大学数学经典求极限方法及解析(最全)

合集下载

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。

设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。

极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。

要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。

常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。

二、解决极限的方法如下:1.等价无穷小代换。

只能在乘除时候使用。

2.XXX(L'Hospital)法则。

它的使用有严格的使用前提。

首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。

另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。

洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

通分之后,就能变成(1)中的形式了。

即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。

高等数学求极限的常用方法(附例题和详解) (4)

高等数学求极限的常用方法(附例题和详解) (4)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((iii)A x x x x A x f x x =→=→⇔=→+-limlimlim)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。

极限)(limx f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L’ho spital )法则(大题目有时候会有暗示要你使用这个方法)洛必达法则(定理)设函数f(x )和F(x )满足下列条件: ⑴x→a 时,lim f(x)=0,lim F(x)=0;⑵在点a 的某去心邻域内f(x )与F(x )都可导,且F(x )的导数不等于0; ⑶x→a 时,lim(f'(x)/F'(x))存在或为无穷大 则 x→a 时,lim(f(x)/F(x))=lim(f'(x)/F'(x))注: 它的使用有严格的使用前提。

高等数学中几种求极限的方法

高等数学中几种求极限的方法

高等数学中几种求极限的方法一、直接代入法这种方法超级简单,就是当函数在某一点连续的时候,直接把那个点的值代入函数里就好啦。

比如说啊,对于函数f(x)=x+1,当我们求x趋近于1的极限的时候,直接把1代入函数,就得到极限是2啦。

就像你走在路上,看到一个敞开的门,直接就可以走进去一样轻松。

二、因式分解法有时候函数看起来很复杂,但是我们可以对它进行因式分解呢。

比如说求lim(x→1)(x² - 1)/(x - 1),这个时候我们可以把分子因式分解成(x + 1)(x - 1),然后和分母的(x - 1)约掉,就变成了求lim(x→1)(x + 1),再用直接代入法就得到极限是2啦。

这就好比整理杂乱的房间,把东西整理好了,就很容易找到我们想要的啦。

三、有理化法当函数里有根式的时候,这个方法就很有用啦。

例如求lim(x→0)(√(1 + x)- 1)/x,我们可以把分子有理化,分子分母同时乘以(√(1 + x)+ 1),这样分子就变成了1 + x - 1 = x,然后和分母的x约掉,就得到极限是1/2啦。

这就像是给一个不太好看的东西化个妆,让它变得好看又好处理。

四、两个重要极限法1. 第一个重要极限是lim(x→0)sinx/x = 1。

这个极限超级重要哦。

比如说求lim(x→0)sin3x/x,我们可以把它变成3lim(x→0)sin3x/3x,根据第一个重要极限,就得到极限是3啦。

2. 第二个重要极限是lim(x→∞)(1 + 1/x)^x = e。

要是遇到类似lim(x→∞)(1+ 2/x)^x这种的,我们可以把它变形为lim(x→∞)[(1 + 2/x)^(x/2)]²,就等于e²啦。

这两个重要极限就像是数学世界里的宝藏,掌握了就能解决好多问题呢。

五、等价无穷小替换法当x趋近于0的时候,有好多等价无穷小的关系。

比如sinx和x是等价无穷小,tanx和x也是等价无穷小,ln(1 + x)和x也是等价无穷小等等。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((iii)A x x x x A x f x x =→=→⇔=→+-limlimlim)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。

极限)(limx f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)洛必达法则(定理)设函数f(x )和F(x )满足下列条件: ