k k C
=
=∆sin sin a
b
A
B
=
sin c
C
=
=
()0sin sin sin a b c
k k A B C
++=>++sin a k A =sin b k B =sin c k C =(0)k >。

相关文档
最新文档