初三数学上册完整版
(完整word版)初三数学上册知识点总结

九年级上册知识点总结第二十一章 一元二次方程 22。
1 一元二次方程知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.注意一下几点:① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二 一元二次方程的一般形式一般形式:)0(02≠=++a c bx ax 其中,2ax 是二次项,a 是二次项系数; bx 是一次项,b 是一次项系数;c 是常数项.知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
22.2 降次——解一元二次方程 22.2。
1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方.一般地,对于形如)0(2≥=a a x 的方程,根据平方根的定义可解得a x a x -=+=21 .(2) 直接开平方法适用于解形如p x =2或)0(2≠=+m p a mx )(形式的方程,如果 p≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:移项;使二次项系数或含有未知数的式子的平方项的系数为 1;两边直接开平方,使原方程变为两个一元二次方程;解一元一次方程,求出原方程的根. 知识点二 配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开. (1) 把常数项移到等号的右边;(2) 方程两边都除以二次项系数;(3) 方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4) 若等号右边为非负数,直接开平方求出方程的解。
(完整版)北师大版初三上册数学课后习题答案

北师大版九年级上册数学第4页练习答案解:因为在菱形ABCD中,AC±BD于点O,所以∠AOB=90°.在Rt△ABO中,OB=√(AB^2-AO^2 )=√(5^2-4^2 )=3(cm).因为在菱形ABCD中,对角线AC,BD互相平分,所以BD=2OB=6cm.1.11.证明:∵四边形ABCD是菱形,∴BC=AB,BC//AD,∴∠B+∠BAD=180°(两直线平行,同旁内角互补).∵∠BAD=2∠B,∴∠B+2∠B=180°,∴∠B=60°.∵BC=AB,∴△ABC是等边三角形(有一个角为60°的等腰三角形的等边三角形).2.解:∵四边形ABCD是菱形,∴AD=DC=CB=BA,∴AC±BD,AO=1/2 AC= 1/2×8=4,DO= 1/2 BD= 1/2×6=3.在Rt△AOD中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5.∴菱形ABCD的周长为4AD=4×5=20.3.证明:∵四边形ABCD是菱形,∴AD=AB,AC±BD,DO=BO,∴△ABD是等腰三角形,∴AO是等腰△ABD低边BD上的高,中线,也是∠DAB的平分线,∴AC平分∠BAD.同理可证AC平分∠BCD,BD平分∠ABC和∠ADC.4.解:有4个等腰三角形和4个直角三角形.第7页练习答案解,所画菱形AB-CD如图1-1-32所示,使对角线AC=6cm,BD=4cm.1.21.证明:在□ABCD中,AD//BC,∴∠EAO=∠FCO(两直线平行,内错角相等).∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.∵AE//CF,∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形).∵EF±AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).2.证明:∵四边形ABCD是菱形,∴AC±BD,OA=OC,OB=OD.又∵点E,F,G,H,分别是OA,OB,OC,OD 的中点,∴OE=1/2OA,OG=1/2 OG,OF= 1/2 OB,OH= 1/2 OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).∵AC⊥BD,即EG⊥HF,∴平行四边形EFGH是菱形(对角线互相垂直的平行四边形是菱形).3.解:四边形CDC′E是菱形.证明如下:由题意得,△C′DE≌△CDE.所以∠C′DE=∠CDE,C^' D=CD,CE=C^' E.又因为AD//BC,所以∠C′DE=∠CED,所以∠CDE=∠CED,所以CD=CE(等角对等边),所以CD=CE=C′E=C′D,所以四边形CDC′E是菱形(四边相等的四边形是菱形).第9页练习答案1.解:(1)如图1-1-33所示.∵四边形AB-CD是菱形,∴AB=BC=CD=DA=1/4×40=10(cm).∵对角线AC=10cm,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°.∵AD//BC,∴∠BAD+∠B=180°,∴∠BAD=180°-∠B=180°-60°=120°,∴∠BCD=∠BAD=120°,∠D=∠B=60°.(2)如图1-1-34所示,连接BD,交AC于点O,∴AO=1/2 AC= 1/2×10=5(cm).在Rt△AOB中,∠AOB=90°,由勾股定理,得BO=√(AB^2-AO^2 )=√(〖10〗^2-5^2 )=5√3 (cm),∴BD=2BO=2×5√3=10√3 (cm),∴这个菱形另一条对角线的长为10√3 cm.2.证明:在Rt△ABC中,∠ACB=90°,∠BAC=60°,∴∠B=90°-∠BAC=90°-60°=30°.∵FD是BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=30°(等边对等角).∴∠ECA=∠ACB-∠ECB=90°-30°=60°.在△AEC中,∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-∠EAC-∠ECA=180°-60°-60°=60°.∴△AEC是等边三角形,∴AC=CE.在Rt△BDE中,∠BDE=90°,∴∠BED=90°-∠B=90°-30°=60°.∴∠AEF=∠BED=60°(对顶角相等).∵AE=CF,AF=CE,∴AF=AE,∴△AEF是等边三角形(有一个角等于60°的等腰三角形是等边三角形).∴AF=EF,∴AF=EF=CE=AC,∴四边形ACEF是菱形(四边相等的四边形是菱形).1.31.证明:(1)∵四边形ABCD是菱形,∴AD=CD,AB=CB,∠A=∠C.∵BE=BF,∴AB-BE=CB-BF,即AE=CF.在△ADE和CDF中,.(2)∵△ADE≌△CDF,∴DE=DF,∴∠DEF=∠DFE(等边对等角).2.已知:如图1-1-35所示,四边形ABCD是菱形,AC和BD是对角线.求证:S菱形ABCD=1/2 AC∙BD.证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴S△AOB=S△AOD=S△BOC=S△COD=1/2 AO.BO.∴S菱形ABCD=4×1/2 AO∙BO=1/2×2AO∙2BO=1/2 AC∙BD.3.解:在菱形ABCD中,AC⊥BD,∴∠AOB=90°,AO= 1/2 AC= 1/2×16=8,BO= 1/2 BD= 1/2×12=6. 在Rt△AOB中,由勾股定理,得AB=√(AO^2+BO^2 )=√(8^2+6^2 )=10.∵S菱形ABCD=1/2 AC∙BD= 1/2×16×12=96,又∵DH⊥AB,∴S菱形ABCD=AB∙DH,∴96=AB∙DH,即96=10DH,DH=9.6.∴菱形ABCD的高DH为9.6.4.证明:∵点E,F,G,H分别是AB,CD,AC,BD,的中点,∴GF是△ADC的中位线,EH是△ABD的中位线,∴GF//AD,GF=1/2 AD,EH//AD,EH=1/2AD,∴GF//EH,GF=EH,∴四边形EGFH是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵FH是△BDC的中位线,∴FH=1/2 BC.又∵AD=BC,∴GF=FH,∴平行四边形EGFH是菱形(一组邻边相等的平行四边形是菱形).5.略第13页练习答案解:在矩形ABCD中,AO=4,BD=AC=2AO=8.因为∠BA=90°,所以在Rt△BAD中,由勾股定理,得AD=√(BD^2-AB^2 )=√(8^2-6^2 )=2√7.所以BD与AD的长分别为8与2√7.1.41.解:如图1-2-33所示,设这个矩形为ABCD,两条对角线相交于点O,OA=OB=3.在△AOB中,∠OAB=∠OBA=45°,于是∠AOB=90°,AB=√(OB^2+OA^2 )=3√2,同理AD=3√2,所以BC=AD=3√2 AB=DC=3√2所以这个矩形的各边长都是3√2.2.解:如图1-2-34所示,设这个矩形AB-CD两条对角线相交于点O,∠AOB=60°,AC=BD=15,∴AO=1/2AC=7.5,BO=1/2 BD=7.5,∴OA=OB,∴△AOB是等边三角形,∴AB=7.5.3.解:四边形ADCE是菱形.证明如下:在Rt△ABC中,∠ACB=90°,D为AB的中点,∴CD=1/2 AB,AD= 1/2 AB,∴AD=CD.∵AE//CD,CE//AD,∴四边形ADCE是平行四边形.又∵AD=CD,∴平行四边形ADCE是菱形(一组邻边相等的平行四边形是菱形)4.已知:如图1-2-35所示,在△ABC中,BO为AC边上的中线,BO=1/2 AC.求证:△ABC是直角三角形.证明:如图1-2-35所示,延长BO到D,使BO=DO,连接AD,CD.∵AO=CO,BO=DO,∴四边形ABCD是矩形.∴∠ABC=90°.∴△ABC是直角三角形.第16页练习答案证明:∵四边形ABCDS是平行四边形,∴AB=DC.∵M是AD的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS),∴∠A=∠D.