第一章 1.2.4诱导公式(二)

合集下载

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式一、知识要点:诱导公式(一)tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k诱导公式(三))tan()cos( sin )sin(=+=+-=+απαπααπ诱导公式(二))tan(cos )cos( )sin(=-=-=-αααα诱导公式(四)tan )tan()cos( )sin(ααπαπαπ-=-=-=-诱导公式(五)=-=-)2cos( cos )2sin(απααπ诱导公式(六)=+=+)2cos( cos )2sin(απααπ方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限符号。

看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,, ),Z (2-+-∈+k k公式(五)和公式(六)总结为一句话:函数名改变,符号看象限 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变二、基础自测:1、求下列各三角函数值:①cos225° ②tan (-11π)2、sin1560°的值为( )A 、21-B 、23-C 、21D 、233、cos -780°等于( ) A 、21B 、21- C 、23 D 、23-三、典型例题分析:例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___.(3)16sin()3π-= __________.变式练习1:求下列函数值:665cos)1(π )431sin()2(π-的值。

求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+变式练习2:若1sin()22πα-=-,则tan(2)πα-=________.变式练习3:已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = .四、巩固练习:1、对于诱导公式中的角α,下列说法正确的是( ) A .α一定是锐角 B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .434、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( )A .332 B . -2 C . 332- D . 332±6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、237、α是第四象限角,1312cos =α,则sinα等于( ) A.135 B.135- C.125 D.125- 二、填空题1、计算:cos (-2640°)+sin1665°= .2、计算:)425tan(325cos 625sinπππ-++= . 3、化简:)(cos )5sin()4sin()3(sin )(cos )4cos(222πθθππθπθπθπθ--+-+++=______ ___.4、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.5、已知x x f 3cos )(cos =,则)30(sin οf 的值为 。

16-17版 第1章 1.2.4 第2课时 诱导公式(三)、(四)

16-17版 第1章 1.2.4  第2课时 诱导公式(三)、(四)

诱导公式中的分类讨论思想
探究1 利用诱导公式能否直接写出sin(kπ+α)的值?
【提示】 不能.因为k是奇数还是偶数不确定. 当k是奇数时,即k=2n+1(n∈Z),sin(kπ+α)=sin(π+α)=-sin α; 当k是偶数时,即k=2n(n∈Z),sin(kπ+α)=sin α.
上一页
返回首页
5 17 5 (2)sin 6 π=sin 2π+6π =sin 6π π π =sin2+3
=cos
π 1 3=2.
上一页
返回首页
下一页
4π 2π -sin (3)①当n为奇数时,原式=cos 3 · 3
π π -sinπ+ =cosπ-3· 3 =-cos
上一页
返回首页
下一页
2.角α+nπ的三角函数值:
-sin α sin(α+nπ)= sin α
cos(α+nπ)=
,n为奇数, ,n为偶数, ,n为奇数, ,n为偶数,
-cos α cos α
tan(α+nπ)= tanα
,n∈Z.
上一页
返回首页
下一页
sin 585° 的值为( 2 A.- 2 3 C.- 2
上一页
返回首页
下一页
[小组合作型]
给角求值问题
(1)求下列各三角函数值.
10π ①sin- 3 ;②cos
29 6 π;
2π 4π (2)求sin2nπ+ 3 · cosnπ+ 3 (n∈Z)的值.
【精彩点拨】 (1)直接利用诱导公式求解,注意公式的灵活选择; (2)分n为奇数、偶数两种情况讨论.
; α
当k为偶数时,即k=2n(n∈Z),

三角函数的诱导公式复习课件 PPT

三角函数的诱导公式复习课件 PPT
答 2kπ+α(k∈Z),π+α,-α,π-α得三角函数值,等于α的同名函数值, 前面加上一个把α瞧成锐角时原函数值的符号、 简记为“函数名不变, 符号看象限”.
答案
返回
问题导学
知识点一 诱导公式五 思考 1 角π6与角π3的三角函数值有关系?

sinπ6=cos
π3=12,cos
π6=sin
π3=
∴cosπ3-α=cosπ2-π6+α
=sinπ6+α=
3 3.
解析答案
跟踪训练 3 已知 sin α 是方程 5x2-7x-6=0 的根,α 是第三象限角,求
sinc-osαπ2--23απscinosπ2+32πα- α·tan2(π-α)的值. 解 方程 5x2-7x-6=0 的两根为 x1=-35,x2=2, 由 α 是第三象限角,得 sin α=-35,则 cos α=-45,
∴cos56π+α-sin2α-π6=- 33-23=-2+3
3 .
反思与感悟 解析答案
1+2sin 290°cos 430° (2) sin 250°+cos 790° .
1+2sin(360°-70°)cos(360°+70°) 解 原式= sin(180°+70°)+cos(720°+70°)
∴sinc-osαπ2--32απscinosπ2+32πα- α·tan2(π-α) =sinπ2s-inααccoossπ2α+α·tan2α
=cossinα(α-cossinαα)·tan2α=-tan2α=-csoins22αα=-196.
解析答案
返回
(2)已知 cosπ6-α= 33,
求 cos56π+α-sin2α-π6的值. 解 ∵cos56π+α=cosπ-π6-α=-cosπ6-α=- 33, sin2α-π6=sin2-6π-α=1-cos2π6-α=1- 332=23,

最新人教版高二数学必修4(B版)电子课本课件【全册】

最新人教版高二数学必修4(B版)电子课本课件【全册】
最新人教版高二数学必修4(B版) 电子课本课件【全册】目录
0002页 0052页 0093页 0140页 0166页 0226页 0242页 0272页 0327页 0380页 0444页 0470页 0502页 0568页 0584页 0614页 0672页
第一章 基本初等函数(Ⅱ)
1.1.2 弧度制和弧度制与角度制的换算
2.3.1 向量数量积的物
2.3.3 向量数量积的坐标运算与度量公式
2.4.2 向量在物理中的应用
阅读与欣赏
向量概念的推广与应用
3.1 和角公式
3.1.1 两角和与差的余弦
3.1.3 两角和与差的正切
第一章 基本初等函数(Ⅱ)
最新人教版高二数学必修4(B版单位圆与三角函数线
1.2.4 诱导公式
1.3.2 余弦函数、正切函数的图象与性质
教学建模活动
阅读与欣赏
三角学的发展
2.1 向量的线性运算
2.1.1 向量的概念
2.1.3 向量的减法
2.1.5 向量共线的条件与轴上向量坐标运算
2.2.2 向量的正交分解与向量的直角坐标运算
2.3 平面向量的数量积

高中数学_1.2.4 诱导公式教学设计学情分析教材分析课后反思

高中数学_1.2.4 诱导公式教学设计学情分析教材分析课后反思

教学设计(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由sin300,你能否知道sin2100的值吗?引如新课.设计意图自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.(二)新知探究1. 让学生发现300角的终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点为(x,y) 、(-x,-y) 的坐标有什么关系;3.Sin2100与sin300之间有什么关系.设计意图由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.(三)问题一般化探究一1.探究发现任意角的终边与的终边关于原点对称;2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;3.探究发现任意角与的三角函数值的关系.设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值.(1)sin2250. ;(2)sin2400. ;(3)sin2700. .喜悦之后让我们重新启航,接受新的挑战,引入新的问题.(五)问题变形由sin300=0.5 出发,用三角的定义引导学生求出 sin(-300),Sin1500值,让学生联想若已知sin300 = 0.5,能否求出sin(-300 ),sin(-1500 )的值.学生自主探究1.探究任意角与 -的三角函数又有什么关系;2.探究任意角与的三角函数之间又有什么关系.设计意图遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.展示学生自主探究的结果诱导公式(三)、(四)给出本节课的课题三角函数诱导公式设计意图标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.学情分析:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.3.预期效果本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.效果分析:1.学生正确理解了诱导公式的发现、推导过程。

[高中数学必修4]第一章 基本初等函数(Ⅱ)

[高中数学必修4]第一章  基本初等函数(Ⅱ)
集合 S 的每一个元素都与α 的终边相同,当 k=0 时,对应元素为α . 终边相同的角有无数个,相等的角的终边一定相同,但终边相同的角不一定相等,并 且它们相差 360°的整数倍. (5)象限角 在直角坐标系中讨论角,是使角的顶点与坐标原点重合,角的始边与 x 轴正半轴重合. 这时,角的终边在第几象限,就把这个角叫做第几象限角,如果终边在坐标轴上,那么这 个角叫做轴线角,并且认为这个角不属于任何象限. 第一象限角:k²360°<α <k²360°+90°,k∈Z;
22

必修四
用公式α =l求圆心角时,应注意其结果是圆心角的弧度数.这个公式在物理学上计算角
r
速度时经常用到,因此要熟练掌握它及其变形后的另外两种形式:l=α ²r 和 r= l(α ≠0).
α
运用这两个变形公式时,如果已知的角以度为单位,则应先把它化成弧度后再计算.可以
看出,这些公式各有各的用处.
切线上,其位置不随 的变化而变化;从图中可以看出,当 的终边在 y 轴上时,角 的
正切不存在;我们规定三角函数线的正方向与 x 轴(或 y 轴)正方向相同.
3. 同角三角函数的基本关系式
(1)基本关系
平方关系: sin2 cos2 1. 商数关系: sin tan .
cos 公式变形: cos tan sin;sin cos .
2
减区间是
(
2k , 3
2k )(k
Z)
.
2
2

