函数定义域值域习题及答案

合集下载

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。

因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。

⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。

然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。

函数定义域 值域 习题及答案

函数定义域 值域 习题及答案

函数定义域值域习题及答案Last revision on 21 December 2020复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = 三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

函数的定义域与值域及单调性最值(含答案)

函数的定义域与值域及单调性最值(含答案)

函数的定义域、值域1.函数y=xx x +-)1(的定义域为 (A.{x|x ≥0}B.{x|x ≥1}C.{x|x ≥1}∪{0}D.{x|0≤x ≤1}答案C2.函数f(x)=3x (0<x ≤2) )A.(0,+∞)B.(1,9C.(0,1)D.[9,+∞)答案B14.设f(x)=lg xx -+22,则f )2()2(xf x +的定义域为 (A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)答案B11.若函数f(x)的定义域是[0,1],则f(x+a)·f(x-a)(0<a <21)的定义域是 (A.∅B.[a ,1-aC.[-a ,1+aD.[0,1答案B17.函数f(x)=)1(log 1|2|2---x x 的定义域为答案 [3,+18.若函数y=lg(4-a ·2x )的定义域为R ,则实数a 的取值范围为答案 a ≤7.设函数y=f(x)的定义域为[0,1],求下列函数的定义域.(1)y=f(3x); (2)y=f(x1);(3)y=f()31()31-++x f x ;(4)y=f(x+a)+f(x-a).解 (1)0≤3x ≤1,故0≤x ≤31, y=f(3x)的定义域为[0, 31].(2)仿(1)解得定义域为[1,+∞).(3)由条件,y 的定义域是f )31(+x 与)31(-x 定义域的交集.列出不等式组,32313431323113101310≤≤⇒⎪⎪⎩⎪⎪⎨⎧≤≤≤≤-⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤x x x x x故y=f )31()31(-++x f x 的定义域为⎥⎦⎤⎢⎣⎡32,31.(4)由条件得,111010⎩⎨⎧+≤≤-≤≤-⇒⎩⎨⎧≤-≤≤+≤ax a ax a a x ax①当⎩⎨⎧+≤--≤,11,1a a a a 即0≤a ≤21时,定义域为[a,1-a ]; ②当⎩⎨⎧+≤--≤,1,a a a a 即-21≤a ≤0时,定义域为[-a,1+a ].综上所述:当0≤a ≤21时,定义域为[a ,1-a当-21≤a ≤0时,定义域为[-a ,1+a ].10.(1)y=212)2lg(x x x -+-+(x-1)0; (2)y=)34lg(2+x x +(5x-4)0;(3)y=225x -+lgcosx; (4)y=lg(a x -k ·2x ) (a >0).解 (1)由⎪⎩⎪⎨⎧≠->-+>-01,012022x x x x 得⎪⎩⎪⎨⎧≠<<-<1,432x xx所以-3<x <2且x ≠ 1.故所求函数的定义域为(-3,1)∪(1,2).(2)由⎪⎩⎪⎨⎧≠-≠+>+045,134034x x x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠->54,2143x xx∴函数的定义域为).,54()54,21(21,43+∞-⎪⎭⎫ ⎝⎛--(3)由⎩⎨⎧>≥-0cos 0252x x ,得,)(222255⎪⎩⎪⎨⎧∈+<<-≤≤-Z k k x k x ππππ.5,23)2,2(23,5⎥⎦⎤ ⎝⎛-⎪⎭⎫⎢⎣⎡--ππππ (4)由a x -k ·2x >0)2(a ⇔x >k (a >0).若k ≤0,∵(2a )x >0,∴x ∈R .若k >0,则当2a >1,即a >2函数的定义域为{x|x >log 2ak};当0<2a <1,即0<a <2函数的定义域为{x|x <log 2a k};当2a =1,即a=2则有1x >k ,若0<k <1,则函数的定义域为R若k ≥1,则x ∈∅,即原式无意义. 19.(1)求函数f(x)=229)2(1x x xg --(2)已知函数f(2x )的定义域是[-1,1],求f(log 2x)的定义域.解 (1,3302,090222⎩⎨⎧<<-<>⎩⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y=f(2x )的定义域是[-1,1],即-1≤x ≤1,∴21≤2x ≤2.∴函数y=f(log 2x)中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f(log 2x)的定义域为[2,4]2.若函数f(x)=loga (x+1)(a >0且a ≠1)的定义域和值域都是[0,1],则a 等于 (A.31 B.2 C.22 D.2答案D4.函数y=xx 1-的值域是 (A.⎥⎦⎤⎢⎣⎡-21,21 B.⎥⎦⎤⎢⎣⎡21,0 C.[0,1D.[0,+答案B5.若函数y=x 2-3x-4的定义域为[0,m ],值域为⎥⎦⎤⎢⎣⎡--4,425,则m 的取值范围是 (A.⎪⎭⎫⎝⎛3,23 B.⎥⎦⎤⎢⎣⎡3,23 C.(0,3D.⎪⎭⎫⎢⎣⎡3,23答案B15.设f(x)=⎩⎨⎧<≥,1||,,1||,2x x x x g(x)是二次函数,若f(g(x))的值域是[0,+∞),则g(x )的值域是 ( )A.(-∞,-1]∪[1,+B.(-∞,-1]∪[0,+C.[0,+D.[1,+答案C16.定义域为R 的函数y=f(x)的值域为[a ,b ],则函数y=f(x+a)的值域为 ( )A.[2a ,a+b ]B.[a ,b ]C.[0,b-aD.[-a ,a+b答案B8.(1)y=;122+--x x xx (2)y=x-x21-; (3)y=1e 1e +-x x .解 (1)方法一∵y=1-,112+-x x 而,4343)21(122≥+-=+-x x x∴0<,34112≤+-x x ∴.131<≤-y ∴值域为⎪⎭⎫⎢⎣⎡-1,31. 方法二 (判别式法) 由y=,122+--x x xx 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0.∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31.22222222 (2)方法一定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y ≤.21212121=⨯--∴函数的值域为⎥⎦⎤⎝⎛∞-21,.方法二令x21-=t,则t ≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t ≥0),∴y ∈(-∞,21].(3)由y=1e 1e+-xx 得,e x =.11yy -+∵e x >0,即yy -+11>0,解得-1<y <1.∴函数的值域为{y|-1<y <1}.12.(1)y=521+-x x; (2)y=|x|21x -.解(1)(分离常数法)y=-)52(2721++x ,∵)52(27+x ≠0, ∴y ≠-21.故函数的值域是{y|y ∈R ,且y ≠-21}.(2)方法一 (换元法)∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|,故函数值域为[0,21].