又∵AB//DC,∴∠A+∠D=180°,∴∠A=∠D=90°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).1.51.解:(1)四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).(2)当△ABC是直角三角形,即∠BAC=90°时,四边形ABEC是矩形.2.解:四边形ACBD是矩形.证明如下:如图1-2-36所示.∵CD//MN,∴∠2=∠4.∵BD平分∠ABN,∴∠1=∠4,∴∠1=∠2,∴OB=OD(等角对等边).同理可证OB=OC,∴OC=OD.∵O是AB的中点,∴OA=OB,∴四边形ACBD是平行四边形(对角线互相平分的四边形是平行四边形).又∵BC平分∠ABM,∴∠3=1/2∠ABM.∵BD平分∠ABN,∴∠1= 1/2∠ABN.∵∠ABM+∠ABN=180°,∴2∠3+2∠1=180°,∴∠3+∠1=90°,即∠CBD=90°.∴平行四边形ACBD是矩形(有一个角是直角的平行四边形是矩形)3.解:做法如下:如图1-2-37所示,(1)连接AC,BD;(2)过A,C两点分别作EF//BD,GH//BD;(3)同法作FG//AC,EH//AH,与EF,GH交于四个点E,F,G,H,则矩形EFGH即为所求,且S矩形EFGH=2S菱形ABCD.第18页练习答案证明:∵四边形ABCD是由两个全等的等边三角形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABCD是菱形.∵M,N分别是BC和AD的中点,∴DN=1/2 AD,BM= 1/2 BC,∴DN=BM.∵BN=DM,∴四边形BMDN是平行四边形.∴∠DBN=1/2∠ABD= 1/2×60°=30°,∠DBM=60°,∴∠NBM=∠DBN+∠DBM=30°+60°=90.∴平行四边形BMDN是矩形(有一个角是直角的平行四边形是矩形).1.61.解:在矩形ABCD中,AC=BD=4,∠ABC=90°,∠ACB=30°,∴AB= 1/2 AC= 1/2×4=2.在Rt△ABC中,由勾股定理,得BC=√(AC^2-AB^2 )=√(4^2-2^2 )=2√3.∴S矩形ABCD=BC∙AB=2√3×2=4√3.2.解:在矩形ABCD中,∠BAD=90°,即∠BAE+∠EAD=90°.∵∠EAD=3∠BAE,∴∠BAE+3∠BAE=90°,∠BAE=22.5°.∴∠EAD=3∠BAE=3×22.5°=67.5°.∵AE⊥BO,∴∠AEB=90°,∴∠BAE+∠ABE=90°,即22.5°+∠ABE=90°,∴∠ABE=67.5°.∵AC=BC,OA=1/2 AC,OB= 1/2 BD,∴OA=OB,∴∠OAB=∠ABE=67.5°.∵∠EAO+∠BAE=∠OAB,∴∠EAO=∠OAB-∠BAE=67.5°-22.5°=45°.3.证明:∵D是BC的中点,∴BD=CD.∵四边形ABDE是平行四边形,∴AE//BC,AE=BD,ED=AB(平行四边形的性质).∴AE=CD.∵AE//CD,∴四边形ADCE是平行四边形(一组对边平行且相等的平行四边形是矩形).∵AB=AC,∴ED=AC,∴平行四边形ADCE是矩形(一组对边平行且相等的四边形是平行四边形). ※4.解:将矩形纸片ABCD折叠,使点C与点A重合得到的图形如图1-2-38所示.折痕为EF,则AE=CE,EF垂直平分AC,连接AC交EF于点O,在矩形ABCD中,∠B=90°,BC=8cm,设CE=x cm,则AE=x cm,BE=BC-CE=(8-x)cm.在Rt△ABE中,由勾股定理,得AE²=AB²+BE²,X²=6²+(8-x)²,解得x=25/2,即EC=25/4cm.在Rt△ABC中,由勾股定理,得AC=√(AB^2+BC^2 )=√(6^2+8^2 )=10cm.∴OC=1/2=AC=1/2×10=5cm.∵EF⊥AC,∴∠EOC=90°.在Rt△EOC中,由勾股定理,得EO²=EC²-OC²,EO=√(EO^2-OC^2 )=√((25/4)^2-5^2 )=15/4 cm,∴折痕EF=2EO=2× 15/4=15/2 cm. ※5.解:如图1-2-39所示,连接PO.S矩形ABCD=AB.BC=3×4=12.在Rt△ABC中,AC=B√(AB²+BC²)=√(3²+4²)=5.又因为AC=BD,AO= 1/2 AC,DC= 1/2 BD,所以AO=DO=5/2.所以S△AOD=S△APO+S△POD= 1/2 AO.PE+ 1/2 DO∙PE= 1/2 AO(PE+PE)=1/2×5/2 (PE+PE)=5/4 (PE+PE).又因为S△AOD= 1/4 S矩形ABCD= 1/4×12=3,所以5/4 (PE+PE)=3,解得PE+PE= 12/5.第21页练习答案1.解:以正方形的四个顶点为直角顶点的等腰直角三角形共有四个,以正方形的两条对角线的交点为顶点的等腰直角三角形也有四个,所以共有八个等腰直角三角形.2.:△ADF≌△ABF,△DCF≌△BCF,△ADC≌△ABC.以△ADF≌ABF为例加以证明:∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠BAF.∵AF=AF,∴△ADF≌ABF(SAS).1.71.解:设正方形的边长为为想x cm,则x²+x²=2²,解得x=√2,即正方形的边长为√2 cm.2.解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°,AB=BC=DC.∵△CBE是等边三角形,∴BE=EC=CB,∠EBC=∠ECB=60°.∴∠ABE=30°.∴AB=BE,∴∠AEB=BAE=(180°-∠ABE)/2=(180°-30°)/2=75°.3.证明:如图1-3-24所示,∵四边形ABCD是正方形,∴AD=D,∠BAD=∠D=90°,AB=DA.∵PD=QC,∴AP=DQ∴△ABP≌△DAQ.∴BP=AQ,∠1=∠2.∵∠2+∠3=90°,∴∠1+∠3=90°,即BP⊥AQ.※4.解:过正方形两条对角线的交点任意做两条互相垂直的直线,即可将正方形分成大小,形状完全相同的四部分.答案不唯一,如图1-3-25所以方法仅供参考.第24页练习答案答案:满足对角线垂直的矩形是正方形或有一组邻边相等的矩形是正方形.满足对角线相等的菱形是正方形或有一个角是直角的菱形是正方形证明结论如下:(1)对角线垂直的矩形是正方形.(2)已知:如图1-3-7(1)多事,四边形ABCD是矩形,AC,BD是对角线,且AC⊥BD.求证:四边形ABCD是正方形.证明:∵四边形ABCD是矩形,∴AC平分BD.又∵AC⊥BD,∴AC是BD的垂直平分线.∴AB=AD.∴四边形ABCD是正方形.(4)有一个角是直角的菱形是正方形.已知,如图1-3-7(4)所示,四边形ABCD是菱形,∠A=90°.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.又AB=BC,∴矩形ABCD是正方形.1.81.答案:对角线相等的菱形是正方形.已知:如图1-3-7(3)所示,四边形ABCD是菱形,AC,BD是对角线,且AC=DC.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴AD=BC.又∵AB=BA,BD=AC,∴△ABD≌△BAC(SSS).∴∠DAB=∠CBA.又∵AD//bc,∴∠dab+∠cba=180°.∴∠DAB=∠CBA=90°.∴四边形ABCD是正方形.2.证明:∵四边形ABCD是正方形,∴AD=CB,AD//CB,∴∠ADF=∠CBE.在△ADF和=∠CBE中,∴△ADF≌△CBE(SAS),∴AF=CF,∠AFD=∠CEB.∵∠AFD+∠AFE=180°,∠CEB+∠CEF=180°,∴∠AFE=∠CEF(等角的补角相等).∴AF//CE(内错角相等,两直线平行).∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形).∵AD=AB,∴∠ADF=∠ABE.在△AFD和AEB中,∴△AFD≌△AEB(SAS).∴AF=AE,∴四边形AECF是菱形(一组邻边相等的平行四边形是菱形).3.解:四边形EFGH是正方形.在正方形ABCD中,AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°.因为AE=BF=CG=DH,所以AB-AE=BC-BF=CD-CG=AD-DH,即BE=CF=DG=AH.所以△AEH≌△BFE≌△CGF≌△DHG(SAS),所以∠AEH,HE=EF=FG=GH.所以四边形EFGH 是菱形.因为∠AEH+∠AHE=90°,所以∠DHG+∠AHE=90°,所以∠EHG=90°,所以菱形EFGH是正方形.4.解:重叠部分的面积等于正方形ABCD面积的1/4.证明如下:重叠部分为等腰直角三角形时,重叠部分为面积为正方形ABCD面积的1/4,即S△AOB=S△BOC=S△COD=S△AOD= 1/4S正方形ABCD.重叠部分为四边形是,如图1-3-26所示.设OA′与AB相交于点E,OC′与BC相交于点F.∵四边形ABCD是正方形,∴OA=OB,∠EAO=∠FBO=45°,AO⊥BD.又∵∠AOE=90°-∠EOB,∠BOF=90°-∠EOB,∴∠AOE=∠BOF,∴△AOE≌△BOF.∴S△AOE+S△BOE=S△BOE+S△BOE,∴S△AOB=S四边形EBFO.又∵S△AOB=1/4 S正方形EBFO.∴S四边形EBFO=1/4 S正方形ABCD.第一章复习题1.解:设该菱形为菱形ABCD,两对角线交于点O,则△AOB为直角三角形,直角边长分别为2cm 和4cm,则有勾股定理,得AB=√(OA^2+OB^2 )=√(2^2+4^2 )=2√5 (cm),即林习惯的边长为2√5 cm.2.解:由OA=OB=√2/2 AB,可知OA^2+OB^2=AB^2,则∠AOB=90°.因为OA=OB=OC=OD,所以AC,BD互相垂直平分且相等,故四边形ABCD必是正方形.3.解:不一定是菱形,因为也可能是矩形.4.