层次分析法步骤及案例分析63624
层次分析法分析和实例教程
大特征根 n旳归一化特征向量 w1, w2,, wn,且
n
wi 1
i 1
wi 表达下层第 i 个原因对上层某原因影响程度旳权值。
若成对比较矩阵不是一致阵,Saaty等人提议用其最大
特征根相应旳归一化特征向量作为权向量 w ,则
Aw w
w w1, w2,, wn
(为何?) 这么拟定权向量旳措施称为特征根法.
对总目旳Z旳排序为
A1
A2
Am
a1, a2,, am
B层n个因素对上层A中因素为Aj
B1
B2
Bn
旳层次单排序为
b1 j ,b2 j ,,bnj ( j 1,2,, m)
B 层旳层次总排序为: B1 : a1b11 a2b12 amb1m
i 即 B 层第 个原因对 B2 : a1b21 a2b22 amb2m
四 层次分析法旳优点和不足
1 系统性
层次分析法把研究对象作为一种系统,按照分解、比 较判断、综合旳思维方式进行决策 ,成为继机理分析、统计 分析之后发展起来旳系统分析旳主要工具。
2 实用性
层次分析法把定性和定量措施结合起来,能处理许多用 老式旳最优化技术无法着手旳实际问题,应用范围很广,同 时,这种措施使得决策者与决策分析者能够相互沟通,决策 者甚至能够直接应用它,这就增长了决策旳有效性。
层次分析法
Analytic Hierarchy Process
AHP
面临多种各样旳方案,要进行比较、判断、评价、最终 作出决策。这个过程主观原因占有相当旳比重给用数学措施 处理问题带来不便。等人20世纪在七十年代提出了 一种能有效处理此类问题旳实用措施。
层次分析法(Analytic Hierarchy Process, AHP)这是 一种定性和定量相结合旳、系统化旳、层次化旳分析措施。 过去研究自然和社会现象主要有机理分析法和统计分析法两 种措施,前者用经典旳数学工具分析现象旳因果关系,后者 以随机数学为工具,经过大量旳观察数据谋求统计规律。近 年发展旳系统分析是又一种措施,而层次分析法是系统分析 旳数学工具之一。
层次分析法原理+案例操作全流程详解
层次分析法1、作用层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,例如通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
在专业版里面,SPSSPRO 健全对方案层的层次总排序,如不需层次总排序,请选择SPSSPRO-层次分析法(AHP 简化版)。
2、输入输出描述输入:根据提示进行指标或者方案两两对比。
输出:各方案的量化得分或者同一级的指标权重。
3、案例示例案例:通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
4、案例操作Step1:选择层次分析法(AHP 专业版);Step2:选择构建决策模型;Step3:输入构建的评价指标;Step4:输入最终的方案;Step5:确认以进入下一步指标评分;Step6:输入指标之间两两比对的重要程度值;Step7:输入不同方案的对应评价值的重要程度评价。
5、输出结果分析输出结果 1:方案得分图表说明:计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序,基于指标层次单排序与方案层次总排序后,对于旅游地选择最好的方案为北戴河、其次为桂林。
结果分析:北戴河的量化得分为 1.435,高过第二桂林近一倍。
输出结果 2:层次决策模型图表说明:一般的层次分析法会将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
SPSSPRO 仅展示了决策的目标、考虑的因素(决策准则)以及各个因子对应的权重值。
结果分析:由图可见,其中最重要的两个决定因素是旅游地的景色和费用,而饮食、居住情况则属于低权重。
输出结果 3:判断矩阵汇总结果图表说明:上表展示了层次分析法的权重计算结果,根据结果对各个指标的权重进行分析,通过展示了一致性检验结果,用于判断是否存在构建判断矩阵的逻辑问题。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法
bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3
难
研财
易
究政
程
周支
度
期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。
层次分析法及案例分析
1.769 Aw 0.974
Aw w
1 (1.769 0.974 0.268) 3.009
3 0.587 0.324 0.089
0.268 精确结果:w=(0.588,0.322,0.090)T, =3.010
四、层次总排序及其一致性检验
• 计算某一层次所有因素对于最高层(总目标)相对重要性的 权值,称为层次总排序。
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
• 层次分析法(AHP法) 是一种解决多目标的复杂问题的定性与定 量相结合的决策分析方法。该方法将定量分析与定性分析结合 起来,用决策者的经验判断各衡量目标能否实现的标准之间的 相对重要程度,并合理地给出每个决策方案的每个标准的权数, 利用权数求出各方案的优劣次序,比较有效地应用于那些难以 用定量方法解决的课题。
即 B 层第 i 个因素对总目标
的权值为: m
a jbij
(影响加和)j 1
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m Bn : a1bn1 a2bn2 ambnm
经典层次分析法分析及实例教程
当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地