方法二 y=|x|·,41)21(122242+--=+-=-x x x x∴0≤y ≤,21即函数的值域为⎥⎦⎤⎢⎣⎡21,0.9.若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.解 ∵f (x )=21(x-1)2+a-21 2∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间 4∴f (x )min =f (1)=a-21=1 ① 6f (x )max =f (b )=21b 2-b+a=b ② 8分由①②解得⎪⎩⎪⎨⎧==.3,23b a 12分13.已知函数f(x)=x 2-4ax+2a+6 (x ∈R ). (1)求函数的值域为[0,+∞)时的a(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a+6)=0⇒2a 2-a-3=0∴a=-1或a=23.(2)对一切x ∈R ,函数值均非负,∴Δ=8(2a 2-a-3)≤0⇒-1≤a ≤23,∴a+3>0,∴f(a)=2-a(a+3)=-a 2-3a+2=-(a+23)2+417(a ⎥⎦⎤⎢⎣⎡-∈23,1).∵二次函数f(a)在⎥⎦⎤⎢⎣⎡-23,1上单调递减,∴f (a )min =f )23(=-419,f (a )max =f (-1)=4,∴f(a)的值域为⎥⎦⎤⎢⎣⎡-4,419.20.已知二次函数f(x )的二次项系数为a,且不等式f(x)>-2x 的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)(2)若f(x)的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3 则可令f(x)+2x=a(x-1)(x-3),且a <0,f(x)=a(x-1)(x-3)-2x=ax 2-(2+4a)x+3①由方程 f(x)+6a=0得 ax 2-(2+4a)x+9a=0,②∴Δ=[-(2+4a )]2-4a ·9a=0,即5a 2-4a-1=0,解得a=1或a=-51.由于a <0,舍去a=1.将a=-51代入①式,得f(x)f(x)=- 51x 2-56x-53.(2)由f(x)=ax 2-2(1+2a)x+3a=a aa a aa x 14)21(22++-+-,及a <0,可得f(x)的最大值为-,142a a a ++由⎪⎩⎪⎨⎧<>++-,0,0142a a a a解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).函数的单调性与最大(小)值1.已知函数y=f(x)是定义在R 上的增函数,则下列对f(x)=0的根说法不正确的是 (填序号) ①有且只有一个 ②有2答案 ①②2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号). ①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①③2. 已知f(x)是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f(x)=x 2+(a 2-4a+1)x+2在区间(-∞,1]上是减函数,则a 的取值范围是 . 答案 [1,3]4.若函数f(x)是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)<2f(4)的解集为 . 答案 (0,2)5.已知函数f(x)=x 2-2x+3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]1.函数f(x)=ln(4+3x-x 2)的单调递减区间是 . 答案 [23,43.函数y=lg(x 2+2x+m)的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f(x)(x ∈R )的图象如下图所示,则函数g(x)=f(log a x) (0<a <1)的单调减区间是 . 答案 [a,1]5.已知f(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31)6.若函数f(x)=(m-1)x 2+mx+3 (x ∈R )是偶函数,则f(x)的单调减区间是 .答案 [0,+∞)7.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是 答案 (-)32,21例1已知函数f(x)=a x +12+-x x (a >1).证明:函数f(x)在(-1,+∞)上为增函数. 证明 方法一 任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,12x x a ->1且a 1x >0, ∴a ,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0, ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122*********++-=+++--+-=+--+-x x x x x x x x x x x x x x >0,于是f(x 2)-f(x 1)=a 12x x a -+12121122+--+-x x x x >0,故函数f(x)在(-1,+∞)上为增函数.方法二 f(x)=a x +1-13+x (a >1),求导数得f ′(x)=a x lna+2)1(3+x ,∵a >1,∴当x >-1时,a x lna >0,2)1(3+x >0,f ′(x)>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上为增函数.方法三 ∵a >1,∴y=ax又y=13112+-+=+-x x x ,在(-1,+∞)上也是增函数.∴y=a x +12+-x x 在(-1,+∞)上为增函数.例2判断函数f(x)=12-x 在定义域上的单调性.解 函数的定义域为{x|x ≤-1或x ≥1},则f(x)=12-x ,可分解成两个简单函数.f(x)=)(,)(x u x u =x2-1的形式.当x ≥1时,u(x)为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x)为减函数,)(xu∴f(x)=12-x 在(-∞,-1]上为减函数.9.已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.解 根据题意,由f(3)=1,得f(9)=f(3)+f(3)=2.又f(x)+f(x-8)=f [x(x-8)],故f [x(x-8)]≤f(9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f(x)对任意的实数m 、n 有f(m+n)=f(m)+f(n),且当x >0时有f(x)>0.(1)求证:f(x)在(-∞,+∞)(2)若f(1)=1,解不等式f [log 2(x 2-x-2)]<2.(1)证明 设x 2>x 1,则x 2-x 1>0.∵f(x 2)-f(x 1)=f(x 2-x 1+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0, ∴f(x 2)>f(x 1),f(x)在(-∞,+∞)上为增函数. (2)解 ∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2).又f [log 2(x 2-x-2)]<2,∴f [log 2(x 2-x-2)]<f(2).∴log 2(x2-x-2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x|-2<x <-1或2<x <3}.例4函数f(x)对任意的a 、b ∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)> 1. (1)求证:f(x)是R(2)若f(4)=5,解不等式f(3m 2-m-2)<3.