已知:如图1-4-20所示,菱形BACD中,对角线AC,BD相交于点O,AC=60cm,周长为200cm.求(1)BD的长;(2)菱形的面积.解:(1)因为菱形四边相等,对角线互相垂直平分,所以AB=1/4×200=50(cm),AC⊥BD且OA=OC= 1/2 AC= 1/2×60=30(cm),OB=OD.在Rt△AOB中,OB=√(AB²-AO²)=√(50²-30²)=40(cm).所以BD=2OB=80cm.(2)S菱形ABCD=1/2 AC∙BD= 1/2×60×80=2 400(cm^2 ).5.已知:如图1-4-21所示,在四边形AB-CD,对角线AC⊥BD,E,F,P,Q分别为边AB,BC,CD,DA的中点.求证:四边形EFPQ为正方形.证明:∵E,Q分别为B,AD的中点,∴四边形EFPQ为平行四边形.∵AC=BD,∴EF=EQ.∴□EFPQ为菱形.∵AC⊥BD,∴EF⊥EQ.∴∠QEF=90°.∴菱形EFPQ是正方形.6.解∵AC=EC,∴∠CEA=∠CAE.由四边形ABCD是正方形.得AD//BE, ∴∠DAE=∠CEA=∠CAE.又∠DAC=∠DAE+∠CAE=45°,∴∠DAE=1/2∠DAC= 1/2×45°=22.5°.7.解:(1)是正方形,因为对角线相等的菱形必为正方形.(2)是正方形,因为这个四边形的对角线相等,四条边也相等.8.证明:如图1-4-22所示,∵AD平分∠BAC,∴∠1=∠2.∵DE//AC,∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE//AC,DF//AB,∴四边形AEDF是平行四边形.又AE=DE,∴□AEDF是菱形.9.证明:如图1-4-23所示,∵BE⊥AC,ME为Rt△BEC的中线,∴ME=1/2BC.同理MF=1/2BC,∴ME=MF.10.已知:四边形ABCD是正方形,对角线AC=BD=l.求正方形的周长和面积.解:正方形ABCD中,AB=BC,∠B=90°.在Rt△ABC中,AB²+BC²=AC²,2AB²=l²,所以AB=√2/2l.所以正方形的周长=4AB=4×√2/2 l=2√2 l,S四边形ABCD=AB^2=(√2/2 l)^2=1/2 l^2.11.证明:∵CP//BD,DP//AC,∴四边形CODP是平行四边形.∵四边形ABCD是矩形,∴AC=BD.∵OC=1/2 AC,OD= 1/2 BD,∴OC=OD∴四边形CODP是菱形(一组邻边相等的平行四边形是菱形).12.证明:∵四边形ABCD是矩形,∴AC=BD.∵OA=OC,OB=OD,又∵AM=BP=CN=DQ,∴OA-AM=OC-CN,即OM=ON,OB-BP=OD-DQ,即OP=OQ,∴四边形MPNQ是平行四边形(对角线互相平分的四边形是平行四边形).∵AM+MN+NC=AC,BP+PQ+DQ=BD,∴MN=PQ,∴四边形MPNQ是矩形(对角线相等的平行四边形是矩形).13.证明:在Rt△ABC中,∠ACB=90°,CD平分∠ACB,∴∠FCD=1/2∠ACB=45°.∵DF⊥AC,∴∠DFC=90°.在Rt△FCD中,∠FDC=90°-∠FCD=90°-45°=45°,∴∠FCD=∠FDC,∴FC=FD.∵DE⊥BC,∴∠DEC=90°.∴∠DFC=∠FCE=∠DEC=90°.∴四边形DFCE是矩形(有个三角是直角的四边形是矩形).∵FC=FD,∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).14.解:由AP=4t cm,CQ=l cm,∵四边形ABCD是矩形,∴AB=DC-CQ=(20-t)cm.∴DQ=DC-CQ=(20-t)cm.当四边形APQD是矩形时,则有DQ=AP,∴20-t=4t,解得t=4∴当t为4时,三角形APQD是矩形.15解:△BFD是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AD//BC,∴∠ADB=∠DBC.∵∠FBD=∠DBC,∵∠FBD=∠ADB,∴BF=DF.∴△BFD是等腰三角形.16.解由题意知,矩形ABCD≌矩形GCDF,∴AB=FG,BC=GC,AC=FC,∴△ABC≌△FGC,∴∠ACB=∠FCG.∵∠ACB+∠ACD=90°,∴∠FCG+∠ACD=90°,即∠ACF=90°.∵AC=CF,∴△ACF是等腰直角三角形.∴∠AFC=45°.17.解不一定,因为还可能是菱形,若要判断这块纱巾是否为正方形,还需要检验对角线是否相等.18.证明:∵四边形ABCD是平行四边形,∴BC//DA.∴∠DAB+∠ABC=180°.∵AH平分∠DAB,BH,平分∠ABC,∴∠HAB=1/2∠DAB,∠HBA= 1/2∠ABC.∴∠HAB+∠HBA=90°.∴∠H=90°.同理可证∠F=90°,∠HEF=90°.∴四边形EFGH是矩形.19.解:略.提示:如图1-4-24所示图形仅供参考.第32页练习答案1.解:设直角三角形的三边长分别为m-1,n,n+1(n>1,且n为整数,)则(n-1)²+n²=(n+1)².2.解:∵(3x+2)²=4(x-3)²,∴9x²+12x+4-4x²+24x-36=0,∴5x²+36x-32=0.其中二次项系数为5,一次项系数为36,常数项为-32.(答案不唯一)3.解:设竹竿长为x尺,则门框宽为(x-4)尺,高为(x-2)尺.由勾股定理,得(x-4)²+(x-2)^2=x²,即x²-12x+20=0. 2.11.解:(1)设这个正方形的边长是xm,根据题意,得(x+5)(x+2)=54,即x²+7x-44=0.设这三个连续整数依次为x,x+1,x+2,根据题意,得x(x+1)+x(x+2)+(x+1)(x+2)=242,即x²+2x-80=0.2.(答案不唯一)根据题意,得x(8-x)=15.整理,得x²-8x+15=0. 列表:由表格知x=5.(当x=3时,也满足方程,但不符合实际,故舍去)答:可用16m长的绳子围城一个15m²的矩形,其次为5m,宽为3m.3.解:根据题意,得10+2.5t-5t2=5,即2t²-t-2=0. 列表:所以1<t<2. 进一步列表:所以1.2<t<1.3.答:他完成规定动作的事假最多不超过1.3s.第34页练习答案解:设这五个连续整数第一个数为x,则另外四个数分别为x+1,x+2,x+3,x+4.根据题意,得(x+1)²+(x+2)²+x²=(x+3)²+(x+4)².整理,得x²-8x-20=0. 列表:∴x=-2或x=10.因此这五个连续整数依次为-2,-1,0,1,2或10,11,12,13,14.2.2 1.解:设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120,即x²+2x-120=0.列表:由表格知x=10.(当x=-12时,也满足方程,但不符合实际情况,故舍去)答:苗圃的宽为10m,长为12m.2.解:能.设矩形的长为xm,则宽为(8-x)m.第37页练习答案(1)x_1=5+√7,x_2=5-√7.(2)x_1=7+√57,x_2=7-√57.(3)x_1=(√13-3)/2,x_2=-(√3+3)/2.(4)x_1=3+√11,x_2=3-√11.2.3 1.解:(1)移项,得x²+12x=-25.配方,得x²+12x+6²=-25+36,(x+6)²=11,即x+6=√11或x+6=-√11.∴x_1=√11-6,x_2=-√11-6.(2)配方,得x²+4x+2²=10+2²,(x+2)²=14,即x+2=√14 或x2=-√14.∴x_1=√14-2,x_2=-√14-2.(3)配方,得x²-6x+(-3)²=11+(-3)²,(x-3)²=20,即x-3=2√5 或x-3=-2√5.∴x_1=2√5+3,x_2=-2√5+3.(4)化简,得x²-9x=-19,配方,得x²-9x+(-9/2)^2=-19+(-9/2)^2,(x-9/2)^2=5/4,即x-9/2=√5/2 或x- 9/2=-√5/2,∴x_1=(9+√5)/2,x_2=(9-√5)/2.2.解:设道路的宽为xm,根据题意,得(35-x)(26-x)=850.整理,得x²-61x+(-61/2)²=-60+(-61/2)².∴(x-61/2)^2=(3 481)/4.开平方,得x- 61/2=±59/2.解得x_1=1,x_2=60(不合题意,舍去).答:道路的宽应为1m.3.解:设增加69人后,增加的行数,列数都是x,则(x+8)(x+12)=69+8×12. 整理,得x²+20x=69.配方.得x²+20x+10²=69+10².∴(x+10)²=169.开平方,得x+10=±13.解得x_1=3,x_2=-23(不合题意,舍去)答:增加的行数,列数都是3.第39页练习答案解(1)移项,得3x²-9x=-2. 两边同除以3,得x²-3x=-2/3.配方,得(x-3/2)²=19/12. 开平方,得x-3/2=±√57/6.∴x_1=(9+√57)/6,x_2=(9-√57)/6.(2)移项,得2x²-7x=-6. 两边同除以2,得x²-7/2 x=-3.配方,得(x-7/4)²=1/16. 开平方,得x-7/4=±1/4.∴x_1=2,x_2=3/2.(3)移项,得4x²-8x=3. 两边同除以4,得x²-2x=3/4.配方,得(x-1)²=7/4. 开平方,得x-1=±√7/2.∴x_1=(2+√7)/2,x_2=(2-√7)/2.2.4 1.(1)x_1=1,x_2=1/6.(2)x_1=3,x_2=-6/5.(3)x_1=4,x_2=-13/4.(4)x_1=(-1+√21)/5,x_2=(-1-√21)/5.2.解:设共有x只猴子,根据题意,得x=(1/8 x)²+12.解得x1=16,x_2=48. 答:共有16只或48只猴子.3.解:如图2-2-4所示,过点Q作QH⊥AB,垂足为H. 设经过ts时,点P和点Q的距离是10cm. 则CQ=2tcm,AP=3tcm.∵四边形ABCD是矩形,∴∠B=∠C=90°.∵∠QHB=90°,∴四边形QHBC是矩形,∴BH=CQ=2t,HQ=BQ=BC=6cm,∴PH=AB-AP-BH=16-3t-2t=(16-5t)cm.在Rt△PHQ中,∠PHQ=90°,由勾股定理,得PQ²=PH²+HQ².