景
费
居
饮
旅
色
用
住
食
途
苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1
层次分析法
e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,
层次分析法及其案例分析
2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
经典层次分析法分析及实例教程
A2
A3
A4
A5
A1
A2
A3
A4
A5
1
1/2
4
3
3
2
1
7
5
5
1/4
1/7
1
1/2
1/3
1/3
1/5
2
1
1
1/31Βιβλιοθήκη 5311分别表示 景色、费用、 居住、饮食、 旅途。
由上表,可得成对比较矩阵
单击此处添加小标题
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。
单击此处添加小标题
问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
当 时,认为层次总排序通过一致性检验。到 此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
该结构图包括目标层,准则层,方案层。
1.建立层次结构模型
对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。
比较尺度:(1~9尺度的含义)
2,4,6,8表示第 个因素相对于第 个因素的影响介于上述 两个相邻等级之间。不难定义以上各尺度倒数的含义, 根据 。
由上述定义知,成对比较矩阵
则称为正互反阵。 比如,例2的旅游问题中,第二层A的各因素对目标层Z 的影响两两比较结果如下:
满足一下性质
Z
单击此处添加小标题
,即令
04
d) 对于预先给定的精度 ,当下式成立时
STEP 03
STEP 01
STEP 02
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法基本原理、实施步骤、应用实例
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
目
工作选择
标
层
贡收 发 声工 生
准
作活
则
环环
层 方
献可入供选展择誉的单境位 境
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
w1
w 1
w2
令a w / w
成对比较
A
w1
w1 w
2
w1
w n
w2 w2
w2
wn
ij
i
j
满 aij a jk aik , i, j, k 1,2,, n
wn
wn
wn
w1 w2
wn
足的正互反阵A称 • A的秩为1,A的唯一非零特征根为n
• 最高层:决策的目的、要解决的问题。 • 最低层:决策时的备选方案。 • 中间层:考虑的因素、决策的准则。 • 对于相邻的两层,称高层为目标层,低层为因
层次分析法案例解析
h
4
层次分析法简介 层次分析法的特点 层次分析法的步骤 层次分析法的应用
h
5
层次分析法简介
定义
所谓层次分析法,是指将一个复杂的多目标决策问题作为一个
系统,将目标分解为多个目标或准则,进而分解为多指标(或
h
17
案例解析
λmax=5.188772
C.R.=0.0421<0.1
W=(0.121,0.363,0.338,0.095,0.083)
现有3个候选供应商A、B、C,其基本资料如表4。其中质 量是指100 件物品中的合格数。服务是指100 台中没有按时送达的物品数量 ( 即数据越小服务质量越好)。
h
21
作层次总排序得:
表5 层次总排序表
从层次总排序得计算结果可见,3家候选供应商的优先次序依次为B,C,A。核心
企业应优先考虑企业B 为其合作供应商。
h
22
案例解析
供应商选择问题是一个十分复杂的过程,应用AHP 方法,可以将指标的权重处理变为对随机变量的处理 ,从而使分析过程更为合理。并且核心企业可以根据 自身实际情况确定相应的评价准则,确定其相对重要 性权重,使得决策更具适用性和灵活性。
h
15
一致性检验
(3)计算一致性比例C.R.并进行判断。
C.R. C.I. R.I.
当C.R.<0.1时,认为判断矩阵的一致性是可以接受的, C.R.>0.1时,认为判断矩阵不符合一致性要求,需要 对该判断矩阵进行重新修正。
h
16
案例解析
某行业核心企业欲为其供应链寻找供应商,该企业根据自身和行业情况后, 决定采用TQCSF5项准则作为评估合作伙伴的判断标准。经过企业领导层和 专家组的讨论,并结合实际情况得出该企业对这5项准则的相对权重,用判 断矩阵表示如下:
层次分析法实例与步骤
层次分析法实例与步骤精品文档就在这里-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-------------- --------------------------------------------------------------------------------------------------------------------------------------------层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策~可选择的方案是修建通往旅游区的高速路,简称建高速路,或修建城区地铁,简称建地铁,。