解 (1)设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,∴f(x 2-x 1)>1. 2f(x 2)-f(x 1)=f((x 2-x 1)+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. 5分 ∴f (x 2)>f(x 1).即f(x)是R 上的增函数. 7分(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5∴f (2)=3, 10分∴原不等式可化为f(3m 2-m-2)<f(2),∵f(x)是R 上的增函数,∴3m 2-m-2<2, 12分解得-1<m <34,故解集为(-1, 34).2.求函数y=21log (4x-x 2)的单调区间.解 由4x-x 2>0,得函数的定义域是(0,4).令t=4x-x 2,则y= 21log t.∵t=4x-x 2=-(x-2)2+4,∴t=4x-x 2的单调减区间是[2,4),增区间是(0,2]. 又y=21log t 在(0,+∞)上是减函数,∴函数y=21log (4x-x 2)的单调减区间是(0,2],单调增区间是[2,4).4.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)(2)判断f(x(3)若f(3)=-1,解不等式f(|x|)<-2.解 (1)令x 1=x 2>0,代入得f(1)=f(x 1)-f(x 1)=0,故f(1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1,由于当x >1时,f(x)<0,所以f )(21x x <0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2),所以函数f(x)在区间(0,+∞)上是单调递减函数.(3)由f(21x x )=f(x 1)-f(x 2)f()39=f(9)-f(3),而f(3)=-1,所以f(9)=-2.由于函数f(x)在区间(0,+由f(|x|)<f(9),得|x|>9,∴x >9或x <-9.因此不等式的解集为{x|x >9或x <-9}. 12.已知函数y=f(x)对任意x,y ∈R 均有f(x)+f(y)=f(x+y),且当x >0时,f(x)<0,f(1)=- 32.(1)判断并证明f(x)在R(2)求f(x)在[-3,3]上的最值. 解 (1)f(x)在R令x=y=0,f(0)=0,令x=-y 可得:f(-x)=-f(x),在R 上任取x 1<x 2,则x 2-x 1>0,∴f(x 2)-f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).又∵x >0时,f(x)<0,∴f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上为单调递减函数.(2)∵f(x)在R∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-)32=-2.∴f(-3)=-f(3)=2.即f(x)在[-3,3]上最大值为2,最小值为-2. 例3(1)y=4-223x x -+;(2)y=2x-x21-;(3)y=x+x4;(4)y=4)2(122+-++x x .解 (1)由3+2x-x 2≥0得函数定义域为[-1,3],又t=3+2x-x 2=4-(x-1)2.∴t ∈[0,4],t∈[0,2],从而,当x=1时,y min =2,当x=-1或x=3时,y max =4.故值域为[2,4].(2) 方法一 令x21-=t(t ≥0),则x=212t -.∴y=1-t 2-t=-(t+)212+45.∵二次函数对称轴为t=-21,∴在[0,+∞)上y=-(t+)212+45故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y=2x 与y=-x21-均为定义域上的增函数,∴y=2x-x21-是定义域为{x|x ≤21}上的增函数,故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1].(3)方法一 函数y=x+x4是定义域为{x|x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值.∴当x >0时,y=x+x4≥2xx 4⋅=4,等号当且仅当x=2时取得.当x <0时,y ≤-4,等号当且仅当x=-2时取得. 综上函数的值域为(-∞,-4]∪[4,+∞),无最值.方法二 任取x 1,x 2,且x 1<x 2,因为f(x 1)-f(x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f(x)递增,当-2<x <0或0<x <2时,f(x)递减.故x=-2时,f(x)最大值=f(-2)=-4,x=2时,f(x)最小值=f(2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值.(4y=2222)20()2()10()0(++-+-+-x x ,可视为动点M (x,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点.y min =|AB|=13)21()20(22=++-,可求得x=32时,y min =13.显然无最大值.故值域为[13,+∞). 1.讨论函数f (x )=x+xa (a >0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,f(x 1)-f(x 2) =(x 1+1x a)-(x 2+2x a )=(x 1-x 2)·(1-21x x a).∴当0<x 2<x 1≤a时,21x x a >1,则f (x 1)-f (x 2)<0,即f(x 1)<f(x 2),故f (x )在(0,a]上是减函数.当x 1>x 2≥a时,0<21x x a <1,则f (x 1)-f (x 2)>0,即f(x 1)>f(x 2),故f (x )在[a,+∞)上是增函数.∵f (x∴f(x)分别在(-∞,-a]、[a,+∞)上f(x)分别在[-a,0)、(0,a]上为减函数.a=0可得x=±a方法二由f ′(x)=1-2x当x>a时或x<-a时,f ′(x)>0,∴f(x)分别在(a,+∞)、(-∞,-a]上是增函数.同理0<x<a或-a<x<0时,f′(x)<0即f(x)分别在(0,a]、[-a,0)上是减函数.。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知函数f(x)=(a≠1).(1)若a>0,则f(x)的定义域是________;(2)若f(x)在区间(0,1]上是减函数,则实数a的取值范围是________.【答案】(1)(-∞,](2)(-∞,0)∪(1,3]【解析】(1)当a>0且a≠1时,由3-ax≥0得x≤,即此时函数f(x)的定义域是(-∞,].(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.当a-1<0,即a<1时,要使f(x)在(0,1]上为减函数,则需-a>0,此时a<0.综上a的取值范围(-∞,0)∪(1,3].2.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.3.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.4. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.已知则的值为【解析】由题意有,解得,∴原式=.【考点】函数的定义域.9.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>110.求下列函数的值域:(1) y=x-;(2) y=x2-2x-3,x∈(-1,4];(3) y=,x∈[3,5];(4) y= (x>1).【答案】(1)(2)[-4,5].