必修四
对于函数 f (x) ,如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f (x T ) f (x) ,那么函数 f (x) 就叫做周期函数.非零常数 T 叫做这个函数的周期.如果 周期函数 f (x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f (x) 的最小

最新人教版高中数学必修4第一章《诱导公式》(第2课时)

最新人教版高中数学必修4第一章《诱导公式》(第2课时)

第二课时 诱导公式(2)点)1.角α与α+(2k +1)π(k ∈Z )的三角函数间的关系 cos[α+(2k +1)π]=-cos_α, sin[α+(2k +1)π]=-sin_α, tan[α+(2k +1)π]=tan_α.通常,称上述公式为诱导公式(三).归纳总结sin(α+n π)=⎩⎪⎨⎪⎧-sin α,当n 为奇数,sin α,当n 为偶数,cos(α+n π)=⎩⎪⎨⎪⎧-cos α,当n 为奇数,cos α,当n 为偶数,tan(α+n π)=tan α,n ∈Z . 【自主测试1-1】sin 19π6的值是( )A .-12B .12C .-32D .32答案:A【自主测试1-2】化简1-sin 2460°为( ) A .-cos 80° B.-sin 80° C .cos 80° D .sin 80° 答案:C2.角α与α+π2的三角函数间的关系cos ⎝ ⎛⎭⎪⎫α+π2=-sin α,sin ⎝⎛⎭⎪⎫α+π2=cos α. 通常,将上述公式称为诱导公式(四).在诱导公式(四)中,以-α替代α,可得另一组公式cos ⎝ ⎛⎭⎪⎫-α+π2=sin α,sin ⎝⎛⎭⎪⎫-α+π2=cos α. 由三角函数之间的关系又可得tan ⎝ ⎛⎭⎪⎫α+π2=-cot α,cot ⎝ ⎛⎭⎪⎫α+π2=-tan α; tan ⎝ ⎛⎭⎪⎫-α+π2=cot α,cot ⎝⎛⎭⎪⎫-α+π2=tan α. 我们知道,任意一个角都可表示为k ²π2+α⎝⎛⎭⎪⎫其中|α|≤π4的形式.这样由前面的公式就可以把任意角的三角函数求值问题转化为0到π4之间角的三角函数求值问题.【自主测试2-1】化简sin π+α cos 2π-αcos ⎝ ⎛⎭⎪⎫π2+α所得的结果为( )A .sin αB .-sin αC .cos αD .-cos α 答案:C【自主测试2-2】若|cos α|=sin ⎝ ⎛⎭⎪⎫π2+α,则角α的集合为__________. 解析:∵|cos α|=sin ⎝ ⎛⎭⎪⎫π2+α=cos α, ∴cos α≥0,∴2k π-π2≤α≤2k π+π2,k ∈Z ,∴α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π-π2≤α≤2k π+π2,k ∈Z. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π-π2≤α≤2k π+π2,k ∈Z诱导公式的作用与规律性剖析:(1)诱导公式的作用是将任意角的三角函数转化为0°~90°角的三角函数值. (2)诱导公式存在的规律: ①α+k ²2π(k ∈Z ),-α,α+(2k +1)π(k ∈Z )的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,可以说成“函数名不变,符号看象限”.如sin(300°+180°)=-sin 300°,我们把300°看成一个锐角α,则sin(300°+180°)的符号为负,即sin 300°前面所带的符号为负.②α+π2,-α+π2的三角函数值等于α的异名三角函数值,前面加上一个把α看成锐角时原函数值的符号.记忆口诀为“函数名改变,符号看象限”.如cos(100°+90°)=-sin 100°,我们把100°看成锐角α,则cos(100°+90°)的符号为负,即sin 100°前面所带的符号为负.③这两套公式可以归纳为α+k ²π2(k ∈Z )的三角函数值.当k 为偶数时,得α的同名三角函数值;当k 为奇数时,得α的异名三角函数值.然后,在前面加上一个把α看成锐角时原函数值的符号,概括为“奇变偶不变,符号看象限”.值得注意的是,这里的奇和偶分别指的是π2的奇数倍和偶数倍;符号看象限指的是等式右边的正负号恰为把α看成锐角时,原函数值的符号.诱导公式有很多组,使用不同的组合都可以达到共同的效果,但是一般采用以下顺序: ①化负角为正角;②大于360°的角化为[0°,360°)之间的角; ③把90°~360°的角转化为0°~90°之间的角.题型一 利用诱导公式求值【例题1】求sin(-1 920°)²cos 1 290°+cos(-1 020°)²sin(-1 050°)+tan 945°的值.分析:求三角函数值一般先将负角化为正角,再化为0°~360°的角,最后化为锐角求值.解:原式=-sin(5³360°+120°)²cos(3³360°+210°)-cos(2³360°+300°)²sin(2³360°+330°)+tan(2³360°+225°)=-sin(180°-60°)²cos(180°+30°)-cos(360°-60°)²sin(360°-30°)+tan(180°+45°)=sin 60°²cos 30°+cos 60°²sin 30°+tan 45°=32³32+12³12+1=2. 反思对于任意给定的角都要将其化成k ²360°+α,180°±α,360°-α等形式进行求值,大体的求值思路可以用口诀描述为“负变正,大变小,化为锐角范围内错不了”.题型二 利用诱导公式化简【例题2】已知α是第三象限的角,f (α)=sin π-α cos 2π-α tan ⎝⎛⎭⎪⎫-α+3π2cot -α-π sin -π-α,(1)化简f (α);(2)若α=-1 860°,求f (α)的值.分析:这是一道综合性题目,其实质就是化简求值,在化简求值的过程中,要正确运用十字诀(奇变偶不变,符号看象限).解:(1)f (α)=sin ⎝ ⎛⎭⎪⎫2²π2-αcos ⎝ ⎛⎭⎪⎫4²π2-αtan ⎝ ⎛⎭⎪⎫3²π2-αcot ⎝ ⎛⎭⎪⎫-2²π2-αsin ⎝ ⎛⎭⎪⎫-2²π2-α=sin αcos αcot α -cot α sin α=-cos α. (2)∵-1 860°=-21³90°+30°,∴f (-1 860°)=-cos(-1 860°)=-cos(-21³90°+30°)=-sin 30°=-12.反思三角函数的化简问题要依据诱导公式进行,关键是诱导公式的选择,要把角进行合理的拆分,再者要与前面所学三角函数基本关系式相互配合使用,化简中应遵循“三个统一”,即统一角,统一函数名称,统一结构形式.题型三 利用诱导公式证明【例题3】已知sin(α-π)=2cos(2π-α),求证:sin π-α +5cos 2π-α3cos π-α -sin -α=-35.分析:首先将已知条件进行化简,得到一个结构比较简单的式子,然后再化简待求式的左边,最后将化简后的已知条件代入,进一步整理即可证得.证明:因为sin(α-π)=2cos(2π-α),所以-sin α=2cos α,即sin α=-2cos α.所以待求式的左边=sin α+5cos α-3cos α+sin α=-2cos α+5cos α-3cos α-2cos α=3cos α-5cos α=-35=右边,所以sin π-α +5cos 2π-α 3cos π-α -sin -α =-35.反思利用诱导公式证明等式,关键在于公式的灵活运用,就本题而言,主要就是运用诱导公式由左边推导到右边,并先对已知条件进行化简.1.cos ⎝ ⎛⎭⎪⎫-16π3+sin ⎝⎛⎭⎪⎫-16π3的值为( ) A .-1+32 B .1-32 C .3-12 D .3+12解析:cos ⎝ ⎛⎭⎪⎫-16π3+sin ⎝ ⎛⎭⎪⎫-16π3=cos 16π3-sin 16π3=cos 4π3-sin 4π3=-cos π3+sin π3=3-12.答案:C2.在△ABC 中,下列等式一定成立的是( )A .sin A +B 2=-cosC 2B .sin(2A +2B )=-cos 2C C .sin(A +B )=-sin CD .sin(A +B )=sin C解析:在△ABC 中,A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C . sin A +B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2. sin(2A +2B )=sin(2π-2C )=-sin 2C . 答案:D3.已知cos(π+α)=-35,且α是第四象限的角,则sin(-2π+α)的值是( )A .45B .-35C .-45D .35解析:∵cos(π+α)=-cos α=-35,∴cos α=35.又∵α是第四象限的角,∴sin α=-1-cos 2α=-45,∴sin(-2π+α)=sin α=-45.答案:C4.下列三角函数:①sin ⎝ ⎛⎭⎪⎫n π+4π3;②cos ⎝ ⎛⎭⎪⎫2n π+π6;③sin ⎝⎛⎭⎪⎫2n π+π3;④cos ⎣⎢⎡⎦⎥⎤ 2n +1 π-π6;⑤sin ⎣⎢⎡⎦⎥⎤ 2n +1 π-π3(n ∈Z ).其中函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:对于sin ⎝ ⎛⎭⎪⎫n π+4π3,当n 为偶数时,sin ⎝ ⎛⎭⎪⎫n π+4π3=sin 4π3=-sin π3. 对于cos ⎝⎛⎭⎪⎫2n π+π-π6=cos 5π6=-cos π6=-sin π3.故①与④中的函数值不等于sin π3.可以验证②③⑤中的函数值均与sin π3的值相同.答案:C5.已知f (cos x )=cos 3x ,则f (sin 150°)=__________. 解析:∵sin 150°=sin(60°+90°)=cos 60°, ∴f (sin 150°)=f (cos 60°)=cos 180°=-1. 答案:-16.已知tan(π+α)=-2,求sin(3π-α)和sin ⎝ ⎛⎭⎪⎫5π2-α的值.解:∵tan(π+α)=-2, ∴tan α=-2. ∴sin αcos α=-2, ∴sin α=-2cos α.将sin α=-2cos α代入sin 2α+cos 2α=1,整理,得5cos 2α=1.∴cos 2α=15.∴cos α=±55. 又∵tan α=-2<0,∴α为第二或第四象限的角.当α为第二象限的角时,sin ⎝ ⎛⎭⎪⎫5π2-α=cos α=-55,sin(3π-α)=sin α=-2cos α=255;当α为第四象限的角时,sin ⎝ ⎛⎭⎪⎫5π2-α=cos α=55,sin(3π-α)=sin α=-2cos α=-255.。