除了考虑经济效益外~还要考虑社会效益、环境效益等因素~即是多准则决策问题~考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:, 目标层(最高层):指问题的预定目标;, 准则层(中间层):指影响目标实现的准则;, 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多层次分析法把人的思维过程层次化、数量化,并运用数 学分析、决策、预报或控制提供定量的依据。十分适用于具 有定量的、或定量定性兼有的决策分析;它尤其适合于人的 定性判断起重要作用、决策结果难于直接精确计量的场合, 是一种十分有效的系统分析和科学决策方法。 3.原理
应用层次分析分析问题时,首先把问题层次化。根据问题 的性质和要达到的总目标,将问题分解为不同组成因素,并 按照因素间的相互关系影响以及隶属关系将因素按不同层次 聚集组合,形成一个多层次的分析结构模型。并最终将系统
分析归结为最底层(供决策的方案、措施),相对于最高层的 相对重要性权值的确定或相对优劣次序的排序问题。综合 评价问题就是排序问题。在排序计算中,每一层次的元素 相对于上一层以某一因素的单排序问题又可简化为一系列 成对因素的判断比较。为此引入1~9标度法,并写成判断矩 阵形式。形成判断矩阵后,可以通过计算判断矩阵的最大 特征值及相应的特征向量,计算出某一层相对于上一层某 一个元素的相对重要性权值。在计算出某一层相对于上一 层各个元因素的单排序权值后,用上一层因素本身的权值 加权综合,即可计算出层次总排序权值,总之,由上而下 即可计算出最底层因素相对于最高层的相对重要性权值或 相对优劣次序的排序值
第二节 指标权重的确定
1.指标的权重是指评价过程中其相对重要程度的一种主观客观观 测度的反应,指标间的权重差异是由以下三点造成的:
(1)评价者对各指标的重视程度不同,反应评价者的主观差异; (2)各指标在评价中所起的作用不同,翻译各个指标之间的客观 差异; (3)各指标之间的可靠程度不同,反映了各指标所提供的信息的 可靠性不同。 2.加权的方法有两种 (1)经验加权法,也称定性加权法。它的优点是有专家直接评估, 简便易行。 (2)数学加权法,也称定量加权法。它以经验为基础,数学原理 为背景,间接生成,具有较强的科学性。
层次分析法
昆明理工大学 2013.12.17
框架
第一节 指标体系的建立 第二节 指标权重的确定 第三节 层析分析法的思想和原理 第四节 层次分析法的模型和步骤 第五节 层次分析法的应用
3
第一节 指标体系的建立
►一.指标体系的建立应遵循的原则: ►1.指标以少不宜多 ►2.指标应具有独立性 ►3.指标应具有代表性 ►4.指标可行
目前,权属确定的方法主要采用专家咨询的经验判断法。
而且权数的基本能确定已由个人经验转向专家集体决策。
在处理数据时一般用算术平均值带白哦评委们的集中意见,...m
式中,n为评为数量; m为评价指标总数;
a j 为第j个指标的权属平均值;
a ji 为第i个评委给第j个指标权数 的打分值
调动员工的 积极性B1
资金合理使用A
提高企业技 术水平B2
目标层
改善职工 生活B3
准则层
C1:发 奖金
C2:扩建 福利设施
C3:办职 工进修班
C4:见图 书馆
图1-1 资金合理使用的层次分析结构图
C5:引进 设备
方案层
建立问题的层次分结构模型是AHP法中最重要的一步。
最高层只有一个元素,他表示决策者想要达到的目标;中
层次分析法(analytic hierachy process,AHP)是美国 著名运筹学家T.L.Satty等人在20世纪70年代提出的一种 定性与定量相结合的多准则决策方法。具体地说它是将 决策问题的有关元素分解成目标、准则、方案等层次, 用一定标度对人的主观判断进行客观量化,在此基础上
进行定性或定量分析的一种决策方法。 这一方法的特点,是在对复杂决策问题的本质、影响因素
第三节 层析分析法的思想和原理
1.产生背景 当对评价对象为单目标时,评价工作比较容易进行;
当评价对象为多目标时,这项工作比较困难。评价的困 难点有以下两点:
▪有的指标没有明确的数量表示,甚至只与使用人或 评价人的主观感受与经验有关。
▪不同的方案可能各有所长,指标越多,方案越多。 问题越多。 2.层次分析法定义、特点及适用场合
然后进行归一化处理。归一化公式如下:
aj'
aj
m
aj
j 1
一般来说,以上方法依据专家知识、经验和个人价值观对指标体系进
行分析、判断并主观赋权。一般来说,这样所确定的权数能正确反映各 指标的重要程度,保证评价结果的准确性。但是为了提高准确性,也可 以采用确定权重的层次分析法。该方法对各指标之间重要程度的分析更 具有逻辑性,加上数学处理,使得可信度加大,应用范围较广。
注意:以上几条原则在解决实际问题是参考,在实际中要灵活考虑应用。需 要注意的是,指标体系的确定有很大的主观随意性。虽然指标体系的确定有 经验法跟数学方法两种,但多数研究均采用经验确定法。
二.专家调研法
1、专家调研法是一种常用的方法。即向专家发函,征求 其意见。评价者可以根据评价目标及评价对象的特征,在 设计的调查表中列出一系列的评价指标,分别征询专家所 涉及的评价指标的意见,然后进行统计处理,并反馈咨询 结果,若专家意见趋于集中,则由最后一次确定出具体的 评价指标体系。 2、专家调研法的特征 匿名性 完全消除了专家互相之间的的影响 轮间情况反馈 协调人对每一轮的结果做出统计,并将 其作为反馈材料发给每一个专家,供下一轮评价时参考 结果的统计特性 采用统计法对结果进行处理
第四节 层次分析法的模型和步骤
下面以一个企业资金的合理使用为例,来说明层次分析 法求解决策问题的过程。假设企业有一笔利润资金,要 企业高层领导决定如何使用,经过实际调查与员工建议, 现有以下方案可供选择。
▪作为奖金发给员工; ▪为员工办进修班; ▪修建图书馆、俱乐部等; ▪引进新技术设备进行企业技术改造 一、构造层次分析结构 通过分析,上述方案的目的都是为了更好的调动员工 的工作积极性、提高企业技术水平和改善员工的物质水 平,而这一切的最终目的是为了促进企业进一步发展, 增强企业在市场经济中的竞争力。层次分析图1-1