(3)(4)[2-2,+∞).【解析】(1) (换元法)设=t,t≥0,则y= (t2+2)-t=2-,当t=时,y有最小值-,故所求函数的值域为.(2) (配方法)配方,得y=(x-1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y==2-,结合图象知,函数在[3,5]上是增函数,所以ymax =,ymin=,故所求函数的值域是.(解法2)由y=,得x=.因为x∈[3,5],所以3≤≤5,解得≤y≤,即所求函数的值域是.(4) (基本不等式法)令t=x-1,则x=t+1(t>0),所以y==t+-2(t>0).因为t+≥2=2,当且仅当t=,即x=+1时,等号成立,故所求函数的值域为[2-2,+∞).11.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域是(用区间表示);【答案】【解析】由得,所以定义域为.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3.设函数f(x)= (x+|x|),则函数f[f(x)]的值域为________.【答案】[0,+∞)【解析】先去绝对值,当x≥0时,f(x)=x,故f[f(x)]=f(x)=x,当x<0时,f(x)=0,故f[f(x)]=f(0)=0,即f[f(x)]=易知其值域为[0,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.设a,b为实数,关于x的方程的4个实数根构成以d为公差的等差数列,若,则的取值范围是 .【答案】【解析】设4个实数根依次为,由等差数列性质,不妨设为的两个实数根,则为方程的两个根,由韦达定理,即,又,,故,∴,即的取值范围是.【考点】等差数列的性质、函数值域.6.江西高考函数y=ln(1-x)的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]【答案】B【解析】由得,函数定义域为[0,1).7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.函数的定义域为( )A.B.C.D.【答案】C【解析】要使函数有意义,则有,即,所以,即函数定义域为,选C.9.已知,对,使成立,则a的取值范围是( )A.[-1,+)B.[-1,1]C.(0,1]D.(-,l]【答案】B【解析】解:由题意知函数的值域是函数的值域的子集;因为当时,当时,所以函数的值域是所以,解得:故选B.【考点】1、分段函数;2、函数的值域;3、等价转化的思想.10.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式11.函数()的最大值等于 .【答案】4【解析】因为对称轴为,所以函数在[-1,1]上单调递增,因此当时,函数取最大值4.【考点】二次函数最值12.函数的定义域为________.【答案】【解析】依题意可得.即.【考点】1.函数的定义.2.对数函数的知识.13.已知函数f(x)=lg(k∈R,且k>0).(1)求函数f(x)的定义域;(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.【答案】(1)当0<k<1时,函数定义域为;当k≥1时,函数定义域为.(2)【解析】(1)由>0,k>0,得>0,当0<k<1时,得x<1或x>;当k=1时,得x∈R且x≠1;当k>1时,得x<或x>1.综上,当0<k<1时,函数定义域为;当k≥1时,函数定义域为.(2)由函数f(x)在[10,+∞)上单调递增,知>0,∴k>.又f(x)=lg=lg,由题意,对任意的x1、x2,当10≤x1<x2,有f(x1)<f(x2),即lg<lg,得<(k-1)(-)<0.∵x1<x2,∴>,∴k-1<0,即k<1.综上可知,k的取值范围是.14.若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.【答案】[0,1)【解析】由得0≤x<1,即定义域是[0,1).15.函数f(x)=的定义域为()A.(0,+∞)B.(1,+∞) C.(0,1)D.(0,1)∪(1,+∞)【答案】D【解析】由得∴0<x<1或x>1,故选D.16.已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是() A.[0,]B.[-1,4]C.[-5,5]D.[-3,7]【答案】A【解析】【思路点拨】先求y=f(x)的定义域,再求y=f(2x-1)的定义域. 解:由-2≤x≤3,得-1≤x+1≤4,由-1≤2x-1≤4,得0≤x≤,故函数y=f(2x-1)的定义域为[0,].17.已知函数f(x)=.(1)求函数f(x)的定义域;(2)设α是第四象限的角,且tan α=-,求f(α)的值.【答案】(1)(2)【解析】(1)函数f(x)要有意义需满足cos x≠0,解得x≠+kπ(k∈Z),即f(x)的定义域为(2)f(x)====2(cos x-sin x),由tan α=-,得sin α=-cos α,又∵sin2α+cos2α=1,∴cos2α=.∵α是第四象限的角,∴cos α=,sin α=-,∴f(α)=2(cos α-sin α)=18.函数f(x)=的定义域是()A.[-3,3]B.[-,]C.(1,]D.[-,1)∪(1,]【答案】D【解析】由题意知所以-≤x≤且x≠119.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.20.已知是定义在上的奇函数,则的值域为 .【答案】【解析】由奇函数性质知其定义域关于原点对称,值域也关于原点对称.首先求出参数,可利用特殊值法,奇函数,得.时,,,则,因此值域为.【考点】奇函数的性质与函数的值域.21.设函数,且,表示不超过实数的最大整数,则函数的值域是__________.【答案】.【解析】由题意,,,当时,;当时,;当时,.【考点】函数解析式.22.已知函数的定义域为,值域为.下列关于函数的说法:①当时,;②将的图像补上点,得到的图像必定是一条连续的曲线;③是上的单调函数;④的图象与坐标轴只有一个交点.其中正确命题的个数为()A.1B.2C.3D.4【答案】B【解析】设函数的图象如图根据图形知,①②③错误,④正确. 选B【考点】函数的定义域、值域,函数的图象性质.23.已知方程在上有解,则实数的取值范围为.【答案】【解析】由,参变分离得,记,且,所以,即,故实数的取值范围为.【考点】二次函数的值域.24.函数的值域为 .【答案】【解析】当时,,当且仅当时,等号成立;当时,,当且仅当时等号成立,综上知,函数的值域为.【考点】基本不等式,函数的值域.25.设函数,则下列结论错误的是()A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数【答案】C【解析】因为,,所以,函数的值域为{0,1};因为,是有理数或无理数时,依然为有理数或无理数,所以,函数值不变,即D(x)是偶函数;因为,==,所以,为其一个周期,故C错,选C.【考点】函数的性质26.下列函数中,值域为的函数是( )A.B.C.D.【答案】C【解析】确定函数的值域,应首先关注函数的定义域.根据指数函数的性质可知的值域为,故选C.【考点】函数的定义域、值域,常见函数的性质.27.函数的定义域是()A.B.C.D.【答案】C【解析】自变量满足,解得且,故函数的定义域是,故选C.【考点】函数的定义域28.函数f(x)=-x4+2x2+3的最大值为.【答案】4【解析】令,则,则当时,取最大值4.【考点】换元法求值域.29.设,函数有意义, 实数取值范围 .【答案】【解析】由题意得,对都成立,当时,显然成立,或当即时不等式也成立,所以实数取值范围.【考点】对数函数的定义域、一元二次不等式.30.函数的定义域为 .【答案】【解析】由,得且.所以定义域为.【考点】定义域的求法、解不等式31.函数的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)(1,+)【答案】B【解析】根据题意,由于对数真数大于零,偶次根号下为非负数,则可知,故可知答案为(1,+∞),选B.