当PQ=10cm时,10²=(16-5t)²+6². ∴(16-5t)²=64,解得t_1=8/5,t_2=24/5,经检验:t_1=8/5s, t_2=24/5 s时都符合题意,所以当t_1=8/5 s和t_2=24/5 s时,点P和点Q 的距离是10cm.第43页练习答案1.解:(1)原方程变形为2x²-7x+5=0,这里a=2,b=-7,c=5,∵b²-4ab=(-7)^2-4×2×5=9>0,∴原方程变形为4x²-4x+3=0,这里a=4,b=-4,c=3,∵b²=-32<0,∴原方程没有实数根.(3)原方程变形为4y²-2.4y+0.36=0,这里a=4,b=-2,.4,c=0.36,∵b²-4ac=(-2.4)²-4×4×0.36=5.76-5.76=0,∴原方程有两个相等的实数根.2.解:(1)∵a=2,b=-9,c=8,∴b²-4ac=(-9)²-4×2×8=17>0,∴x=(9+√17)/4,即x_1=(9+√17)/4,x_2=(9-√17)/4.(2)∵a=9,b=6,c=1,∴b²-4ab=36-4×9×1=0,∴x=(-6±0)/18=-1/3,即x_1=x_2=-1/2.(3)∵a=16,b=8,c=-3,∴b²-4ac=64-4×16×(-3)=256,∴x=(-8±√256)/32=(-8±16)/32,即x_1=1/4,x_2=-3/4.(4)原方程化为x²-3x+5=0.∵a=1,b=-3,c=5,∴b²-4ac=(-3)²-4×1×5=-11<0,∴原方程没有实数根.3.解:设中间的一条边长为n,则另两条边长分别为n-2和n+2.由勾股定理,得n²+(n-2)²=(n+2)²,解得n_1=8,n_2=0(不合题意,舍去).∴这个三角形的三条边分别为6,8,10.2.5 1.解:(1)原方程变形为5x²+x-7=0,这里a=5,b=1,c=-7,因为b²-4ac=1²-4×5×(-7)=141>0,所以原方程有两个不相等的实数根.(2)这里a=25,b=20,c=4.因为b²-4ac=20²-4×25×4=0,所以原方程有两个相等的实数根.(3)原方程变形为4x²+3x+1=0,这里a=4,b=3,c=1,因为b²-4ac=3²-4×4×1=-7<0,2.解:(1)∵a=2,b=-4,c=-1,∴b²-4ab=16-4×2×(-1)=24>0,∴x=(-b±√(b^2-4ac))/2a=(4±2√6)/4,∴x_1=(2+√6)/2,x_2=(2-√6)/2.(2)5x+2=3x²变形为3x²-5x-2=0.∵a=3,b-5,c=-2,∴b²-4ac=25-4×3×(-2)=49>0,∴x=(-b±√(b²-4ac))/2a=(5±7)/6,∴x_1=2,x_2=-1/3.(3)(x-2)(3x-5)=1变形为3x²-11x+9=0.∵a=3,b=-11,c=9,∴b²-4ac=121-108=13>0,∴x=(-b±√(b^2-4ab))/2a=(11±√13)/6.∴x_1=(11+√13)/6,x_2=(11-√13)/6.(4)0.2x²+5=3/2 x变形为0.2x²-3/2 x+5=0,∵a=0.2,b=-3/2,c=5,∴b²-4ac=(-3/2)²-4×0.2×5=-7/4<0,∴原方程没有实数根.3.解:设门的高为x尺,则宽为(x-6.8)尺.根据题意,得10²=x²+(x-6.8)²整理,得2x²-13.6x-53.76=0.解得x_1=9.6,x_2=-2.8(不合题意,舍去).∴x=9.6.∴x-6.8=2.8.答:门的高度为9尺6寸,宽为2尺8寸.4.解设木箱的长为x dm,则宽为(x-5)dm,于是有8x(x-5)=528,解得x_1=11,x_2=-6(不合题意,舍去).所以x=11.所以x-5=11-5=6.答:木箱的长为11dm,宽为6dm.第44页练习答案解:根据题意,得(16-x)(12-x)=1/2×16×12.解得x_1=24(不合题意,舍去),x_2=4.∴x=4,∴图中的x为4.2.6 1.解设金色纸边的宽是x cm,根据题意,得(90+2x)(40+2x)×72%= 90×40,即x²+65x-350=0,解得x_1=5,x_2=-70(不合题意,舍去).答:金色纸边的宽是50cm.2.解:设鸡场的一边(靠墙的一边)长为xm,则另外两边长均为(40-x)/2 m.(1)若x∙(40-x)/2=180,解得x_1=20+2√10(不合题意,舍去),x_2=20-2√10.∴鸡场的面积能达到180m².若x∙(40-x)/2=200,解得x_1=x_2=20.∴鸡场的面积能达到200m².(2)若x∙(40-x)/2=250,则x²-40x+500=0,方程无实数根.∴鸡场的面积不能达到250m².3.解:设圆柱底面半径为Rcm,则15∙2πR+2πR²=200π,解得R_1=5,R_2=-0(不合题意,舍去).∴圆柱底面半径为5 cm.※4.解:如图2-3-2所示,过点P做x轴的垂线,垂足为M,根据题意,得S△pab=S梯形pmob-S△boa-S△pma,即1/2 (1+a)×14-1/2 a²-1/2×1×(14-a)=18,解得a_1=3,a_2=12.所以a的值为3或12.第47页练习答案1.解:(1)(x+2)(x-4)=0,x+2=0,或x-4=0,∴x_1=-2,x_2=4.(2)解:移项的4x(2x+1)-3(2x+1)=0,∴(2x+1)(4x-3)=0,∴2x+1=0,或4x-3=0,∴x_1=-1/2,x_2=3/4.2.解:设这个数为n,则2n²-7n=0,解得n_1=0,n_2=7/2.2.71.解:(1)(4x-1)(5x+7)=0,4x-1=0,或5x+7=0,∴x_1=1/4,x_2=-7/5.(2)原方程可变形为3x(x-1)+2(x-1)=0,即(x-1)(3x+2)=0,X-1=0,或3x+2=0,∴x_1=1,x_2=-2/3.(3)原方程可变形为(2x+3)(2x+3-4)=0,2x+3=0,或2x-1=0,∴x_1=-3/2,x_2=1/2.(4)原方程可变形为2(2x-3)²-(x+3)(x-3)=0,(x-3)(2x-6-x-3)=0,X-3=0,或x-9=0,∴x_1=3,x_2=9.2.解:(1)5(x²-x)=3(x²+x).化简,得2x²-8x=0,2x(x-4)=0,∴2x=0或x-4=0,∴x_1=0,x_2=4.(2)(x-2)²=(2x+3)².移项,得(x-2)²-(2x+3)²=0,(x-2+2x+3)(x-2-2x-3)=0,(3x+1)(-x-5)=0,∴3x+1=0或-x-5=0.∴x_1=-1/3,x_2=-5.(3)(x-2)(x-3)=12.化简,得x²-5x-6=0,∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49,∴x=(-(-5)±√49)/(2×1)=(5±7)/2,∴x_1=6,x_2=-1.(4)2x+6=(x+3)²,移项,得(x+3)²-(2x+6)=0,(x+3)²-2(x+3)=0,(x+3)(x+3-2)=0,(x+3)(x+1)=0,x+3=0或x+1=0,∴x_1=-3,x_2=-1.(5)2y²+4y=y+2,化简,得2y²+3y-2=0.∵a=2,b=3,c=-2,∴b²-4ac=3²-4×2×(-2)=25.∴x=(-3±√25)/(2×2)=(-3±5)/4,∴x_1=1/2,x_2=-2.3.解:设原正方形空地上的边长为xm,则(x-1)(x-2)=12,解得x_1=5,x_2=-12,解得x_1=5,x_2=-2(不和题意,舍去).故原正方形空地上的边长为5m. 第50页练习答案1.解:(1)∵b²-4ac=(-3)²-4×1×(-1)=13>0.∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=3,x_1 x_2=-1.(2)∵b²-4ac=2²-4×3×(-5)=64>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,x_1,x_2=-5/3.2.解:它们的答案不确定.判断方法:∵b²-4ac=6²-4×9×(-1)=72>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,,x_1 x_2=-1/9.小明的答案中x_1+x_2=(-1/3)+(-1/3)=-2/3,x_1 x_2=(-1/3)×(-1/3)=1/9≠-1/9,∴小明的答案错误.笑话的答案中x_1+x_2=(-3+3√2)+(-3-3√2)=-6≠-2/3,x_1 x_2=(-3+3√2)(-3-3√2)=-9≠-1/9,∴小华的答案错误.3.解:设它的另一个根为x_1,根据一元二次方程根与系数的关系,得3x_1=-7,x_1=-7/3,∴它的另一个根是-7/3.2.81.解:(1)原方程变形为3x²-x-1=0,∵b²-4ac=(-1)²-4×3×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2,那么x_1+x_2=1/3,x_1 x_2=-1/3.(2)原方程化简,2x²+6x-2=0,即x²+3x-1=0.∵b²-4ac=3²-4×1×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根为x_1,x_2,那么x_1+x_2=-3,x_1 x_2=-1.2.解:(1)∵a=12,b=7,c=1,∴b²-4ac=7²-4×12×1=1,∴x=(-7±√1)/(2×12)=(-7±1)/24,∴x_1=-1/4,x_2=-1/3.(2)原方程变形为0.8x²+x-0.3=0,∵a=0.8,b=1,c=-0.3,∴b²-4ac=1²-4×0.8×(-0.3)=1.96,∴x=(-1±√1.96)/(2×0.8)=(-1±1.4)/1.6,∴x_1=1/4,x_2=-3/2.(3)原方程变形为3x²-2√3 x+1=0.∵a=3,b=-2√3,c=1,∴b²-4ac=(-2√3)²-4×3×1=0,∴x=(-(-2√3)±√0)/(2×3)=(2√3)/6=√3/3.