三角函数的诱导公式课件

三角函数的诱导公式课件

跟踪训练
3.化简:
cosθ+4πcos2θ+πsin2θ+3π sinθ-4πsin5π+θcos2-π+θ.
解:scinosθθ-+44ππscinos52πθ++θπcsoisn22-θ+π+3πθ
=cos sin
θθcsions2θπs+inθ2cθo+s2πθ=csoins
θsin2θ+π θsinπ+θ
精彩推荐典例展示
规范解答 化简含参数的三角函数式 例4 (本题满分 12 分)化简:cos(3k+ 3 1π+α)+cos(3k- 3 1π
第一章 三角函数
1.3 三角函数的诱导公式 第1课时 三角函数的诱导公式二、三、四
学习导航
学习目标
实例
―了―解→
诱导公式二~四 的推导方法
―理―解→
诱导公式一~ 四的作用
―掌―握→
诱导公式并 能运用公式
重点难点 重点:初步运用诱导公式二、三、四求三角函 数值. 难点:利用诱导公式进行一般的三角关系式的化简和证明.
=-cos sin
θθssiinn2θθ=-cos
θ.
方法感悟
1.诱导公式的记忆方法 诱导公式一~四可用口诀“函数名不变,符号看象限” 记忆,其中“函数名不变”是指等式两边的三角函数同 名,“符号”是指等号右边是正号还是负号, “看象限”是指把α看成锐角时原三角函数值的符号.
2.公式一~四的作用 (1)公式一的作用在于把绝对值大于2π的任意一角的三角函数 问题转化为研究绝对值小于2π的角的三角函数问题. (2)公式三的作用在于把负角三角函数转化成正角三角函数. (3)公式二、四的作用在于把钝角或大于180°的角的三角函 数转化为0°~90°之间的角的三角函数.
=sinπ+siαn+αc2ossinαα-π=-ssiinn

2022年高中人教B版数学必修四优课教案:1.2.4诱导公式

2022年高中人教B版数学必修四优课教案:1.2.4诱导公式

三角函数的诱导公式的教学设计一、指导思想与理论依据数学是一门培育人的思维,进展人的思维的重要学科。

因此,在教学中,不仅要使同学“知其然”而且要使同学“知其所以然”。

所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要接受观看、启发、类比、引导、探究相结合的教学方法。

在教学手段上,则接受多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。

二.教材分析三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角与、、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有格外重要的地位.三.学情分析本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以接受发觉的教学方法应当能轻松的完成本节课的教学内容.四.教学目标(1).基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;(2).力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;(3).创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;(4).共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观.五.教学重点和难点1.教学重点理解并把握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六.教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给同学数学学问,更重要的是传授给同学数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学学问,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以同学为主题,以发觉为主线,尽力渗透类比、化归、数形结合等数学思想方法,接受提出问题、启发引导、共同探究、综合应用等教学模式,还给同学“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让同学体会学习的欢快和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有把握学习方法的人”,很多课堂教学经常以高起点、大容量、快推动的做法,以便教给同学更多的学问点,却忽视了同学接受学问需要时间消化,进而泯灭了同学学习的爱好与热忱.如何能让同学最大程度的消化学问,提高学习热忱是教者必需思考的问题.在本节课的教学过程中,本人引导同学的学法为思考问题共同探讨解决问题简洁应用重现探究过程练习巩固.让同学参与探究的全部过程,让同学在猎取新学问及解决问题的方法后,合作沟通、共同探究,使之由被动学习转化为主动的自主学习.3.预期效果本节课预期让同学能正确理解诱导公式的发觉、证明过程,把握诱导公式,并能娴熟应用诱导公式了解一些简洁的化简问题.七.教学流程设计(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由sin300,你能否知道sin2100的值吗?引如新课.设计意图自信的鼓舞是增加同学学习数学的自信,简洁易做的题加强了每个同学学习的热忱,具体数据问题的消灭,让同学既有好像会做的心理但又有迷惑的茫然,去发掘潜力期盼查找机会证明我能行,从而思考解决的方法.(二)新知探究1. 让同学发觉300角的终边与2100角的终边之间有什么关系;2.让同学发觉300角的终边和2100角的终边与单位圆的交点为(x,y) 、(-x,-y) 的坐标有什么关系;3.Sin2100与sin300之间有什么关系.设计意图由特殊问题的引入,使同学简洁了解,实现教学过程的平淡过度,为同学们探究发觉任意角与的三角函数值的关系做好铺垫.(三)问题一般化探究一1.探究发觉任意角α的终边与πα+的终边关于原点对称;2.探究发觉任意角α的终边和角πα+的终边与单位圆的交点坐标关于原点对称;3.探究发觉任意角α与πα+的三角函数值的关系.设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为同学将要自主发觉、探究公式三和四起到示范作用,下面练习设计为了生疏公式一,让同学感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值.(1)sin2250. ;(2)sin2400. ;(3)sin2700. .喜悦之后让我们重新启航,接受新的挑战,引入新的问题.(五)问题变形由sin300=0.5 动身,用三角的定义引导同学求出 sin(-300),Sin1500值,让同学联想若已知sin300= 0.5,能否求出sin(-300 ),sin(-1500 )的值.同学自主探究1.探究任意角α与 -α的三角函数又有什么关系;2.探究任意角α与πα-的三角函数之间又有什么关系.设计意图遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经受思考问题-观看发觉-到一般化结论的探究过程,从特殊到一般,数形结合,同学对学问的理解与把握以深化脑中,此时以类同问题的提出,大胆的放手让同学分组争辩,重现了探究的整个过程,加深了学问的深刻记忆,对同学无形中鼓舞了气概,增加了自信,加大了挑战.而新学问点的自主探讨,对老师驾驭课堂的力量也布满了极大的挑战.彼此信任,彼此信任,产生了师生的默契,师生共同进步.呈现同学自主探究的结果诱导公式(三)、(四)给出本节课的课题三角函数诱导公式设计意图标题的后出,让同学在经受整个探究过程后,还回味在探究,发觉的成功喜悦中,猛然回头,哦,原来学问点已经轻松把握,同时也是对本节课内容的小结.。

第一章 1.3(二) 三角函数的诱导公式(二)

第一章 1.3(二)  三角函数的诱导公式(二)