【考点】函数定义域点评:主要是考查了函数定义域的求解,属于基础题。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】由已知有,故答案为:(0,1)(1,+).【考点】函数的定义域.2.函数的定义域是(用区间表示);【答案】【解析】由得,所以定义域为.【考点】函数的定义域.3.函数的定义域为()A.B.C.D.【答案】D【解析】由1-x≥0且x>0可得0<x≤1,选D【考点】函数的定义域4.某同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是________.【答案】x= [,+1]【解析】显然当点P为线段BC的中点时,A,P,F三点共线,此时AP=PF,且函数f(x)取得最小值,函数f(x)的图像的对称轴为x=;当x∈[0,]时,函数f(x)单调递减,且值域为[,+1];当x∈[,1]时,函数f(x)单调递增,且值域为[,+1],∴函数f(x)的值域为[,+1].5.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若∀x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.【答案】(1)奇函数(2)见解析(3)[-6,6](4)(,+∞)【解析】解:(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),∴f(-x)=-f(x)对任意x∈R恒成立,∴f(x)为奇函数.(2)证明:任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,∴f(x2)<-f(-x1),又f(x)为奇函数,∴f(x1)>f(x2).∴f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,∴对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),∵f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,∴f(-3)=-f(3)=6,f(x)在[-3,3]上的值域为[-6,6].(4)f(x)为奇函数,整理原式得f(ax2)+f(-2x)<f(x)+f(-2),则f(ax2-2x)<f(x-2),∵f(x)在(-∞,+∞)上是减函数,∴ax2-2x>x-2,当a=0时,-2x>x-2在R上不是恒成立,与题意矛盾;当a>0时,ax2-2x-x+2>0,要使不等式恒成立,则Δ=9-8a<0,即a>;当a<0时,ax2-3x+2>0在R上不是恒成立,不合题意.综上所述,a的取值范围为(,+∞).6.已知函数的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为()A.7B.8C.9D.10【答案】C【解析】由题意知f(x)=x2+ax+b=∵f(x)的值域为[0,+∞),∴,即,∴f(x)=又∵f(x)<c. ∴,即∴解得,∴c=9,选C.7.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.8.已知的定义域为,则函数的定义域为 ( )A.B.C.D.【答案】B【解析】因为,的定义域为,所以,由,得,,所以,函数的定义域为,选B.【考点】函数的定义域9.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].10.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.11.函数f(x)=的定义域为______.【答案】(0,]【解析】由题意所以x∈(0,]12.若函数的定义域为,则实数的取值范围为 .【答案】【解析】据题意,不等式恒成立,所以.又,所以.【考点】不等式选讲.13.下列函数在定义域内为奇函数,且有最小值的是A.B.C.D.【答案】D【解析】,且【考点】函数的奇偶性和值域.14.函数的定义域是.【答案】【解析】函数的定义域就是使函数式有意义的自变量的取值集合,如分母,偶次根式的被开方数,零次幂的底数等等,此外还有基本初等函数本身定义域的要求,如本题中有,解得.【考点】函数的定义域.15.函数的定义域是_________________________【答案】(-1,1)【解析】由题意可得,,解得,故函数的定义域是.【考点】函数的定义域.16.设函数(1)当时,求函数的定义域;(2)若函数的定义域为R,试求的取值范围.【解析】(1)不等式的解集就是函数的定义域,在同一直角坐标系中,分别作出①和②的图像,①的图象落在②的图象上方的部分所对应的的范围就是不等式的解集;(2)等价于在实数范围内恒成立,只需函数的最小值大于等于.试题解析:(1)由题设知:,在同一坐标系中作出函数和的图象,知定义域为.(2)由题设知,当时,恒有,即,又由(1),∴【考点】1、绝对值不等式的解法;2、函数的定义域.17.函数的定义域是,则其值域为()A.B.C.D.【答案】A.【解析】由于函数在和上都是减函数,当时,;当时,,所以函数的值域为,故选A.【考点】1.函数的值域求法;2.还是的单调性.18.已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域.【答案】(1);(2)函数的值域为【解析】(1)由奇函数的定义可知,结合解析式可求,又由函数的图像经过点(1,3),代入解析式可求得得;(2)由(1)知,从而可由分类讨论的思想,分和两种情况对函数的值域进行讨论,利用基本不等式可得函数的值域为.本题注意分类讨论的思想方法的应用,易错点是基本不等式运用时的条件容易忽略.试题解析:(1)函数是奇函数,则(3分)又函数的图像经过点(1,3),∴a=2 (6分)(2)由(1)知(7分)当时,当且仅当即时取等号(10分)当时,当且仅当即时取等号(11分)综上可知函数的值域为(12分)【考点】1.函数解析式的求法;2.函数的值域的求法;3.基本不等式的应用19.函数的值域是______________.【答案】【解析】当时,,所以;当时,.所以函数的值域是.【考点】1.函数的值域及其求法;2.对数函数的值域;3.分段函数的图像与性质20.函数的定义域是,值域是,则符合条件的数组的组数为()A.B.C.D.【答案】B【解析】,故函数在上单调递减,在上单调递增,故函数在处取得最小值,即,若,则,矛盾!故,当时,则函数在上单调递减,于是有,事实上,,而,矛盾!当时,由于函数在上单调递增,故有,即方程在至少有两个解,解方程,即,解得,故,,故选B.【考点】1.分段函数;2.函数的值域21.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.22.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.23.下列函数中,值域是的函数是( )A.B.C.D.【答案】C【解析】 A项,因为,所以函数值域为;B,D项值域为,C项,因为,根据指数函数性质可知其值域为,选C.【考点】函数的值域.24.函数的定义域是 ___________.【答案】【解析】依题意得解得函数的定义域为.【考点】函数的定义域.25.函数的定义域为 .【答案】【解析】由,得且.所以定义域为.【考点】定义域的求法、解不等式26.函数的定义域为_______________.【答案】【解析】由题意得,解得,所以所求函数的定义域为.【考点】1.函数的定义域;2.一元二次不等式的解法.27.函数的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)(1,+)【答案】B【解析】根据题意,由于对数真数大于零,偶次根号下为非负数,则可知,故可知答案为(1,+∞),选B.【考点】函数定义域点评:主要是考查了函数定义域的求解,属于基础题。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。