∴x_1=x_2=√3/3.(4)原方程化简,得x²-4x-8=0,配方,得x²-4x+(-2)²-(-2)²-8=0,(x-2)²=12,∴x-2=±2√3.∴x_1=2+2√3,x_2=2-2√3.3.解:设方程5x²+kx-6=0的另一根为x_1,由根与系数的关系,得2x_1=-6/5,解得x_1=-3/5.当x_1=-3/5时,2+(-3/5)=-k/5.解得k=-7.所以它的另一个根为-3/5,k的值为-7.4.解:∵a=1,b=-17,c=66,∴b²-4ac=(-17)²-4×1×66=289-264=25>0,∴方程有两个不相等的实数根.设一元一次方程x²-17x+66=0的两个实数根分别为,x_1,x_2,由根与系数的关系,得x_1+x_2=17.∵17>20,不满足三角形的两边之和大于第三边,不能构成三角形,∴这个三角形的第三边的长不可能是20.第52页练习答案解:设相遇时所走的时间为x,则10²+(3x)²=(7x-10)².解得x_1=3.5,x_2=0(不合题意,舍去).∴x=3.5.∴甲走了3.5×7=24.5(步),乙走了3.5×3=10.5(步).答:甲走了24.5步,乙走了10.5步.1.解:设赛义得到的钱数为x,则少的一笔钱为20-x,根据题意,得x²-20x+96=0.解得x_1=12,x_(2=8) (不合题意,舍去).答:赛义德到的钱数为12.2.解:设经过x s△pcq的面积为Rt△ACB面积的一半,根据题意,得1/2 (8-x)(6-x)=1/2×1/2×8×6.整理,得x²-14x+24=0.解得x_1=12(不合题意,舍去),x_2=2.答:经过2 s△PCQ的面积为Rt△ACB面积的一半.3.解:设渠道深为x m,则渠低宽为(x+0.4)m,上口宽为(x+0.4+0.6)m.根据题意,得1/2 x【(x+0.4)+(x+0.4+0.6)】=0.78,整理,得x²+0.7x-0.78=0.解得x_1=0.6,x_2=-1.3(不合题意,舍去).答:渠深为0.6m.4.解:设经过ts后P,Q两点相距25cm,∴PC=2tcm,BQ=t cm,CQ=BC-BQ=25-t(cm).在Rt△PCQ中,∠C=90°,由古定理,得PQ²=PC²+CQ²,25²=(2t)²+(25-t)².解这个方程,得t_1=0(不合题意,舍去),t_2=10.∴经过10s后P,Q两点相距25cm.第55页练习答案解:设每张贺年卡应降价x元,根据题意,得(0.3-x)(500+x/0.05×200)=180,整理,得400x²-70x+3=0.解得x_1=0.1,x_2=0.075(不合题意,舍去).答:每张贺年卡应降价0.1元.2.10 1.解:设每件应降价x元,根据题意,得(44-x)(20+5x)=1600,整理,得x²-40x+144=0.解得x_1=4,x_2=36(不合题意,舍去).答:每件应降价4元.2.解设储藏x个星期出售这批农产品可获利122 000元.根据题意,得(80-2x)(1 200+200x)-1 600x-64 000=122 000,化简,得x²-30x+225=0.解得x_1=x_2=15,所以储藏15个星期出售这批农产品可获利122 000元.3.解:设该市这两年自然保护区面积的年均增长率为x,则4.85%∙(1+x)^2=8%.解这个方程,得x_1≈0.284=28.4%,x_2≈-2.284(舍去).4.解:设该商场11,12两个月营业额的月均增长率为x,根据题意,得2 500+2 500(1+x)+2 500(1+x)²=9 100.解得x_1=0.2=20%,x_2≈-3.2(不合题意,舍去)所以该商场11,12两个月营业额的月均增长率为20%.第二章复习题1.解:设其中一个数为x,则另一个数为x-4,则x(x-4)=45,解得x_1=9,x_2=-5.当x=9是时,x-4=5;当x=-5时,x-4=-9.答:这两个数为9和5,或-5和-9.2.解:(1)x(x-14)=0,x=0,或x-14=0,所以x_1=0,x_2=14.(2)x^2+12x+27=0,(x+3)(x+9)=0,X+3=0,或x+9=0,所以x_1=-3,x_2=-9.(3)x²=x+56,x²-x-56=0,(x+7)(x-8)=0,X+7=0,或x-8=0,所以x_1=-7,x_2=8.(4)x(5x+4)=5x+4,(5x+4)(x-1)=0,5x+4=0,或x-1=0,所以x_1=-4/5,x_2=1.(5)4x²-45=31x,4x²-31x-45=0,(4x+5)(x-9)=0,4x+5=0,或x-9=0,所以x_1=-5/4,x_2=9.(6)-3x²+22x-24=0,3x²-22x+24=0,(3x-4)(x-6)=0,所以x_1=4/3,x_2=6.(7)(x+8)(x+1)=-12,X²+9x+20=0,(x+4)(x+5)=0,X+4=0,或x+5=0,所以x_1=-4,x_2=-5.(8)(3x+2)(x+3)=x+14,3x²+10x-8=0,(3x-2)(x+4)=0,3x-2=0,或x+4=0,所以x_1=2/3,x_2=-4.3.(1)解法1:原方程可化为x²+9x+18=0,(x+3)(x+6)=0,所以x_1=-3,x_2=-6.(2)解:x²-2√5 x+2=0,X²-2√5x=-2,X²-2√5 x+5=-2+5,(x-√5)²=3,x-√5=±√3,所以x_1=√5+√3,x_2=√5-√3.(3)解:(x+1)²-3(x+1)+2=0,(x+1-1)(x+1-2)=0,(x-1)=0,所以x_1=0,x_2=1.4.解:(1)∵a=2,b=1,c=-1,∴b²-4ac=1²-4×4×2(-1)=9>0,∴方程有两个不相等的实数根.(2)原方程变形为4x²-4x+1=0,∵a=4,b=-4,c=1,∴b²-4ac=(-4)²-4×4×1=16-16=0,∴方程有两个相等的实数根.(3∵a=7,b=2,c=3,b²-4ac=2²-4×7×3=-80<0,∴方程没有实数根.*5.解:(1)∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2.由根与系数的关系,得x_1+x_2=-b/a=-5/3,x_1 x_2=c/a=1/3.6解:(1)根据题意,得x²-13x+12=0,所以x1=1,x_2=12,即当x=1或x=12时,代数式x²-13x+12的值等于0.(2)由题意,得x²-13x+12=42,所以x_1=15,x_2=-2,所以当x=15或x=-2时,代数式x²-13x+12的值等于42.(3)由题意,得x²-13x+12=-4x²+18,所以x_1=3,x_2=-2/5,所以当x=3或x=-2/5时,代数式x²-13x+12的值与代数式-4x²+18的值相等.7.解:设该公司这两年缴税的年均增长率为x,由题意,得40(1+x)²=48.4.解得x_1=0.1=10%,x_2=-2.1(舍去).答:该公司这两年缴税的年均增长率为10%.8.解:设原铁皮的边长为x cm,则4(x-8)²=400.解得x_1=18,x_2=-2(不合题意,舍去).答:原铁皮的边长应为18cm.9.解:如图2-7-3所示,设小路宽为xm,由题意,得2x(15+2x)+2×20x=246.整理,得2x²+35x-123=0.解得x_1=3,x_2=-20.5(舍去).答:小路的宽为3m.10.解:设每行的座位数为x,则总行数为x+16,依题意,得x(x+16)=1 161.(x-27)(x+43)=0.解得x_1=27,x_2=-43(舍去).答:每行的座位数为27.11.解:设其中一段长为x cm,则另一段长为(56-x)cm.(1)由(x/4)²+((56+x)/4)²=100,解得x_1=24,x_2=32,所以一段长为24cm,另一段长为32cm.(2)由(x/4)²+((56-x)/4)²=196,解得x_1=0,x_2=56,所以不能剪开.(3)由(x/4)²+((56-x)/4)^2=200,解得x_1=28+4√51>56(舍去),X_2=28-4√51<0(舍去).所以面积之和不可能等于200cm^2.12.解:令3x+5=y,原方程可化为y²-4y+3=0,(y-1)(y-3)=0,解得y_1=1,y_2=3.当y=1,即3x+5=1时,x=-4/3;当y=3,即3x+5=3时,x=-2/3.所以原方程的解为x_1=-4/3,x_2=-2/3.13.解:把2+√3 代入x^2-4x+c=0中,得(2+√3)^2-4(2+√3)+c0.解得c=1.原方程的另一个根为2-√3,c的值为1.14.解:当s=200时,200=10t+3t²,解得t_1=20/3,t_2=-10(不合题意,舍去),所以行驶200m需要的时间为20/3 s.15.解法1:设水渠宽为cm,根据题意,得(92-2x)(60-x)=885×6=92x+2×60x-2x²,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.解法2:设水渠宽为xm,根据题意,得(92-2x)(60-x)=885×6,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.16.解:设应多种x颗桃树,由题意,得(100+x)(1 000-2x)=1 000×100×(1+15.2%).整理,得x²-400x+7 600=0.解得x_1=380,x_2=20.又由题意知x=380不符合题意,故舍去,因此x只能为20.答:应多种20颗桃树,产量会增加15.2%.17.解:设其中一条直角边长为x cm,则另一条直角边长为(x+1)cm,所以x²+(x+1)²=7².解得X_1=(√97-1)/2,x_2=(-√97-1)/2 (舍去).所以x+1=(√97-1)/2+1=(√97+1)/2.答:这两条直角边长分别为(√97-1)/2cm和(√97+1)/2cm.18.解:设t时后侦察船可侦侦察到这艘军舰,根据题意,有(90-30t)²+(20t)²=50².整理得13t²-54t+56=0.