§1.3 三角函数的诱导公式(二)学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.知识点一 诱导公式五 诱导公式五知识点二 诱导公式六 诱导公式六知识点三 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α. 2.诱导公式记忆规律:公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”. 公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.1.诱导公式五、六中的角α只能是锐角.( × ) 提示 诱导公式五、六中的角α是任意角.2.诱导公式五、六与诱导公式一~四的主要区别在于函数名称要改变.( √ ) 提示 由诱导公式一~六可知其正确. 3.sin ⎝⎛⎭⎫k π2-α=±cos α.( × )提示 当k =2时,sin ⎝⎛⎭⎫k π2-α=sin(π-α)=sin α.4.口诀“符号看象限”指的是把角α看成锐角时变换后的三角函数值的符号.( × ) 提示 应看原三角函数值的符号.题型一 利用诱导公式求值例1 已知cos ⎝⎛⎭⎫α+π6=35,求sin ⎝⎛⎭⎫α+2π3的值. 考点 异名诱导公式 题点 诱导公式六 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35. 反思感悟 对于这类问题,关键是要能发现它们的互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4-α与π4+α等互余,π3+θ与2π3-θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.跟踪训练1 已知cos ⎝⎛⎭⎫α+π4=23,则sin ⎝⎛⎭⎫π4-α的值等于( ) A.23 B .-23 C.53 D .±53 考点 异名诱导公式 题点 诱导公式五 答案 A解析 因为⎝⎛⎭⎫α+π4+⎝⎛⎭⎫π4-α=π2,所以sin ⎝⎛⎭⎫π4-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4 =cos ⎝⎛⎭⎫α+π4=23. 题型二 利用诱导公式证明三角恒等式例2 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos αsin α =-sin αcos α=-tan α=右边.∴原等式成立.反思感悟 利用诱导公式证明等式问题,关键在于公式的灵活应用,其证明的常用方法: (1)从一边开始,使得它等于另一边,一般由繁到简. (2)左右归一法:即证明左右两边都等于同一个式子.(3)整合法:即针对题设与结论间的差异,有针对性地进行变形,以消除其差异,简言之,即化异为同.跟踪训练2 证明:sin (2π-α)cos ⎝⎛⎭⎫π3+2αcos (π-α)tan (α-3π)sin ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫7π6-2α=-cos α. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明证明 因为左边=sin (-α)cos ⎝⎛⎭⎫π3+2α(-cos α)tan αcos αsin ⎣⎡⎦⎤3π2-⎝⎛⎭⎫π3+2α=sin αcos αcos ⎝⎛⎭⎫π3+2αsin αcos αcos α⎣⎡⎦⎤-cos ⎝⎛⎭⎫π3+2α=-cos α=右边,所以等式成立.诱导公式的综合应用典例 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值.考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简与求值 解 (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.[素养评析] (1)解决此类问题时,可先用诱导公式化简变形,将三角函数的角统一后再用同角三角函数关系式,这样可避免公式交错使用而导致的混乱.(2)掌握运算法则,探究运算思路,求得运算结果,通过运算促进数学思维的发展,提升数学运算的数学核心素养.1.已知sin α=513,则cos ⎝⎛⎭⎫π2+α等于( ) A.513 B.1213 C .-513 D .-1213 考点 异名诱导公式 题点 诱导公式六 答案 C解析 cos ⎝⎛⎭⎫π2+α=-sin α=-513. 2.已知sin ⎝⎛⎭⎫α+π3=13,则cos ⎝⎛⎭⎫π6-α等于( ) A .-13 B.13 C.233 D .-233考点 异名诱导公式 题点 诱导公式五 答案 B解析 因为sin ⎝⎛⎭⎫α+π3=13, 所以cos ⎝⎛⎭⎫π6-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3 =sin ⎝⎛⎭⎫α+π3=13. 3.(2018·泰安高一检测)若sin(3π+α)=-12,则cos ⎝⎛⎭⎫7π2-α等于( ) A .-12 B.12 C.32 D .-32考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A4.(2018·江西赣州联考)设tan α=3,则sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α等于( )A .3B .2C .1D .-1 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 答案 B 解析sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α=-sin α-cos αcos α-sin α=-tan α-11-tan α=-3-11-3=2.5.求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、证明 证明 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.1.诱导公式的分类及其记忆方式 (1)诱导公式分为两大类:①α+k ·2π,-α,α+(2k +1)π(k ∈Z )的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,为了便于记忆,可简单地说成“函数名不变,符号看象限”.②α+π2,-α+π2的三角函数值,等于α的异名三角函数值,前面加上一个把α看成锐角时原函数值的符号,记忆口诀为“函数名改变,符号看象限”.(2)以上两类公式可以归纳为:k ·π2+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后在前面加上一个把α看成锐角时原函数值的符号.2.利用诱导公式求任意角的正弦、余弦函数值,常采用“负角化正角,大角化小角,最后转化成⎝⎛⎭⎫0,π2内的三角函数值”这种方式求解. 用诱导公式把任意角的三角函数转化为0到π2之间的角的三角函数的基本步骤:一、选择题1.已知cos α=14,则sin ⎝⎛⎭⎫α+π2等于( ) A.14 B .-14 C.154 D .-154 考点 异名诱导公式 题点 诱导公式六 答案 A解析 sin ⎝⎛⎭⎫α+π2=cos α=14. 2.已知sin θ=15,则cos(450°+θ)的值是( )A.15B .-15C .-265D.265.考点 异名诱导公式 题点 诱导公式六 答案 B解析 cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( ) A .1 B .sin 2α C .-cos 2α D .-1 考点 异名诱导公式的综合 题点 异名诱导公式的综合应用 答案 C解析 因为sin ⎝⎛⎭⎫α+π2=cos α, cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α, tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α, 所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.4.已知sin(π+α)=12,则cos ⎝⎛⎭⎫α-32π的值为( ) A.12 B .-12C.32D .-22考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 A解析 由sin(π+α)=12,得sin α=-12,所以cos ⎝⎛⎭⎫α-32π=cos ⎝⎛⎭⎫32π-α=-sin α=12. 故选A.5.已知α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β=-5,tan(π+α)+6sin(π+β)=1,则sin α等于( ) A.355B.377C.31010D.13考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式求值 答案 C解析 由题意,得⎩⎪⎨⎪⎧-2tan α+3sin β=-5,tan α-6sin β=1,解得tan α=3,又α为锐角,sin 2α+cos 2α=1, 可得sin α=31010.6.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cosA +C2=sin B D .sinB +C 2=cos A2考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 D解析 ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cosA +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 7.计算:sin 21°+sin 22°+sin 23°+…+sin 289°等于( ) A .89 B .90 C.892D .45考点 异名诱导公式 题点 诱导公式五 答案 C解析 ∵sin 21°+sin 289°=sin 21°+cos 21°,sin 22°+sin 288°=sin 22°+cos 22°=1,…,∴sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 23°+cos 22°+cos 21°=44+12=892.二、填空题8.(2018·锦州高一检测)已知cos ⎝⎛⎭⎫5π12+α=13,且-π<α<-π2,则cos ⎝⎛⎭⎫π12-α= . 考点 异名诱导公式 题点 诱导公式五 答案 -223解析 因为-π<α<-π2,所以-7π12<5π12+α<-π12.又cos ⎝⎛⎭⎫5π12+α=13>0. 所以sin ⎝⎛⎭⎫5π12+α=-1-cos 2⎝⎛⎭⎫5π12+α=-223. 由⎝⎛⎭⎫π12-α+⎝⎛⎭⎫5π12+α=π2, 得cos ⎝⎛⎭⎫π12-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫5π12+α =sin ⎝⎛⎭⎫5π12+α=-223. 9.(2018·吉林长春外国语学校)化简sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )= .考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简 答案 0 解析sin (-x )cos (π-x )sin (π+x )cos (2π-x )-sin (π-x )cos (π+x )cos ⎝⎛⎭⎫π2-x cos (-x )=(-sin x )(-cos x )(-sin x )cos x -sin x (-cos x )sin x cos x=-1+1=0.10.tan(45°+θ)·tan(45°-θ)= . 考点 题点答案 1解析 原式=sin (45°+θ)cos (45°+θ)·sin (45°-θ)cos (45°-θ)=sin (45°+θ)cos (45°+θ)·sin[90°-(45°+θ)]cos[90°-(45°+θ)]=sin (45°+θ)cos (45°+θ)cos (45°+θ)sin (45°+θ)=1.11.给出下列三个结论,其中正确结论的序号是 . ①sin(π+α)=-sin α成立的条件是角α是锐角; ②若cos(n π-α)=13(n ∈Z ),则cos α=13;③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 考点 综合应用诱导公式化简与求值 题点 综合运用诱导公式证明 答案 ③解析 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13,当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误.若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确.三、解答题12.(2018·银川高一检测)已知cos ⎝⎛⎭⎫π2+α=35, 求⎣⎡⎦⎤sin ⎝⎛⎭⎫α+32π·sin ⎝⎛⎭⎫32π-α·tan 2()2π-α·tan ()π-α÷⎣⎡⎦⎤cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值. 考点 综合运用诱导公式化简与求值 题点 综合运用诱导公式化简、求值 解 因为cos ⎝⎛⎭⎫π2+α=35,所以sin α=-35, 所以cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=(-cos α)(-cos α)tan 2α(-tan α)sin α(-sin α)=tan α=±34. 13.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式求值解 ∵sin ⎝⎛⎭⎫-π2-α=-cos α,cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α,∴sin α·cos α=60169,即2sin α·cos α=120169.①又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713,③sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.14.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)等于() A .2 B .-2 C .0 D.23考点题点答案 B15.(2018·湖北孝感八校联考)已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝⎛⎭⎫3π2-α-sin (-α)的值. 考点 综合运用诱导公式化简与求值题点 综合运用诱导公式化简、求值解 ∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴-sin(π-α)=2cos(-α),∴sin α=-2cos α,且cos α≠0.∴原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.。