(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案

高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。

又因为分式中有$x-1$的项,所以还要满足$x\neq1$。

所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。

⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。

所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。

⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。

分式中有$x-1$的项,所以还要满足$x\neq1$。

分母不能为0,所以$x\neq\pm\sqrt{2}$。

所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。

2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。

3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。

4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。

由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。

解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案

函数定义域、值域经典习题及答案1、求函数的定义域⑴ $y=\frac{x^2-2x-15}{x+3-3}$,化简得 $y=\frac{x-5}{x-3}$,所以定义域为 $(-\infty,-3)\cup(3,5)\cup(5,\infty)$。

⑵$y=1-\frac{1}{x-1}$,要使分母不为0,所以$x\neq1$,即定义域为 $(-\infty,1)\cup(1,\infty)$。

⑶ $y=\frac{1}{1+x-1}+\frac{2x-1+4-x^2}{2}$,化简得$y=\frac{5-2x-x^2}{2(1+x-1)}=\frac{-x^2-2x+5}{2x}$,要使分母不为0,所以 $x\neq0$,即定义域为 $(-\infty,0)\cup(0,\infty)$。

2、设函数 $f(x)$ 的定义域为 $[-1,1]$,则 $f(x^2)$ 的定义域为 $[0,1]$,$f(x-2)$ 的定义域为 $[-3,-1]$。

若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则 $f(2x-1)$ 的定义域为 $[-\frac{1}{2},2]$,$f(-2)$ 的定义域为 $[-3,-1]$。

3、根据复合函数的定义,要使 $f(x+1)$ 有定义,$x+1$ 必须在定义域 $[-2,3]$ 中,即 $-2\leq x+1\leq 3$,解得$-4\leq x\leq 2$。

同理,要使 $f(2x-1)$ 有定义,$2x-1$ 必须在$[-2,3]$ 中,即 $-\frac{1}{2}\leq 2x-1\leq 3$,解得 $-\frac{1}{2}\leq x\leq 2$。

要使 $f(-2)$ 有定义,$-2$ 必须在 $[-2,3]$ 中,即 $-2\leq -2\leq 3$,显然成立。

根据 $f(x)$ 的定义域为 $[-1,1]$,$f(x+m)$ 和 $f(x-m)$ 的定义域也必须在 $[-1,1]$ 中,即 $-1\leq x+m\leq 1$,$-1\leq x-m\leq 1$,解得 $-m-1\leq x\leq m-1$。

高中数学求函数定义域和值域专题训练含答案

高中数学求函数定义域和值域专题训练含答案

高中数学求函数定义域和值域专题训练含答案姓名:__________ 班级:__________考号:__________一、填空题(共1题)1、已知函数的定义域为,值域是,则的值域是,的定义域是.二、计算题(共8题)1、试求下列函数的定义域与值域:(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};2、试求下列函数的定义域与值域:f(x)=(x-1)2+1;3、试求下列函数的定义域与值域:f(x)=;4、试求下列函数的定义域与值域:f(x)=x-.5、求下列函数的定义域:6、求下列函数的定义域:7、已知函数其定义域为[0,2][8,10].(1)当t=2时,求函数的值域;(2)当t=2时,求函数的反函数;(3)当在定义域内有反函数时,求t的取值范围.8、已知函数(1)求的定义域;(2)求的值域;(3)设为锐角,且,求的值。

三、解答题(共11题)1、(1)求函数的定义域;(2)若函数的定义域为,求函数的定义域;(3)求函数的值域.2、(1)求函数的定义域;(2)求函数的值域;(3)已知函数的值域为,求的值.3、(1)求函数的定义域。