因为b²-4ac=(-54)²-4×13×56=4>0,所以方程有实数根,即侦察船可侦察到军舰,解得t_1=2,t_2=28/13(不合题意,舍去).答:侦察船可侦察到军舰,最早在2时后可侦察到.19.解:设到会人数为x,则有x(x-1)/2=66.整数得x^2-1x-132=0.解得x_1=12,x_2=-11(不合题意,舍去).答:这次会议到会的人数为12.20.解:设点P(x,-2x+3),一次函数y=-2x+3的图象交x轴于点A(3/2,0),交y轴于点B(0,3). ∵点P在第一象限,∴x>0,-2x+3>0,∴PD=x,PC=-2x+3.根据题意,得S_矩形OCPD=PD∙PC=1,x(-2x+3)=1.化简,得-2x²+3x-1=0,解这个方程,得x_1=1,x_2=1/2.当x=1时,-2x+3=-2×1+3=1,∴点P_1 (1,1)当x=1/2 时,-2x+3=-2× 1/2+3=2,∴点P_2 (1/2,2).∴当点P_1 (1,1)或P_2(1/2,2)时,矩形OCPD的面积为1.21.分析:由于距台风中心200km的区域受影响,所以应考虑轮船与台风中心的距离是否超过200km,如果超过200km,则会进入台风影响区.解:(1)这艘轮船不改变航向,他会进入台风影响区.理由:如图2-7-4所示,在Rt△ABC中,∠BAC=90°,BC=500km,BA=300km,由勾股定理,得AC=√(BC^2-BA^2 )=√(〖500〗^2-〖300〗^2 )=400(km).当这艘轮船不改变航向时,轮船由C地到A地的时间为400/30=13(h),台风中心由B地到A的时间为300/20=15(h).故轮船到达A地时,台风中心距离A地为300-20×40/3=331/3 (km).而331/3 km<200km,所以这艘轮船不改变航向会进入台风影响区.(2)设从接到报警开始,经过th这艘轮船就会进入台风影响区,则CD=30t km,BE=20t km,AD=AC-CD=(400-30t)km,AE=AB-BE=(300-20t)km,DE=200km.在Rt△DAE中,由勾股定理,得AD²+AE²=DE²,即(400-30t)²+(300-20t)²=200².整理,得13t²-360t+2 100=0,解得t_1≈8.35,t_2≈19.34.所以从接到报警开始,经过8.35h它就会进入台风影响区.※22.解:设该银行一年定期存款的年利率是x,根据题意,得【2 000(1+x)-1 00】+【2 000(1+x)-1 000】x=1 107.45.化简,得(1 000+2 000x)(1+x)=1 107.45400x²+600x-21.49=0.解这个方程,得x_1=0.035=3.5%,x_2=-1.535(不合题意,舍去).所以该银行一年定期存款的年利率是3.5%.第61页练习答案解:列表如下:或画树状图如图3-1-13所示:由表或树状图可知总共有4中结果,每中结果出现的可能性相同,其中恰好是白色上衣和白色裤子的结果有一种,所以,P(白色上衣和白色裤子)=1/4.3.1 1.解:列表如下:(1)由表可知,一次实验中两张牌的牌面数字和有2,3,4.(2)两张牌的牌面数字和为3的概率最大.(3)P(和为3)=3/4=1/2.2.解:列表如下:由表可知:(1)两次都摸到红球的概率为1/4;(2)连词摸到不同颜色的去的概率为2/4=1/2.(3)解:可能性相同.因为掷一枚硬币正反面朝上的概率都是1/2.第64页练习答案解:设三张大小一样而画面不同的画片分别为A,B,C,将出现的可能结果列表如下:由表可知,出现的总结过有9种,能拼成原来的一幅画的结果有(A上,A下),(B上,B下,)(C上,C下)三种,所以P(两张恰好能拼成原来的一幅画)=3/9=1/3.3.2 1.解:将出现的可能结果列表如下:由表可知,(1)两张牌的牌面数字和等于1的概率为0;(2)两张牌的牌面数字和等于2的概率为1/9;(3)两张牌的牌面数字和为4的概率最大;(4)两张牌的牌面数字和大于3的概率是6/9=2/3.2.解:将出现的可能结果列表如下:由表可知,(1)两人都左拐左拐的概率为1/9;。
最新人教版九年级数学上册全册课件.

1.设计有趣的情景导入,激发学生的学习兴趣。
2.结合生活实际,让学生感受数学在现实中的应用价值。
教案反思
1.教学内容是否全面,是否符合学生的认知水平。
2.教学方法是否有效,学生是否积极参与课堂活动。
3.课堂提问和解答环节是否充分,学生是否真正理解和掌握所学知识。
4.课后作业和拓展延伸的设置是否合理,能否有效提高学生的数学素养。
六、板书设计
1.一元二次方程的解法步骤。
2.几何证明的基本方法。
3.圆的性质及应用。
七、作业设计
1.作业题目:
(1)求解以下一元二次方程:x^2 - 5x + 6 = 0。
(2)证明:等腰三角形的底角相等。
(3)已知圆的半径为5,求该圆的面积。
2.答案:
(1)x1 = 3, x2 = 2。
(2)证明过程略。
2.学会几何证明的基本方法,提高逻辑思维能力。
3.掌握圆的性质,并能应用于解决几何问题。
三、教学难点与重点
教学难点:一元二次方程的求解、几何证明的逻辑推理、圆的性质应用。
教学重点:培养学生解决实际问题的能力、提高逻辑思维能力和空间想象力。
四、教具与学具准备
教具:多媒体教学设备、黑板、粉笔。
学具:学生用书、练习本、直尺、圆规。
2.对于重点和难点内容,可以适当放慢语速,提高音量,强调关键信息。
二、时间分配
1.实践情景引入阶段,时间控制在5-10分钟,避免过长而影响后续内容的学习。
2.例题讲解和随堂练习阶段,时间分配要合理,确保学生有足够的时间理解和消化。
三、课堂提问
1.提问要具有针对性,引导学生思考关键问题。
2.鼓励学生主动提问,及时解答他们的疑惑,增强课堂互动。
九年级上册数学ppt课件

引入新知
− 1 支队伍
问题2
支
队伍
…
…
引入新知
问题2
共进行
−1
场比赛
…
…
引入新知
问题2
…
−
−
…
引入新知
问题2
共进行
−1
2
−
−
场比赛
…
−
−
−
−
…
引入新知
问题2
要组织一次排球邀请赛,参赛的每两队之间都
2
不同点 1:问题 1 和问题 2 中的
等式两边都是整式. 因此,它
和一元一次方程、二元一次方
程同属于一类,都是整式方程.
分式方程
3
12 +
= 5.
−1
探究新知
问题1
2
− 75 + 350 = 0.
一元一次方程
4 + 3 = 1.
问题2
二元一次方程
− = 56.
3 − 2 = 5.
边都是整式的方程简称为整式方程.)
探究新知
一元二次方程的一般形式是:
2
+ + = 0 ( ≠ 0).
二次项系
一次项系
二次项
一次项
常数项
数
数
ax
2
巩固落实
例1
判断下列方程是否为一元二次方程,如果是,请将方程
人教版数学九年级上册教案全册,95页

1.教材复习巩固3、4综合运用5、6、7拓广探索8、9.
2.选用课时作业设计.
第3课时21.2.1配方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+fபைடு நூலகம்2+c=0型的一元二次方程.
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值
教学过程
一、复习引入学生活动:列方程.
问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
【沪科版】初三数学上册《全册课件》(共39套课件912页)

为________.
2
如图,在△ABC中,AC=5,cos B=
=
A.
C.14
21 2
3 5
,则△ABC的面积是(
B.12 D.21
)
2 ,sin 2
C
(来自《典中点》)
知4-讲
知识点
4 方位角
方向角问题:指北或指南方向线(或者指东或指西方向线) 与目标方向所成的小于90°的角叫做方向角.如图中的目
解: (1)在△ABC中,∵AD是BC边上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,
∴DC=AD=1.
1 在△ADB中,∵∠ADB=90°,sin B= ,AD=1, 3 AD ∴AB= =3,∴BD= AB2 AD2 2 2 , sin B
(来自《点拨》)
知1-讲
【例2】 在Rt△ABC中,∠C=90°,a=5,c=5 2 ,解 这个直角三角形. 导引:先画出Rt△ABC,标注已知量,根据勾股定理求 出另一条直角边,然后根据正弦(或余弦)的定义
求出∠A的度数,再利用∠B=90°-∠A求出∠B
的度数.
知1-讲
解:如图所示,在Rt△ABC中, ∵∠C=90°,a=5,c= 5 2,
运用正切的定义求出其对边;当已知一锐角和其对边 时,运用正弦的定义求出斜边,运用勾股定理求出其 邻边.
(来自《点拨》)
知2-练
1
根据下面条件,解直角三角形: (1)在Rt△ABC中,∠C=90°,a=30,∠B=80°; (2)在Rt△ABC中,∠C=90°,c=10,∠A=40°.
(来自教材)
2
人教版五四学制九年级(初三)数学上册全套PPT课件

某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20 x2 40 x 20
这三个函数关系式有什么共同点?
y 6 5 4 3 2 1
y = x 2 - 6x + 9 x2 + x - 2 = 0 x 2 - 6x + 9 = 0 x2 - x + 1 = 0
y=x +x-2
2
-3 -2 -1O -1 -2
1 2 3 4 5 6 x
2.小组合作,类比探究
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0,因 此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y 6 x2
1 2 1 m n n 2 2
y 20 x2 40 x 20源自通过实例,归纳二次函数的定义
二次函数的定义:一般地,形如 (a ,b ,c 是常数,a≠0) 2 y ax bx c x 是自变量,a, 的函数,叫做二次函数.其中, b,c 分别是函数解析式的二次项系数、一次项 系数和常数项.
