小学奥数整数裂项复习课程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数--整数裂项
对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。而裂项法就是一种行之有效的巧算和简算方法。通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。
后延减前伸差数除以N
例1、计算1×2+2×3+3×4+4×5+…+98×99+99×100
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)
2×3=(2×3×4-1×2×3)÷(1×3)
3×4=(3×4×5-2×3×4)÷(1×3)
4×5=(4×5×6-3×4×5)÷(1×3)
……
98×99=(98×99×100-97×98×99)÷(1×3)
99×100=(99×100×101-98×99×100)÷(1×3)
将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。
解:1×2+2×3+3×4+4×5+……+98×99+99×100
=(99×100×101-0×1×2)÷3
=333300
例2、计算3×5+5×7+7×9+……+97×99+99×101
分析:这个算式实际上也可以看作是:等差数列3、5、7、9……97、99、101,先将所有的相邻两项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为2,因数个数为2。
3×5=(3×5×7-1×3×5)÷(2×3)
5×7=(5×7×9-3×5×7)÷(2×3)
7×9=(7×9×11-5×7×9)÷(2×3)
……
97×99=(97×99×101-95×97×99)÷(2×3)
99×101=(99×101×103-97×99×101)÷(2×3)
将等号左右两边分别累加,左边即为所求算式,右边括号里面许多项可以相互抵消。
解:3×5+5×7+7×9+……+97×99+99×101
=(99×101×103-1×3×5)÷(2×3)
=1029882÷6
=171647
例3、计算1×2×3+2×3×4+3×4×5+……+96×97×98+97×98×99
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻三项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为1,因数个数为3。
1×2×3=(1×2×3×4-0×1×2×3)÷(1×4)
2×3×4=(2×3×4×5-1×2×3×4)÷(1×4)
3×4×5=(3×4×5×6-2×3×4×5)÷(1×4)
……
96×97×98=(96×97×98×99-95×96×97×98)÷(1×4)
97×98×99=(97×98×99×100-96×97×98×99)÷(1×4)
右边累加,括号内相互抵消,整个结果为(97×98×99×100-0×1×2×3)÷(1×4)。
解:1×2×3+2×3×4+3×4×5+…+96×97×98×+97×98×99
=(97×98×99×100-0×1×2×3)÷(1×4)
=23527350
例4、计算10×16×22+16×22×28+……+70×76×82+76×82×88
分析:算式的特点为:数列公差为6,因数个数为3。
解:10×16×22+16×22×28+……+70×76×82+76×82×88
=(76×82×88×94-4×10×16×22)÷(6×4)
=2147376
通过以上例题,可以看出这类算式的特点是:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
将以上叙述可以概括一个口诀是:等差数列数,依次取几个。所有积之和,裂项来求作。后延减前伸,差数除以N。N取什么值,两数相乘积。公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
例5、计算1×1+2×2+3×3+……+99×99+100×100
分析:n×n=(n-1)×n+n
解:1×1+2×2+3×3+……+99×99+100×100
=1+(1×2+2)+(2×3+3)+……+(98×99+99)+(99×100+100)
=(1×2+2×3+……+98×99+99×100)+(1+2+3+……+99+100)
=99×100×101÷3+(1+100)×100÷2
=333300+5050
=338350
例6、计算1×2+3×4+5×6+……+97×98+99×100
分析:(n-1)×n=(n-2)×n+n
解:1×2+3×4+5×6+7×8+……+97×98+99×100
=2+(2×4+4)+(4×6+6)+(6×8+8)+……+(96×98+98)+(98×100+100)
=(2×4+4×6+6×8+……+96×98+98×100)+(2+4+6+8+……+98+100)
=98×100×102÷6+(2+100)×50÷2
=169150
例7、计算1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100