2017-2018年高一数学第一章 §4 第2课时 单位圆与正弦函数、余弦函数的基本性质 单位圆的对称性与诱导公式

2017-2018年高一数学第一章 §4 第2课时 单位圆与正弦函数、余弦函数的基本性质 单位圆的对称性与诱导公式

第2课时单位圆与正弦函数、余弦函数的基本性质单位圆的对称性与诱导公式[核心必知]正弦函数、余弦函数的诱导公式1.比较公式两边的函数名称,有什么规律?提示:公式(一)~(五)中,左、右两边的函数名称相同;公式(六)、(七)中,左、右两边的函数名称不同,规律为正、余弦互换.2.公式右边的正、负号有规律吗?提示:有,把α看作锐角时,公式左边函数值的符号与右边的正、负号相同.3.公式(二)反映了三角函数的什么性质?提示:由sin(-α)=-sin α知y=sin x是奇函数;由cos(-α)=cos α知y=cos x是偶函数.讲一讲1.求下列三角函数值. (1)cos 945°;(2)sin 35π6;(3)cos ⎝⎛⎭⎪⎫3π2+π3;(4)sin ⎝ ⎛⎭⎪⎫-100π3.[尝试解答] (1)cos 945°=cos (2×360°+225°) =cos 225°=cos(180°+45°)=-cos 45°=-22. (2)sin 35π6=sin ⎝ ⎛⎭⎪⎫4π+11π6=sin 11π6=sin ⎝ ⎛⎭⎪⎫2π-π6=-sin π6=-12.(3)cos ⎝⎛⎭⎪⎫3π2+π3=cos ⎝ ⎛⎭⎪⎫π+π2+π3=-cos ⎝ ⎛⎭⎪⎫π2+π3=-⎝⎛⎭⎪⎫-sin π3=32. (4)sin ⎝ ⎛⎭⎪⎫-100π3)=-sin (32π+4π3=-sin 4π3=sin π3=32.1.诱导公式都是角α的正弦、余弦函数与k ×π2±α(k ∈Z )的正弦、余弦函数之间的转化,记忆的口诀是:奇变偶不变,符号看象限.“奇变偶不变”解释如下:α前面加的是k ×π2,当k 是奇数时,得α的异名三角函数值;当k 是偶数时,得α的同名三角函数值.“符号看象限”解释如下:由于对于任意角α,公式都成立,不妨将角α看作一个锐角,考查k ×π2±α(k ∈Z )所在的象限,并判断此时函数值的符号是正还是负.2.利用诱导公式可把任意角的三角函数转化为锐角三角函数,步骤如下:记忆口诀:负化正,大化小,化到锐角再查表(特殊角的三角函数值表). 练一练1.求下列各式的值: (1)sin 495°cos(-675°);(2)sin ⎝⎛⎭⎪⎫-43π6cos ⎝ ⎛⎭⎪⎫11π4 解:(1)sin 495°cos(-675°) =sin(135°+360°)cos 675° =sin 135°cos 315°=sin(180°-45°)cos(360°-45°) =sin 45°cos 45° =22×22=12. (2)sin ⎝ ⎛⎭⎪⎫-43π6cos 11π4 =-sin 43π6cos 11π4=-sin ⎝ ⎛⎭⎪⎫6π+7π6cos ⎝ ⎛⎭⎪⎫2π+3π4=-sin 7π6cos 3π4=-sin ⎝ ⎛⎭⎪⎫π+π6cos ⎝ ⎛⎭⎪⎫π2+π4=-sin π6sin π4=-12×22=-24.讲一讲 2.(1)已知cos ⎝ ⎛⎭⎪⎫π6-α=m (|m |≤1),求cos ⎝⎛⎭⎪⎫5π6+α,sin ⎝⎛⎭⎪⎫2π3-α的值.(2)已知sin ⎝ ⎛⎭⎪⎫π2-α=-13,求cos(5π+α)的值.[尝试解答] (1)cos ⎝⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-m . sin ⎝ ⎛⎭⎪⎫23π-α=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-α =cos ⎝ ⎛⎭⎪⎫π6-α=m . (2)∵sin ⎝ ⎛⎭⎪⎫π2-α=-13∴cos α=-13∴cos(5π+α) =cos[4π+(π+α)] =cos(π+α) =-cos α=-⎝ ⎛⎭⎪⎫-13=13.解决条件求值问题的常见思路是:寻找已知条件与所求问题之间的关系,特别是寻找角与角之间的关系,然后利用有关的诱导公式求解.另外要善于发现已知角与待求角之间的互余、互补关系.常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ,π6-θ与5π6+θ等.练一练2. 已知sin ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫10π3-α的值.解:∵103π-α=3π+⎝ ⎛⎭⎪⎫π3-α ∴cos ⎝ ⎛⎭⎪⎫103π-α=cos ⎣⎢⎡⎦⎥⎤3π+⎝ ⎛⎭⎪⎫π3-α =-cos ⎝ ⎛⎭⎪⎫π3-α又∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2.∴cos ⎝⎛⎭⎪⎫10π3-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α =-sin ⎝ ⎛⎭⎪⎫π6+α=-33.讲一讲3.化简下列各式:(1)cos (2π-α)sin (3π+α)cos ⎝⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫-π2+αcos (α-3π)sin (-π-α).(2)cos ⎝⎛⎭⎪⎫4n +14π+x +cos ⎝ ⎛⎭⎪⎫4n -14π-x )(n ∈Z .[尝试解答] (1)原式=cos α(-sin α)(-sin α)sin α(-cos α)sin α=-1. (2)∵⎝⎛⎭⎪⎫4n +14π+x +⎝ ⎛⎭⎪⎫4n -14π-x =2n π,∴原式=cos ⎝ ⎛⎭⎪⎫4n +14π+x +cos ⎣⎢⎡⎦⎥⎤2n π-⎝ ⎛⎭⎪⎫4n +14π+x=2cos ⎝⎛⎭⎪⎫4n +14π+x =2cos ⎝ ⎛⎭⎪⎫n π+π4+x .①当n 为奇数,即n =2k +1(k ∈Z )时, 原式=2cos ⎝ ⎛⎭⎪⎫2k π+π+π4+x=-2cos ⎝ ⎛⎭⎪⎫π4+x ;②当n 为偶数,即n =2k (k ∈Z )时, 原式=2cos ⎝ ⎛⎭⎪⎫2k π+π4+x =2cos ⎝ ⎛⎭⎪⎫π4+x .故原式=⎩⎪⎨⎪⎧-2cos ⎝ ⎛⎭⎪⎫π4+x ,n 是奇数,2cos ⎝ ⎛⎭⎪⎫π4+x ,n 为偶数.1.所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少,次数尽可能的低,函数的种类尽可能的少,分母中尽量不含三角函数符号,能求值的一定要求值.2.利用诱导公式解决化简求值问题的关键是诱导公式的灵活选择,当三角函数式中含有k π±α,k2π±α时,要注意对k 的奇偶性进行讨论.练一练3.设k 为整数,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α).解:法一:当k 为偶数时,不妨设k =2m (m ∈Z ), 则原式=sin (2m π-α)cos[(2m -1)π-α]sin[(2m +1)π+α]cos (2m π+α)=sin (-α)cos (π+α)-sin αcos α=(-sin α)(-cos α)-sin αcos α=-1;当k 为奇数时,可设k =2m +1(m ∈Z ), 同理,可得原式=-1.法二:由(k π+α)+(k π-α)=2k π, [(k -1)π-α]+[(k +1)π+α]=2k π,得sin(k π-α)=-sin(k π+α)=sin[(k +1)π+α], cos[(k -1)π-α]=cos[(k +1)π+α] =-cos(k π+α), 所以原式=-1.若cos θ=33,则cos (π-θ)cos θ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫3π2-θ-1+ cos (2π-θ)cos (π+θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin ⎝ ⎛⎭⎪⎫3π2+θ的值为________.[错解] 原式=cos θcos θ(-sin θ-1)+cos θcos θsin θ+cos θ=0.[错因] 混淆了诱导公式,应有sin ⎝ ⎛⎭⎪⎫3π2-θ=sin ⎝ ⎛π+)⎭⎪⎫π2-θ=-sin ⎝ ⎛⎭⎪⎫π2-θ-cos θ,sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ.cos(π-θ)=-cos θ,cos(π+θ)=-cos θ.[正解] 原式=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ. 因为cos θ=33, 所以原式=21-⎝ ⎛⎭⎪⎫332=3. [答案] 31.当α∈R 时,下列各式恒成立的是( ) A .sin ⎝⎛⎭⎪⎫π2+α=-cos α B .sin(π-α)=-sin αC .cos(π+α)=cos αD .cos(-α)=cos α 答案:D2.cos 2π3的值是( )A .-32 B.32C.12 D .-12解析:选D cos 2π3=cos(π-π3)=-cos π3=-12.3.(广东高考)已知sin(5π2+α)=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin(5π2+α)=sin[2π+(π2+α)]=sin(π2+α)=cos α=15.4.已知cos(π+α)=-12,则sin ⎝ ⎛⎭⎪⎫π2-α=________.解析:∵cos(π+α)=-12,∴cos α=12.∴sin ⎝ ⎛⎭⎪⎫π2-α=cos α=12. 答案: 125.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:∵508°+212°=720°∴cos(212°+α)=cos [2×360°-(508°-α)] =cos(508°-α)=1213.答案: 12136.求sin π4cos 19π6sin 21π4的值.解:原式=sin π4cos(2π+7π6)sin(4π+5π4)=22cos 7π6sin 5π4 =22cos(π+π6)sin ⎝⎛⎭⎪⎫π+π4=22×⎝ ⎛⎭⎪⎫-cos π6⎝ ⎛⎭⎪⎫-sin π4=22×32×22=34.一、选择题1.cos 150°的值是( ) A .-32 B .-12 C.12 D.32解析:选A cos 150°=cos(180°-30°)=-cos 30°=-32. 2.已知600°角的终边上有一点P (a ,-3),则a 的值为( )A. 3 B .- 3 C.33 D .-33解析:选B ∵sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32, ∴-3a 2+32=-32,∴a =± 3. 又∵600°角的终边在第三象限∴a =- 3. 3.在△ABC 中,下列4个等式恒成立的是( ) ①sin(A +B )+sin C =0,②cos(A +B )+cos C =0, ③sin(2A +2B )+sin 2C =0,④cos(2A +2B )+cos 2C =0 A .①② B .②③ C .③④ D .①②解析:选B 对于②,cos(A +B )+cos C =cos(180°-C )+cos C =-cos C +cos C =0,成立.对于③,sin(2A +2B )+sin 2C =sin[2(180°-C )]+sin 2C =sin(360°-2C )+sin 2C =-sin 2C +sin 2C =0,成立.4.下列三角函数中,与sin π3数值相同的是( )①sin ⎝ ⎛⎭⎪⎫n π+4π3 ②cos ⎝ ⎛⎭⎪⎫2n π+π6 ③sin ⎝ ⎛⎭⎪⎫2n π+π3 ④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6 ⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3,(n ∈Z )A .①②B .①②③C .②③⑤D .①③④解析:选C ①中n 为偶数时,sin ⎝ ⎛⎭⎪⎫n π+4π3=-sin π3;②中cos(2n π+π6)=cos π6=sin π3;③中sin ⎝⎛⎭⎪⎫2n π+π3=sin π3; ④中cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=-cos π6=-sin π3;⑤中sin[(2n +1)π-π3]=sin(π-π3)=sin π3.故②③⑤正确. 二、填空题5.sin ⎝⎛⎭⎪⎫-31π4=________. 解析:sin ⎝ ⎛⎭⎪⎫-31π4=-sin 31π4=-sin ⎝⎛⎭⎪⎫8π-π4 =-sin ⎝ ⎛⎭⎪⎫-π4=sin π4=22.答案:226.化简sin (90°-α)cos (-α)cos (180°-α)=________.解析:原式=cos αcos α-cos α=-cos α.答案:-cos α7.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值等于________. 解析:∵sin ⎝⎛⎭⎪⎫α-π3=13,∴sin(π3-α)=-13, 又∵⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,∴cos(π6+α)=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=-13.答案:-13.8.若函数f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数,且满足f (2 011)=2,则f (2 012)=________.解析:∵f (2 011)=a sin(2 011π+α)+b cos(2 011π+β)=a sin(π+α)+b cos(π+β)=-(a sin α+b cos β)=2,∴f (2 012)=a sin(2 012π+α)+b cos(2 012π+β) =a sin α+b cos β=-2. 答案:-2 三、解答题9.求值:sin (-150°)cos (-210°)cos (-420°)cos (-600°)sin (-1 050°).解:原式=(-sin 150°)cos 210°cos 420°cos 600°(-sin 1 050°)=sin (180°-30°)cos (180°+30°)cos (360°+60°)cos (720°-120°)sin (1 080°-30°)=sin 30°(-cos 30°)cos 60°cos 120°(-sin 30°)12 =-sin 30°cos 30°cos 60°sin 30°sin 30°=-12×32×1212×12=-32.10.已知f(α)=sin(α-3π)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2cos(-π-α)sin(-π-α),(1)化简f(α);(2)若α=-31π3,求f(α)的值.解:(1)f(α)=-sin α×cos α×(-cos α)(-cos α)sin α=-cos α;(2)f⎝⎛⎭⎪⎫-31π3=-cos⎝⎛⎭⎪⎫-31π3=-cos⎝⎛⎭⎪⎫-6×2π+5π3=-cos5π3=-cosπ3=-12.。