人教版九年级数学上册:21.1 一元二次方程(含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。
一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x xm m 是一元二次方程; 10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。
浙教版九年级数学上册全册完整课件

浙教版九年级数学上册全册完整课件一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的概念、解法、根与系数的关系、实际应用等。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、解法、不等式组的概念、解法、实际应用等。
3. 第十五章:函数及其图像详细内容:函数的定义、函数图像的识别、一次函数、反比例函数、二次函数等。
4. 第十六章:圆详细内容:圆的基本性质、圆的方程、圆与直线的关系、圆与圆的关系等。
二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、函数及其图像、圆的基本概念和性质。
2. 学会解一元二次方程、不等式与不等式组,并能将其应用于解决实际问题。
3. 能够识别并分析函数图像,理解函数与方程、不等式之间的关系。
三、教学难点与重点1. 教学难点:一元二次方程的解法、函数图像的分析、圆与直线的关系。
2. 教学重点:一元二次方程、不等式与不等式组、函数及其图像、圆的基本性质和解法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:课本、练习本、圆规、直尺、计算器等。
五、教学过程1. 导入:通过实际情景引入,激发学生兴趣,为新课学习做好铺垫。
2. 新课内容讲解:详细讲解各章节的基本概念、性质、解法等。
3. 例题讲解:针对每个知识点,给出典型例题,引导学生分析、解答。
4. 随堂练习:设计适量练习题,巩固所学知识,及时发现问题,进行解答。
6. 课后作业布置:布置适量的作业,巩固所学知识。
六、板书设计1. 浙教版九年级数学上册课件2. 内容:各章节知识点、重难点、典型例题、随堂练习等。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)求解不等式组:2x 3 > 1,3x + 4 < 10(3)分析函数图像:y = 2x + 1,y = x^2 + 4(4)求圆的方程:已知圆心为(2,3),半径为5。
2. 答案:(1)x1 = 3,x2 = 2(2)x > 2,x < 2(3)一次函数图像为直线,反比例函数图像为双曲线,二次函数图像为开口向上的抛物线。
浙教版九年级(初三)数学上册全套PPT课件

y = 2(1+x)2
(3)拟建中的一个温室的平面图如图,如果温室外围是 一个矩形,周长为120m , 室内通道的尺寸如图,设一 条边长为 x (m), 种植面积为 y (m2)。
1
y = (60-x-4)(x-2)
1
1
x
3
1.y =πx2
2.y = 2(1+x)2
3.y= (60-x-4)(x-2)
(2)因为 4 2(1) 2 ,所以点B(-1 ,-4) 不在此抛物线上。
(3)由-6=-2x2 ,得x2=3, x 3 所以纵坐标为-6的点有两个,它们分别是
( 3,6)与( 3,6)
3
O
y=-2x2
( 3,6)
( 3,6)
练习一、若抛物线y=ax2 (a ≠ 0),过点(-1,3).
(1)则a的值是
(2)对称轴是 (3)顶点坐标是 抛物线在x轴的
;
,开口 . .
,顶点是抛物线上的 方(除顶点外).
练习二、 已知抛物线y ax a 0与双曲线
2
2 y 交点的横坐标大于零, 问a是大于零 x 还是小于零?
1,已知抛物线y=ax2经过点(-2,2). (1) 求这条抛物线的表达式. (2) 求出这个二次函数的最大值或最小值. (3) 在此抛物线上有两点A(x1,y1),B(x2,y2),且 x1>x2>0,试比较y1与y2的大小.
注意:当二次函 数表示 某个实际问题时,还必 须根据题意确定自变 量的取值范围.
例3: 如图,一张正方形纸板的边长为2cm,将它 剪去4个全等的直角三角形 (图中阴影部分 ) , 设AE=BF=CG=DH=x(cm),四边形 EFGH的面积为 y(cm2),求 :
苏教版九年级上册数学全册教学课件(2021年11月修订)

新课讲解
知识点1 形如x 2 = p(p≥0)型方程的解法
典例分析
例 1 用直接开平方法解方程 x2-81=0.
移项,要变号
解: 移项得x2=81.
开平方降次
根据平方的意义,得x=±9,
即x1=9,x2=-9.
方程有两个不相等的实数根
即:对于(mx +n)2=p(p≥0),得:mx n p
2.若两边都是完全平方式,
即:(ax +b)2=(cx +d)2,得 ax b (cx d )
课堂小结
直接开平方法解一元二次方程的“三步法”
变形 开方 求解
将方程化为含未知数的完全 平方式=非负常 数的形式;
利用平方根的定义,将方程 转化为两个一元一次方程;
解上面方程即可得出所切正方形的具体尺寸.
新课讲解
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一 场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛, 比赛组织者应邀请多少个队参赛? 分析:全部比赛场数为 4×7=28.
设应邀请 x 个队参赛,每个队要与其他 (x-1) 个队各赛一场, 因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所 以全部比赛共 1 x x 1 场.
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.会把一元二次方程降次转化为两个一元一次方程. (难点)
2.运用开平方法解形如x2=p或(x+n)2=p (p≥0)的方程. (重点)
新课导入
知识回顾
若方程(a+2) xa2 2-(a-2)x+1=0是关于x的一元二次方程,则
九年级数学上册ppt课件全集

回顾与思考 1
学好几何标志是会 “证明”
证明命题的一般步骤:
(1)理解题意:分清命题的条件(已知),结论(求证);
∴四边形ABCD是矩形.
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
矩形的性质
定理:矩形的两条对角线相等.
已知:如图,AC,BD是矩形ABCD的两条对角线.
矩形的判定 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
定理:对角线相等的平行四边形是矩形.
已知:如图,在□ABCD中,对角线AC=BD.
求证:四边形ABCD是矩形.
A
D
分析:要证明□ABCD是矩形,只
四边形之间的关系
四边形之间有何关系? 特殊的平行四边形之间呢? 还记得它们与平行四边形的关系吗? 能用一张图来表示它们之间的关系吗?
平行四边形
矩形
正方形
菱形
四边形
等腰梯形
梯形
直角梯形
矩形的性质 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
定理:矩形的四个角都是直角.
精品【人教版】初三九年级数学上册《24.2.2 直线和圆的位置关系——相交、相切、相离》课件

知识点
1 直线与圆的位置关系的判定
问 题(一)
(1)如图(1),如果我们把太阳看作一个圆,把地平线看作一 条直线,太阳升起的过程中,太阳和地平线会有几种位置关 系?由此你能得出直线和 圆的位置关系吗?
知1-导
(2)如图(2),在纸上画一条直线l,把钥匙环看作一个圆.在纸上 移动钥匙环,你能发现在移动钥匙环的过程中,它与直线l的公
(2)直线和圆相切 d=r;
(3)直线和圆相交 d<r.
1.必做: 完成教材P101T2 2.补充: 请完成《典中点》剩余部分习题
B.与x轴相离,与y轴相交 C.与x轴相切,与y轴相离 D.与x轴相切,与y轴相交
(来自《典中点》)
知1-练
2 已知⊙O的直径等于12 cm,圆心O到直线l的距离为5 cm, 则直线l与⊙O的公共点个数为( )
A.0
B.1
C.2
D.无法确定
(来自《典中点》)
3
圆的直径是13 cm,如果圆心与直线的距离分别是: (1)4.5 cm;(2)6.5 cm;(3)8 cm. 那么直线和圆分别是什么位置关系?有几个公共点?
(来自教材)
知2-导
知识点
2
直线与圆的位置关系的性质
O l
O A
O
l
A
B
l
直线和圆没有公共点时,叫做直线和圆相离. 直线和圆有唯一公共点时,叫做直线和圆相切. 这条直线叫做圆的切线,这个点叫做切点. 直线和圆有两个公共点时,叫做直线和圆相交. 这条直线叫做圆的割线,公共点叫直线和圆的交点.
知2-导
总 结
1. 直线和圆相离→d>r; 2. 直线和圆相切→d=r; 3. 直线和圆相交→d<r.
人教版数学九年级上册全册精品课件.