(2)求函数的值域。

4、若,函数(其中)(1)求函数的定义域;(2)求函数的值域5、已知函数f(x)=lg(x-1).(1)求函数f(x)的定义域和值域;(2)证明f(x)在定义域上是增函数.6、求函数y=的定义域与值域;7、设函数(1) 求f(x)的定义域(2) 求函数f(x)的值域8、(1)设全集,集合,若,求;(2)求函数的定义域和值域.9、已知函数,(1)若函数定义域为,求的值;(2)若函数值域为,求的值;(3)若在单调递增,求的取值范围;10、求下列函数的定义域和值域:11、求下列函数的定义域和值域;============参考答案============一、填空题1、二、计算题1、 (1)函数的定义域为{-1,0,1,2,3},则f(-1)=[(-1)-1]2+1=5,同理可得f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以函数的值域为{1,2,5}.2、函数的定义域为R,因为(x-1)2+1≥1,所以函数的值域为{y|y≥1}..;3、函数的定义域是{x|x≠1},y==5+,所以函数的值域为{y| y≠5}.4、)要使函数式有意义,需x+1≥0,即x≥-1,故函数的定义域是{x|x≥-1}.设t=,则x=t2-1(t≥0),于是f(t)=t2-1-t=(t-)2-.又因为t≥0,故f(t)≥-.所以函数的值域是{y|y≥-}.5、6、7、解:(1)当t=2时,在[0,2]上为单调减函数,此时的取值范围是[-3,1]在[8,10]上为单调递增函数,此时的取值范围是[33,61]的值域是[-3,1][33,61].(2)当时,得当得.互换x, y,得所求反函数为.(3)由于所以当的定义域内有反函数时,结合图像知有以下情况:(Ⅰ);(Ⅱ)当其中由则(Ⅱ中)综上所述,所求t的取值范围是。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域是()A.B.C.D.【答案】D【解析】由得且,选.【考点】函数的定义域.2.函数的图像为【答案】D【解析】因为=,其图像为D.【考点】对数恒等式,分类整合思想,常见函数图像,分段函数3. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).4. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].5.函数的定义域是.【答案】【解析】根据偶次根式下被开方数非负得:,因此函数的定义域是.【考点】函数定义域6.(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.【答案】(1)y=2π•,(0,2](2)【解析】(1)由体积V=,解得l=,∴y=2πrl×3+4πr2×c=6πr×+4cπr2=2π•,又l≥2r,即≥2r,解得0<r≤2∴其定义域为(0,2].(2)由(1)得,y′=8π(c﹣2)r﹣,=,0<r≤2由于c>3,所以c﹣2>0当r3﹣=0时,则r=令=m,(m>0)所以y′=①当0<m<2即c>时,当r=m时,y′=0当r∈(0,m)时,y′<0当r∈(m,2)时,y′>0所以r=m是函数y的极小值点,也是最小值点.②当m≥2即3<c≤时,当r∈(0,2)时,y′<0,函数单调递减.所以r=2是函数y的最小值点.综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=7. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).8.函数的定义域为__________。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】D【解析】由1-x≥0且x>0可得0<x≤1,选D【考点】函数的定义域2.函数f(x)=e x(sinx+cosx)在区间[0,]上的值域为()【答案】A【解析】f′(x)=e x(sinx+cosx)+e x·(cosx-sinx)=e x cosx,当0≤x≤时,f′(x)≥0,且只有在x=时,f′(x)=0,∴f(x)是[0,]上的增函数,3.已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).(1)求函数f(x)的表达式,并求其定义域;(2)当a=时,求函数f(x)的值域.【答案】(1)x∈[0,a],(a>0)(2)[,]【解析】解:(1)f(x)=,x∈[0,a],(a>0).(2)函数f(x)的定义域为[0,],令+1=t,则x=(t-1)2,t∈[1,],f(x)=F(t)==,∵t=时,t=±2∉[1,],又t∈[1,]时,t+单调递减,F(t)单调递增,F(t)∈[,].即函数f(x)的值域为[,].4. f(x)=,f(x)的定义域是________.【答案】[,+∞)【解析】由已知得,∴∴x≥,∴f(x)的定义域为[,+∞).5.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.6.若函数f(x)=x2-2x,g(x)=ax+2(a>0),∀x1∈[-1,2],∃x∈[-1,2],使g(x1)=f(x),则a的取值范围是()A.(0,]B.[,3]C.[3,+∞)D.(0,3]【答案】A【解析】由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2]使得g(x1)=f(x),因此问题等价于函数g(x)的值域是函数f(x)值域的子集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤,又a>0,故a的取值范围是(0,].7.已知函数f(x)=- (a>0,x>0),若f(x)在上的值域为,则a=__________.【答案】【解析】由反比例函数的性质知函数f(x)=- (a>0,x>0)在上单调递增,所以,即解得a=.8. [2013·湖北荆门期末]函数f(x)=ln(+)的定义域为()A.(-∞,-4]∪(2,+∞)B.(-4,0)∪(0,1)C.[-4,0)∪(0,1]D.[-4,0)∪(0,1)【答案】D【解析】要使函数f(x)有意义,必须且只需解得-4≤x<0或0<x<1.故选D.9. [2013·山东青岛调研]已知函数y=f(x2-1)的定义域为[-,],则函数y=f(x)的定义域是________.【答案】[-1,2]【解析】∵y=f(x2-1)的定义域为[-,],∴x∈[-,],x2-1∈[-1,2],∴y=f(x)的定义域为[-1,2].10.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.11.函数的定义域为,其图像上任一点都位于椭圆:上,下列判断①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可能是奇函数;④函数如果是偶函数,则值域是;⑤函数值域是,则一定是奇函数.其中正确的命题个数有()个A.1B.2C.3D.4【答案】C【解析】如图是椭圆的图象,去掉点后,椭圆上每一点都有可能是函数的图象上点,如图象是弧和弧,则不是偶函数;的图象可能取弧,另外在弧上取一段,在弧上取一段,这样既不是奇函数,也不是偶函数;当然也可能是奇函数,也有可能是偶函数;当为偶函数时,值域不一定是,也不一定是;由图象的对称性,及当值域是时,函数一定是奇函数,因此②③⑤正确,选C.【考点】函数的奇偶性的定义.12.函数的定义域为__________。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.3.已知,函数.(1)当时,画出函数的大致图像;(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;(3)试讨论关于x的方程解的个数.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)当a=2时,,作出图象;(2)由(1)写出函数y=f(x)的单调递增区间,再根据单调性定义证明即可;(3)由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数.试题解析:(1)如图所示3分(2)单调递减区间: 4分证明:设任意的5分因为,所以于是,即6分所以函数在上是单调递减函数 7分(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数又,注意到,当且仅当时,上式等号成立,借助图像知 8分所以,当时,函数的图像与直线有1个交点; 9分当,时,函数的图像与直线有2个交点; 10分当,时,函数的图像与直线有3个交点;12分.【考点】1.绝对值的函数;2.函数的值域;3.函数的零点.4.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.5.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.6.函数的定义域为___ _____.【答案】【解析】开偶次方根即,所以.【考点】函数定义域及指数函数.7.函数的定义域为____________;【答案】.【解析】定义域是使函数式有意义的自变量的取值集合..【考点】函数的定义域.8.函数的定义域是______________.【答案】【解析】求定义域就是使式子各部分都有意义;注意定义域写成区间形式.要使有意义则解得且所以定义域为【考点】函数自变量的取值范围.9.已知函数(1)用定义证明在上单调递增;(2)若是上的奇函数,求的值;(3)若的值域为D,且,求的取值范围.【答案】(1)设且则即在上单调递增;(2);(3).【解析】(1)在定义域内任取,证明,即,所以在上单调递增;(2)因为,是上的奇函数,所以,即,代入表达式即可得;(3)可求得的值域,由可得不等式,所以.试题解析:(1)设且 1分则 3分即 5分在上单调递增 6分(2)是上的奇函数8分即11分(用得必须检验,不检验扣2分)(3)由14分的取值范围是 16分【考点】1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.10.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域11.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域12.已知函数是偶函数,那么函数的定义域为()A.B.C.D.【答案】B【解析】由函数是偶函数,可得对称轴,得a= ;即解不等式,解得,故选B.【考点】1、偶函数的性质;2、定义域的求法;3、对数不等式的解法.13.实数是图象连续不断的函数定义域中的三个数,且满足,则在区间的零点个数为()A.2B.奇数C.偶数D.至少是2【答案】D【解析】此题主要考查学生对函数零点存在性定理掌握情况,因为,所以在区间上至少存在一个零点,同理在区间上也至少存在一个零点,又因为、,故正确答案是D.【考点】1.函数定义域;2.函数零点存在性定理.14.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.15.函数的定义域为()A.(0,2]B.(0,2)C.D.【答案】C【解析】由题意知所以,故的定义域为,故选C.【考点】函数的定义域16.函数的定义域是 ( ).A.[-1,+∞)B.(-∞,0)∪(0,+∞)C.[-1,0)∪(0,+∞)D.R【答案】C【解析】函数的定义域就是使函数式有意义的自变量x的取值范围,本题中要求所以正确答案为C.【考点】函数的定义域.17.函数的定义域为【答案】【解析】要使函数有意义需满足【考点】函数定义域点评:函数定义域是使函数有意义的自变量的取值范围或题目中给定的自变量的范围18.已知函数.(1)求它的定义域,值域;(2)判定它的奇偶性和周期性;(3)判定它的单调区间及每一区间上的单调性.【答案】(1)的定义域为,值域为(2)既不是奇函数也不是偶函数(3)单调增区间为[();单调减区间为(().【解析】解:(1)由得又因为0<,所以的定义域为,值域为定义域关于原点不对称,故既不是奇函数也不是偶函数;,其中是周期函数,且最小正周期是.,,,即,,即,,即单调增区间为[();单调减区间为(().【考点】三角函数的性质点评:解决的关键是熟练的运用正弦函数的性质来得到其周期和单调性,属于基础题。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.的定义域为【答案】【解析】要使函数有意义,则需,解得。