1_3三角函数的诱导公式

1_3三角函数的诱导公式

第一章 三角函数1.3 三角函数的诱导公式(1)[教学目标] 一、知识与水平:(1)理解三角函数诱导公式二~四的推导过程,在探究的过程中体验数学知识的“发现”过程;(2)掌握三角函数诱导公式一~四的应用,能准确使用诱导公式求任意角的三角函数值; (3)培养学生借助图形直观实行观察、感知、探究、发现的水平,进一步掌握数形结合思想方法,通过诱导公式的证明,培养学生逻辑思维水平.二、过程与方法:借助单位圆推导诱导公式,特别是学习从单位圆的对称性与任意角终边的对称性中,发现问题(任意角α的三角函数值与-α ,απ- ,απ+ 的三角函数值之间有内在联系),提出研究方法(利用三角函数线得出相对应的关系式);三、情感、态度与价值观:通过本节的学习,让学生感受数学探索的成功感,从而激发学生学习数学的热情,培养学生学习数学的兴趣,增强他们学习数学的信心.[教学重点]用联系的观点,发现、证明及使用诱导公式,体会数形结合思想、渗透转化思想在解决数学问题中的指导作用.[教学难点]如何引导学生从单位圆的对称性与任意角终边的对称性中,发现终边分别与 的终边相同以及关于原点、x 轴、y 轴对称的角与α之间的数量关系,并提出研究方法.[教学方法]创设情境—主体探究—合作交流—应用提升. [教学过程]一、创设问题情境,激发学生兴趣,引出本节内容 (一)复习:(1)利用单位圆表示任意角α的正弦值和余弦值:(,)P x y 为角α的终边与单位圆的交点,则sin y α=,cos x α=;(2)由三角函数定义能够知道:终边相同的角的同一三角函数值相等.即有:sin(2)sin (),cos(2)cos (),(tan(2)tan (),k k Z k k Z k k Z απααπααπα+=∈+=∈+=∈公式一)(二)引入新课先让同学们思考单位圆的对称性并举出一些特殊的对称轴和对称中心,如x 轴,y 轴,y x =,原点.这些对称性对三角函数的性质有什么影响呢?先思考阅读教科书第23页的“探究”.1、角的对称关系: 给定一个角α,发现:1)终边与角α的终边关于原点对称的角能够表示为π+α; 同样,让学生探究问题(2) ,(3)不难发现.2)终边与角α的终边关于x 轴对称的角能够表示为α-(或2π-α); 3)终边与角α的终边关于y 轴对称的角能够表示为:π-α; 4)终边与角α的终边关于直线y =x 对称的角能够表示为π2α-. 2、三角函数的关系 诱导公式二:以问题(1)为例,引导学生去思考,角的对称关系怎样得出三角函数的关系? 角α————角π+α终边与单位圆交点(,)P x y ————(,)P x y '-sin y α= ————sin(π+)=-y α∴sin(π+)=-sin αα同理,cos(π+)x α=-, cos x α=,cos(π+)α=tan(π+)=tan yxαα=∴tan(π+)=tan αα即诱导公式二:sin(π)sin αα+=- cos(π+)cos αα=- tan(π)tan αα+= 请同学们自己完成公式三、四的推导: 诱导公式三:sin()sin αα-=- cos()cos αα-= tan()tan αα-=-诱导公式四:sin(π)sin αα-=cos(π)cos αα-=- tan(π)tan αα-=-让学生把探究诱导公式二、三、四的思想方法总结概括,引导学生得出: 圆的对称性——————角的终边的对称性对称点的数量关系 角的数量关系三角函数关系即诱导公式总结规律,引导学生记忆学过的四组公式,即:22πk α+(Z)k ∈ , α-, πα±的三角函数值,等于α角的同名三角函数值,前面加上一个把α角看成锐角时的原函数的符号.二、巩固探究例1.求以下三角函数值:(1)sin 960; (2)43cos()6π-; (3)tan(1560)-. 分析:先将不是)0,360⎡⎣范围内角的三角函数,转化为)0,360⎡⎣范围内的角的三角函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到0,90⎡⎤⎣⎦范围内角的三角函数的值.解析:(1)sin 960sin(960720)sin 240=-=(诱导公式一)sin(18060)sin 60=+=-(诱导公式四)2=-. (2)4343cos()cos66ππ-=(诱导公式二) 77cos(6)cos 66πππ=+=(诱导公式一)cos()cos 66πππ=+=-(诱导公式四)=. (3)tan(1560)tan1560(tan(4360120)-=-=-⨯+公式二)tan120(tan(18060)tan 60(=-=--==公式一)公式三)小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:①化负角的三角函数为正角的三角函数; ②化大于360的正角的三角函数为)0,360⎡⎣内的三角函数;③化)0,360⎡⎣内的三角函数为锐角的三角函数.可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值).例2 :化简23cot cos()sin (3)tan cos ()απαπααπα⋅+⋅+⋅--.解析:原式23cot (cos )sin ()tan cos ()ααπααπα⋅-⋅+=⋅+ 23cot (cos )(sin )tan (cos )ααααα⋅-⋅-=⋅-23cot (cos )sin tan (cos )ααααα⋅-⋅=⋅-2222cos sin 1sin cos αααα=⋅=. 总结:(1)要化的角的形式为180k α⋅±(k 为常整数);(2)记忆方法:“函数名不变,符号看象限”;(3)利用四组诱导公式就能够将任意角的三角函数转化为锐角的三角函数. 其化简方向仍为:“负化正,大化小,化到锐角为终了”。