人教版数学九年级上册全册精品课件.一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法、因式分解法)、根的判别式、根与系数的关系、实际应用。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及其解集、一元一次不等式组、不等式的应用。
3. 第十五章:图形的相似详细内容:相似图形的定义、相似图形的性质、相似多边形的判定、相似多边形的性质、位似图形、相似与位似的应用。
4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、锐角三角函数的值、互余两角的三角函数的关系、锐角三角函数的应用。
二、教学目标1. 让学生掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数的基本概念和解法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解集、相似多边形的判定与性质、锐角三角函数的应用。
2. 教学重点:一元二次方程的解法、不等式组的应用、相似与位似的应用、锐角三角函数的应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、三角板、圆规。
2. 学具:直尺、圆规、量角器、计算器。
五、教学过程1. 实践情景引入:通过生活中的实际问题,引入本章所学内容。
2. 例题讲解:详细讲解典型例题,分析解题思路和方法。
3. 随堂练习:针对所学知识点,设计随堂练习,巩固所学知识。
4. 小组讨论:分组讨论,培养学生的合作能力和解决问题的能力。
六、板书设计1. 板书:以提纲形式展示本章知识点,突出重点和难点。
2. 例题:将解题过程详细展示在黑板上,方便学生模仿和学习。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。
(2)解不等式组:2x 3 > 1,3x + 2 < 5。
(3)判断两个三角形是否相似,并说明理由。
人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件一、教学内容1. 函数与方程函数的概念、表示法及其性质一元二次方程的求解及其应用一次函数、反比例函数的性质及应用2. 图形的相似与证明相似图形的判定与性质位似图形的判定与性质相似变换及其应用3. 解直角三角形锐角三角函数的概念与性质解直角三角形及其应用4. 统计与概率频数与频率可能性的大小平均数、中位数、众数的计算及应用二、教学目标1. 理解函数、方程、相似图形等基本概念,掌握其性质与应用。
2. 学会使用锐角三角函数解直角三角形,并能应用于实际问题。
3. 培养学生的数据分析与逻辑思维能力,提高解决问题的能力。
三、教学难点与重点1. 教学难点:函数的性质、相似图形的判定与性质、锐角三角函数的应用。
2. 教学重点:一元二次方程的求解、一次函数与反比例函数的性质、统计与概率的计算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。
2. 学具:课本、练习本、计算器、直尺、圆规。
五、教学过程1. 导入:通过生活实例,引出函数、方程等概念,激发学生的学习兴趣。
2. 新课导入:(1)讲解函数的概念、表示法及其性质。
(2)通过例题,讲解一元二次方程的求解及其应用。
(3)介绍一次函数、反比例函数的性质,分析其在实际问题中的应用。
(4)讲解相似图形的判定与性质,通过实践操作加深理解。
(5)介绍锐角三角函数的概念与性质,引导学生学会解直角三角形。
3. 随堂练习:(1)针对函数、方程、相似图形等知识点,设计具有代表性的练习题。
(2)分组讨论,互帮互学,共同解决问题。
4. 知识巩固:(1)通过典型例题,巩固函数、方程等知识。
(2)讲解统计与概率的计算方法,分析其在生活中的应用。
5. 课堂小结:六、板书设计1. 函数、方程的概念与性质。
2. 一元二次方程的求解方法。
3. 一次函数、反比例函数的性质。
4. 相似图形的判定与性质。
5. 锐角三角函数的应用。
6. 统计与概率的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学上册Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一章特殊平行四边形一、平行四边形的相关内容1.平行四边形的定义及性质平行四边形的定义:两组对边分别平行的四边形是平行四边形。
平行四边形的性质:(边,角,对角线,对称性)(1)边的性质:平行四边形的对边相等。
平行四边形的对边平行。
(2)角的性质:平行四边形的对角相等。
(3)对角线的性质:平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形。
2.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形(定义)。
(2)两组对边分别相等的四边形是平行四边形。
(3)对角线互相平分的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
(注意:必须是同一组对边平行且相等,也就是一组对边平行,另一组对边相等时,不一定是平行四边形。
有两条边相等,并且另外两条边相等的四边形不一定是平行四边形)3.两条平行线间的距离的定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行4.线之间的距离,实际上平行线间的距离处处相等。
二、菱形的相关知识1.菱形的定义及性质菱形的定义:有一组邻边相等的平行四边形。
菱形的性质:(边,角,对角线,对称性)(1)边的性质:菱形的四条边相等。
(2)角的性质:菱形的对角相等。
(3)对角线的性质:菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角(4)菱形是关于对角线的交点成中心对称图形,又以对角线所在直线为对称轴的轴对称图形。
(5)分割特殊性:菱形的两条对角线把他分割为四个全等的直角三角形2.菱形的判定(1)有一组邻边相等的平行四边形是菱形(定义)。
(2)对角线互相垂直(平分)的平行四边形是菱形。
(3)四条边都相等的四边形是菱形。
(4)两条对角线分别平分一组对角的四边形是菱形。
3.菱形的面积计算方法:菱形的面积公式(1)菱形的面积=底×高(2)菱形的面积=两条对角线乘积的一半。
三、矩形的相关知识1.矩形的定义:有一个角是直角的平行四边形是矩形,也叫长方形2.归纳总结矩形的性质:(1)对边平行且相等(2)四个角都是直角;(3)对角线互相平分且相等.;(4)对称性:既是关于对角线的交点成中心对称图形,又以对边的中垂线为对称轴的轴对称图形,有两条对称轴(5)分割特殊性:矩形的两条对角线把它分割为四个面积相等的等腰三角形3.直角三角形斜边上的中线等于斜边的一半.4.矩形的一条对角线把矩形分成两个全等的直角三角形;•矩形的两条对角线把矩形分成两对全等的等腰三角形.因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决5.矩形的判定方法(1)有一个角是直角的四边形是矩形(2)对角线相等的平行四边形是矩形(3)有三个角是直角的四边形是矩形6.矩形具备下列一般平行四边形所不具备的特征:1.矩形的四个角都是直角;2.矩形的对角线互相平分且相等;3.矩形还是轴对称图形;4.矩形的对角线把矩形分成了两对全等的直角三角形;5.矩形的面积等于两邻边的乘积四、正方形的相关知识1.正方形的定义及性质正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫正方形。
正方形的性质:(边,角,对角线,对称性)(1)正方形具有矩形和菱形的所有性质(2)正方形的四条边相等,四个角都是直角(3)对角线的性质:正方形的对角线互相垂直平分且相等,并且每一条对角线平分一组对角(4)正方形是关于对角线的交点成中心对称图形,又是轴对称图形。
(5)分割特殊性:正方形的对角线把他分割为四个全等的等腰直角三角形2.正方形的判定(1)有一组邻边相等的矩形是正方形(定义)。
(2)对角线相等的菱形是正方形。
(3)对角线互相垂直(平分)的矩形是正方形。
(4)有一个角是直角的菱形是正方形。
3.正方形的面积计算方法:(1)正方形的面积=边长×边长(2)正方形的面积=两条对角线平方的一半。
4.矩形、菱形、正方形及平行四边形之间的关系(1)矩形是有一个内角为直角的平行四边形(2)菱形是有一组邻边相等的平行四边形(3)正方形是兼具矩形和菱形两者特征的平行四边形,他既是矩形又是菱形特殊平行四边形专题练习一、基础知识点复习:(一)矩形:1、矩形的定义:__________________________的平行四边形叫矩形.2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________.②.矩形既是对称图形,又是图形,它有条对称轴.3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形.③.对角线________________________________的四边形是矩形.4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,则矩形对角线AC长为______cm.②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DOB.AO=BO=CO=DOC.AB=BC,AO=COD.AO=CO,BO=DO,AC⊥BD③.四边形ABCD中,AD//BC,则四边形ABCD是___________,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是_______________.(二)菱形:1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________.②.菱形既是对称图形,又是图形,它有条对称轴.3、菱形的判定:①.__________________边都相等的四边形菱形.②.对角线_____________________________的平行四边形是菱形.③.对角线_____________________________________________的四边形是菱形.4、菱形的面积与两对角线的关系是________________________5、练习:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=_____.②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于cm,面积=cm2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为(三)正方形:1、正方形的定义:的平行四边形叫正方形。
2、正方形的性质:①.正方形的四个角是_____角,四条边_____,对角线_______________________.②.正方形是______对称图形,又是对称图形,它有______条对称轴.3.正方形的判定:先判定这个四边形是矩形,•再判定这个矩形还是_____形;或者先判定四边形是菱形,再判定这个菱形也是_____形.4.练习:①正方形的面积为4,则它的边长为____,对角线长为_____.②已知正方形的对角线长是4,则它的边长是,面积是。
③如图所示,在△ABC中,AB=AC,点D,E,F分别是边AB,BC,AC的中点,连接DE,EF,要使四边形ADEF是正方形,还需增加条件:_______.二、复习练习:(一)、选择题:1、矩形ABCD的长AD=15cm,宽AB=10cm,∠ABC的平分线分AD边为AE、ED两部分,这AE、ED的长分别为()A.11cm和4cmB.10cm和5cmC.9cm和6cmD.8cm和7cmAD E2、四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD3、如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEBO()A.10°B.15°C.20°D.12.5°4、如图,在菱形 ABCD中,E、F分别是AD、BD的中点,如果EF=2,那么菱形ABCD的周长是()A.4B.8C.12D.16(二)、填空题5、已知正方形ABCD对角线AC,BD相交于点O,•且AC=•16cm,•则DO=•_____cm,•BO=____cm,∠OCD=____度.6、在平面直角坐标系中,四边形ABCD是菱形,∠ABC=60°,且点A的坐标为(0,2),则点B坐标(),点C坐标为(),点D坐标为()。
7、一平行四边形的一条边长是9,两条对角线长分别是12和56,它是形,它的面积是,周长是。
8、如图ABCD是一块正方形场地,在AB边上取定了一点E,量得EC=30cm,EB=10cm,则这块场地的面积是cm2,对角线的长是cm(三)解答题:9、如图,四边形ABCD是菱形,∠ACD=30°,BD=6,求:(1)∠BAD,∠ABC的度数;(2)边AB及对角线AC的长。
10、在Rt△ABC中,∠ACB=90°CD⊥AB于点D,∠BCD=3∠ACD,点E是斜边AB的中点,求∠ECD的度数。
11、如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,求DH 的长.AB CDExyAB DCBACDEEFADE12、如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,求证:四边形OCED 是菱形。
13、如图:AE ∥BF ,ACAE 于点D ,连接CD , 求证:四边形ABCD 是菱形 14、如图,E 、F 、M 、N ,求证,四边形EFMN 15、如图,点E 、F 在正方形BE=CF 猜想AE 与BF 16、如图,四边形ABCD E ,BF∥DE , 且交AG 于点F 。
求证:三、课下练习1、在正方形ABCD 中,直线E 、F ,在DA 的延长线上取一点G 与正方形的边长相等.2、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD ._B _C _F _C_B_F D3、在正方形ABCD 的对角线BD 上,取BE=AB ,若过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED .4、平行四边形ABCD 中,∠A、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA .5、在正方形ABCD 的边CD 上任取一点E ,延长BC 到F ,使CF=CE ,求证:BEDF6、在正方形ABCD 中,P 是BD 上一点,过P 引PEBC 交BC 于E ,过P 引PFCD 于F ,求证:APEF ._C_D _F_F _G_C _D_B _F。