【考点】函数定义域的求法,2.函数的定义域为 .【答案】【解析】本题主要考查函数定义域.由,得:,即:;由,得:,所以.【考点】函数定义域,集合的运算.3.函数的定义域是.【答案】【解析】由定义域的求法知,函数的定义域为,解得.【考点】函数定义域的求法.4.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.5.已知函数,则的值域为 .【答案】(-2,1).【解析】当x<1时,0<3x<3,故-2<f(x)=1-3x<1,故f(x)的值域为(-2,1).【考点】函数的值域.6.已知函数,那么的定义域是A.B.C.D.【答案】B【解析】由已知得,所以函数,则有,故函数的定义域为.所以正确答案为B.【考点】1.函数解析式;2.函数的定义域.7.若函数的定义域是,则函数的定义域是()A.B.C.D.【答案】C【解析】利用复合函数的定义域求法,的值域是的定义域,因为函数的定义域是,所以得所以函数的定义域是故选C【考点】函数的定义域及其求法.8.函数的定义域是【答案】【解析】函数有意义,则,所以函数的定义域为.【考点】函数的定义域,对数真数大于0,偶次根式大于等于0.9.函数的定义域为.【答案】【解析】函数的定义域是使函数式有意义的自变量的取值集合,本题中即.【考点】函数的定义域.10.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.11.若,则的定义域为()A.B.C.D.【答案】A【解析】要使函数有意义,则满足解得.【考点】函数的定义域.12.已知函数,且.(1)求的值,并确定函数的定义域;(2)用定义研究函数在范围内的单调性;(3)当时,求出函数的取值范围.【答案】(1),定义域:;(2)上是减函数,上是增函数;(3).【解析】(1)直接代入列出关于的方程即可;(2)要正确理解单调性的定义,明确用定义研究(或证明)函数的单调性的格式过程,设,然后比较和的大小,通常是作差(也可),确定差的正负;(3)由(2)中的单调性,可容易求出函数的取值范围.试题解析:(1),定义域:; 3分(2)令,则,6分故当时,;当时,,∴函数在上单调减,在上单调增; 8分(3)由(2)及函数为奇函数知,函数在为增函数,在为减函数,故当时,, 10分,∴当时,的取值范围是. 12【考点】(1)函数值的意义;(2)函数的单调性的定义;(3)函数的值域.13.函数的定义域是.【答案】【解析】要使函数有意义需满足,解得;所以函数的定义域为【考点】1.函数的定义域;2.指数不等式.14.函数的定义域 .【答案】【解析】由,当时,,得,故定义域为.【考点】函数定义域.15.函数的定义域是_ ____.【答案】【解析】要使函数有意义,需满足,定义域为点评:函数定义域是使函数有意义的自变量的范围或题目中指定的自变量的取值范围16.定义在R上的函数的值域是,又对满足前面要求的任意实数都有不等式恒成立,则实数的最大值为A. 2013B. 1C.D.【答案】A【解析】函数的值域是,,设,是增函数,最小值为恒成立,最大值2013【考点】函数求最值及不等式性质点评:本题主要应用的知识点有:二次函数求最值,均值不等式求最值,利用函数单调性求最值,综合性较强,有一定难度17.函数的值域是__________.【答案】【解析】因为在(0,+)是减函数,所以=-2,故函数的值域是。

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。

3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。

2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。

& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。

3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。

2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域值域习题及
答案
标准化工作室编码[XX968T-XX89628-XJ668-XT689N]
复合函数定义域和值域练习题
一、 求函数的定义域 1、求下列函数的定义域:
⑴33
y x =
+-
(2
)01(21)111
y x x =
+-++
-
2、设函数的定义域为,则函数的定义域为_ _ _;函数
的定义域为________;
3、若函数(1)f x +的定义域为
,则函数(21)f x -的定义域
是 ;函数1(2)f x
+的定义域为 。

4、 已知函数
的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义
域存在,求实数m 的取值范围。

二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈
⑶31
1x y x -=
+ ⑷311
x y x -=+ (5)x ≥

y =
三、求函数的解析式
1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设
()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当
(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1
()()1
f x
g x x +=
-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++
⑵y = ⑶ 261y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =
的递减区间是 五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y ,
)1)(1(2-+=x x y ;

x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52(
)(-=x x f ,
52)(2-=x x f 。

A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、

10、若函数()f x = 3
44
2
++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,4
3]
C 、(4
3,+∞)
D 、[0, 4
3)
11
、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D)
04m <≤
13
、函数()f x = ) A 、[2,2]-
B 、(2,2)-
C 、(,2)(2,)-∞-+∞
D 、{2,2}-
14、函数1()(0)f x x x x
=+≠是( )
A 、奇函数,且在(0,1)上是增函数
B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
,若()3f x =,则x =
17、已知函数21mx n
y x +=+的最大值为4,最小值为 —1 ,则m = ,n =
18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关
于原点对称的图象的解析式为
19、求函数12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。

复合函数定义域和值域练习题
答 案
一、 函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)
1
{|220,,1}2
x x x x x -≤≤≠≠≠且
2、[1,1]-; [4,9]
3、5[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤ 二、 函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3
y ∈
(5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)
y R ∈
(9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、 函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2()21f x x x =--
3、
4
()33
f x x =+
4、()(1
f x x
=- ;(10)
()(10)
x x f x x x ⎧+≥⎪=⎨-<⎪⎩ 5、2
1()1f x x =- 2()1
x
g x x =-
四、 单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3]
(3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1] 8、(,2),(2,)-∞--+∞ (2,2]- 五、 综合题: C D B B D B
14
、(,1]a a -+ 16、4m =± 3n = 17、12
y x =- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- ,
max ()(2)34f x f a ==-
(2)01a <≤时,2min ()()1f x f a a ==-- ,
max ()(2)34f x f a ==-
(3)12a <≤时,2min ()()1f x f a a ==-- ,max ()(0)1f x f ==- (4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2()1g t t =+为减函数 ∴ 在[3,2]--上,2()1g t t =+也为减函数

min ()(2)5g t g =-=, max ()(3)10g t g =-=。

相关文档
最新文档