诱导公式1课件

诱导公式1课件
成才之路 ·数学
人教B版 ·必修4
路漫漫其修远兮 吾将上下而求索
第一章 基本初等函数
第一章 1.2 任意角的三角函数 1.2.4 诱导公式 第1课时 诱导公式(一)
1 课前自主预习
2 课堂典例讲练
4 思想方法技巧
3 易错疑难辨析
5 课时作业
课前自主预习
• 对称美是日常生活中最常见的,在三角函数 中-α、π±α、2π-α等角的终边与角α的终
③sinnπ+-1nπ3;
④cos2nπ+-1n·π6中,与 sinπ3相等的是(
)
A.①②
B.③④
C.①④
D.②③
[错解] 因为 sinnπ+π3=sinπ3, sin2nπ±π3=sin±π3=±sinπ3, sinnπ+-1nπ3=sin-1nπ3 =sin±π3=±sinπ3, cos2nπ+-1nπ6=cos-1nπ6=sinπ3.
课时作业
(点此链接)
3.诱导公式(三) 角 α+(2k+1)π(k∈Z)的三角函数等于角 α 的同名三角函 数,前边放上把角 α 看成锐角时,α+(2k+1)π(k∈Z)所在象限 的原三角函数值的符号.即: cos[α+(2k+1)π]=_-__c_o_s_α__, sin[α+(2k+1)π]=__-__s_in_α__, tan[α+(2k+1)π]=___t_a_n_α__.
.
cos2nπ+-1n·π6=cos-1n·π6=cosπ6=sinπ3. 故③④与 sinπ3相等,应选 B.
思想方法技巧
分类讨论思想
求证: sin[ks+in1kππ+-αα]ccooss[kkπ++1απ+α]=-1,k∈Z.
[解析] 若 k 是偶数,即 k=2n(n∈N)时, 左边=sin[2nsπin+2nππ+-αα]ccooss[22nnππ++απ+α] =--sinsαinα-cocsoαsα=-1; 若 k 是奇数,即 k=2n+1(n∈Z)时, 左边=ssiinn[[22nnπ++1ππ-+αα]]ccooss[[22nnπ++1ππ++αα]] =sinsαinα-cocsoαsα=-1. ∴原式成立.

高中数学《三角函数的诱导公式——诱导公式二、三、四 》课件

高中数学《三角函数的诱导公式——诱导公式二、三、四 》课件

课后课时精练
数学 ·必修4
拓展提升 利用诱导公式解决给角求值问题的步骤
12
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
【跟踪训练 1】 求下列各式的值: (1)sin( - 1320°)cos1110°+ cos( - 1020°)sin750°+ tan495°; (2)sin83πcos316π+tan-234π.
)
A.-12 B.-2 C.2 D.12
解析 sin76π=sinπ+π6=-sinπ6=-12.故选 A.
7
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
(3)cos(3π+α)+cos(2π+α)=____0____. 解析 cos(3π+α)+cos(2π+α)=cos(π+α)+cosα= -cosα+cosα=0.
□ (2)-α 的终边与角 α 的终边关于 2 x 轴 对称,如图 b; □ (3)π-α 的终边与角 α 的终边关于 3 y 轴 对称,如图
c.
3
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
2.诱导公式
4
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
1.判一判(正确的打“√”,错误的打“×”)
3 3.
16
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
[ 互 动 探 究 ] 1. 若 本 例 (2) 中 的 条 件 不 变 , 如 何 求
cosα-163π?

吉林省吉林市高一数学 第一章第4节《正弦、余弦的诱导公式(2)》教案 新人教B版必修4

吉林省吉林市高一数学 第一章第4节《正弦、余弦的诱导公式(2)》教案 新人教B版必修4

1吉林省吉林市高一数学 第一章第4节《正弦、余弦的诱导公式(2)》教案 新人教B 版必修4(二)新课讲解:1.公式推导:我们继续推导公式:即1800ααα--与36和的同名三角函数的关系。

(1)请学生自行仿上节课的推导方法得出它们的关系。

(2)启发学生讨论:能否根据诱导公式一、二、三推导出它们的关系。

[推导过程]sin(180)sin[180()]sin()sin αααα-=+-=--= ;cos(180)cos[180()]cos()cos αααα-=+-=--=- ;sin(360)sin[360()]sin()sin αααα-=+-=-=- ;cos(360)cos[360()]cos()cos αααα-=+-=-= .[结论]诱导公式四:sin(180)sin αα-= ;cos(180)cos αα-=-. 诱导公式五:sin(360)sin αα-=- ;cos(360)cos αα-=.说明:①公式二中的α指任意角;②在角度制和弧度制下,公式都成立;③公式特点:函数名不变,符号看象限;④可以导出正切:tan(180)tan αα-=- ;tan(360)tan αα-=- .2.五组诱导公式:五组公式可概括如下:360(),,180,360k k Z αααα+⋅∈-±- 的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

说明:(1)要化的角的形式为180k α⋅± (k 为常整数);(2)记忆方法:“函数名不变,符号看象限”;(3)利用五组诱导公式就可以将任意角的三角函数转化为锐角的三角函数。

其化简方向仍为:“负化正,大化小,化到锐角为终了”。

3.例题分析:例1.求下列三角函数值:(1)11sin 6π;(2)17sin()3π-. 解:(1)111sinsin(2)sin()sin 66662πππππ=-=-=-=-; (2)17sin()sin(6)sin 3332ππππ-=-+==2 例2.化简:(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-; (2)sin 120cos 330sin(690)cos(660)tan 675cot 765⋅+--++ . 解:(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-.(2)原式sin(18060)cos(36030)sin(720690)cos(720660)=-⋅-+-- tan(675720)cot(765720)+-+-sin 60cos 30sin 30cos 60tan(45)cot 45=++-+11tan 4512222=+⨯-+3111144=+-+=.五.课堂练习:第32页的练习1,2,3题.六.小结:1.五组诱导公式的形式及记忆口诀“函数名不变,符号看象限”; 2.求任意角的三角函数值的一般步骤;3.熟练运用公式化简、求值。

课件3:1.2.4 诱导公式

课件3:1.2.4 诱导公式
tan(π+α)= y =tanα x
思考5:该公式有什么特点,如何记忆?
知识探究(二):-α,π-α的诱导公式
思考1: 对于任意给定的一个角α, -α的终边与α的终 边有什么关系? π-α的呢?
y
α的终边
π-α的终边
o
x
-α的终边
知识探究(二):-α,π-α的诱导公式
思考2:设角α的终边与单位圆交于点 P(x,y),则-α 的终边与单位圆的交点坐标如何? π-α的呢?
2kπ+α(k∈Z),π+α,-α, π-α的三角函数值,等 于α的同名函数值,前面加上一个把α看成锐角时原函数 的象限符号.
函数名不变,符号看象限
理论迁移
例1、求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
理论迁移
解:
(1)cos225°= cos(180°+45°) =-cos45°= 2
3、几何图形对发现结论的影响.
4、诱导公式的运用中它体现了数学中的化归与转化 的思想
思考题:
化简:
sin[(k 1) ] cos[(k 1) ]
(k Z)
sin(k ) cos(k )
解: (1)当n为奇数 原式=-1
(2)当n为偶数 原式=-1 综上可知:原式= -1
变式训练
已知cos(π+x)= 1 ,求下列各式的值: 3
tan( ) cot
2
cot( ) tan
2
公式六:
sin( ) cos
2
cos( ) sin
2
tan(
)
cot

诱导公式课件

诱导公式课件

[正解]



-cosθ cosθ-cosθ-1

cosθ -cosθcosθ+cosθ

1+1cosθ+1-1cosθ=sin22θ,因为 sinθ= 33,所以所求三角函数
式的值为
3232=6.
思想方法技巧
反证法
如果△A1B1C1 的三个内角的余弦值分别等于△ A2B2C2 对应的三个内角的正弦值,则( )
(2)∵α=-1 920°, ∴f(α)=cos(-1 920°) =cos1 920° =cos(5×360°+120°) =cos120° =cos(180°-60°) =-cos60° =-12. ∴f(α)=-12.
•利用诱导公式证明恒等式
求证:2sinθ-132-π2csoisn2θθ+π2-1
=-sinπ6+x+cos2π6+x =-sinπ6+x+1-sin2π6+x =-14+1-142=1116.
易错疑难辨析

sinθ =
3 3


cosπ-θ cosθ[sin32π-θ-1]

cosπ+θscinosπ22+πθ--θsin32π+θ的值.
已知 sinx+π6=14,求 sin76π+x+cos256π-x的值.
[解析] sin76π+x+cos256π-x =sinπ+π6+x+cos2(π-π6-x) =sinπ+π6+x+cos2π-π6+x
=-cosπ6-α=- 33,
∴sin2α-π6=1-cos2π6-α=23.
∴原式=- 33-23=-2+3
3 .
[点评] 本题主要考查诱导公式的灵活运用,注意到56π+α
=π-π6-α,α-π6=-π6-α因此,可以用到诱导公式转化再 求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研一研·问题探究、课堂更高效
探究点三 诱导公式的理解、记忆与灵活应用
1.2.4(二)
公式一~三归纳:α+2kπ(k∈Z),-α,π±α的三角函数值,等 于角α的同名三角函数值,前面加上一个把α看成锐角时原函数
本 课 时 栏 目 开 关
值的符号,简记为:“函数名不变,符号看象限”. π 公式四~五归纳: ± α的正弦(余弦)函数值,分别等于α的余弦 2 (正弦)函数值,前面加上一个把α看成锐角时原函数值的符号, 简记为:“函数名改变,符号看象限”或“正变余、余变正、 符号象限定”. π 五组诱导公式可以统一概括为“k· ± α(k∈Z)”的诱导公式.当k 2 为偶数时,函数名不改变;当k为奇数时,函数名改变;然后前 面加一个把α视为锐角时原函数值的符号.记忆口诀为“奇变偶 不变,符号看象限”.请你根据上述规律,完成下列等式:
研一研·问题探究、课堂更高效
探究点二 诱导公式五
1.2.4(二)
本 课 时 栏 目 开 关
(1)公式内容: π π sin2-α=cos α,cos2-α=sin α, π π tan2-α=cot α,cot2-α=tan α. (2)公式推导: 方法1:利用公式二和公式四可得: π π sin2+-α = cos(-α) = cos α , sin2-α= π π cos2+-α -α= = -sin(-α) = sin α , cos 2
α; α;
α.
研一研·问题探究、课堂更高效
[典型例题] 例1
本 课 时 栏 目 开 关
1.2.4(二)
π 3 π 2π 3π 已知cosα+6= , ≤α≤ ,求sinα+ 3 的值. 2 5 2
π π 2π 解 ∵α+ =α+6+ , 3 2 π π π 3 2π ∴sin(α+ )=sin α+6+2=cosα+6= . 3 5
π 从而:tan2-α=
cot α
π ,cot2-α= tan
α .
研一研·问题探究、课堂更高效
π 方法2:如图,设角α与 -α的终边分别与单位 2 π 圆交于点P与P′,因为角α与 -α的终边关于 2 直线y=x对称,若设P(x,y),则P′(y,x).
填一填·知识要点、记下疑难点
1.2.4(二)
2.诱导公式四~五的记忆 π π +α, -α 的三角函数值,等于 α 的 异名 三角函数值,前 2 2
本 课 时 栏 目 开 关
面加上一个把 α 看成锐角时原函数值的 符号 ,记忆口诀为 “函数名改变,符号看象限”.
研一研·问题探究、课堂更高效
1.2.4(二)
研一研·问题探究、课堂更高效
1.2.4(二)
∴sin


43 -θ+cos π+θ=cos4θ+sin4θ 2 2
本 课 时 栏 目 开 关
=(sin2θ+cos2θ)2-2sin2θcos2θ 3 23 2 = . =1-2× 8 32
小结 解答本题时,应先利用诱导公式将已知式子和所求式分 别化简,再利用sin θ± θ与sin θcos θ之间的关系求值. cos
研一研·问题探究、课堂更高效
1.2.4(二)
点 M 关于 y 轴的对称点为 N,点 N 也在单位圆上,且 N 点坐 标为 (-sin α,cos α) . 另一方面,点 P 经过以上两次轴对称变换到达点 N,等同于点
本 课 时 栏 目 开 关
P 沿单位圆旋转到点 N,且旋转角的大小为∠PON=2(∠AOM π π π +∠MOB)=2× = .因此点 N 是角 α+2 与单位圆的交点, 4 2 π π cosα+ ,sinα+ 2 2 . 点 N 坐标为 π π 所以,有 cosα+2= -sin α ,sinα+2 = cos α , π π 从而,tanα+2 = -cot α ,cotα+2 = -tan α .
本 课 时 栏 目 开 关
π -sin α-cos α-sin αcos5π+2-α 解 原式= π -cos αsinπ-α[-sinπ+α]sin4π+2+α π 2 -sin αcos α-cos2-α = π -cos αsin α[--sin α]sin2+α
探究点一
本 课 时 栏 目 开 关
诱导公式四
(1)公式内容: π π π sin2+α=cos α,cos 2+α=-sin α,tan 2+α=-cot α, π cot2+α=-tan α. (2)公式推导: 如图所示,设角 α 的终边与单位圆交于点 P,则 点 P 的坐标为 (cos α,sin α) . 点 P 关于直线 y=x 的对称点为 M,点 M 也在单 位圆上,且 M 点坐标为 (sin α,cos α) .
1.2.4(二)
本 课 时 栏 目 开 关
小结 三角函数恒等式的证明过程多数是化简的过程,一般是 化繁为简,可以化简一边,也可以两边都化简,同时注意诱导 公式的灵活应用,避免出现符号错误.
研一研·问题探究、课堂更高效
1.2.4(二)
跟踪训练2
π 11 sin2π-αcosπ+αcos2+αcos 2 π-α 9 . cosπ-αsin3π-αsin-π-αsin2π+α

π -2sinπ+2-θ-sin
1-2sin2θ
π 2sin2-θ-sin
θHale Waihona Puke -1=1-2sin2θ -2sin θcos θ-1 = 2 sin θ+cos2θ-2sin2θ
研一研·问题探究、课堂更高效
sin θ+cos θ2 sin θ+cos θ = = sin2θ-cos2θ sin θ-cos θ tan θ+1 右边= tan θ-1 sin θ +1 sin θ+cos θ cos θ = = . sin θ sin θ-cos θ -1 cos θ ∴左边=右边,故原等式成立.
本 课 时 栏 目 开 关
1.2.4(二)
根据任意角的三角函数的定义推导诱导公式五.
∵sin α=y,cos α=x, π π sin2-α=x,cos2-α=y, π π ∴sin2-α=cos α,cos2-α=sin α. 答 由同角三角函数基本关系式得 π π tan2-α=cot α,cot2-α=tan α.
3 π 2sinθ-2πcosθ+ 2-1 tan9π+θ+1 求证: = . 3 tanπ+θ-1 1-2cos2θ+2π
3 -2sin2π-θ-sin
本 课 时 栏 目 开 关
θ-1
证明 ∵左边=
1-2sin2θ θ-1
证明
3 π π sin2π-α=sinπ+2-α=-sin2-α=-cos
α;
3 π π cos2π-α=cosπ+2-α=-cos2-α=-sin 3 π π sin2π+α=sinπ+2+α=-sin2+α=-cos 3 π π cos2π+α=cosπ+2+α=-cos2+α=sin

π+θ的值. 2
5 解 ∵sin(5π-θ)+sin2π-θ π =sin(π-θ)+sin2-θ
7 =sin θ+cos θ= 2 , 1 ∴sin θcos θ=2[(sin θ+cos θ)2-1] 3 1 72 =2 -1=8, 2
小结 利用诱导公式四和诱导公式五求值时,要注意沟通已知 π π π 条件中的角和问题结论中角之间的联系,注意 6 +α与 3 -α, 4 π -α与 +α等互余角关系的识别和应用. 4
研一研·问题探究、课堂更高效
1.2.4(二)
跟踪训练1
本 课 时 栏 目 开 关
π 已知sin6+α=
sin2αcos αsin α = -cos αsin2αcos α sin α =-cos α=-tan α.
研一研·问题探究、课堂更高效
例3 已知sin(5π-θ)+sin cos
本 课 时 栏 目 开 关
43
1.2.4(二)
7 4 π = ,求sin 2-θ + 2
5 π-θ 2
π 3 ,求cosα-3的值. 3
π π π π 解 ∵cosα-3=cos3-α=cos2-6+α π 3 +α= =sin 6 . 3
研一研·问题探究、课堂更高效
1.2.4(二)
例2
本 课 时 栏 目 开 关
填一填·知识要点、记下疑难点
1.2.4(二)
本 课 时 栏 目 开 关
1.诱导公式四~五 π π (1)公式四:sin2+α= cos α ,cos2 +α= -sin α , π π tan2+α= -cot α ,cot2+α= -tan α . 以-α 替代公式四中的 α,可得公式五. π π (2)公式五:sin2-α= cos α ,cos2 -α= sin α , π π tan2-α= cot α ,cot2-α= tan α .
1.2.4(二)
1.2.4 诱导公式(二)
【学习要求】 1.掌握诱导公式四、五的推导,并能应用解决简单的求值、化简 与证明问题. 2.对诱导公式一至五,能作综合归纳,体会出五组公式的共性与 个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”、“发现”过程,培养研究问题、发 现问题、解决问题的能力. 【学法指导】 五组诱导公式可以概括为一句口诀: “奇变偶不变, 符号看象限”, π 即诱导公式左边的角可统一写成 k·± α(k∈Z)的形式,当 k 为奇数 2 时公式等号右边的三角函数名称与左边的三角函数名称正余互变, 当 k 为偶数时,公式符号右边的三角函数名称与左边一样;而公式 π 右边的三角函数之前的符号,则把 α 当成锐角,看 k·± 为第几象 α 2 限角.
相关文档
最新文档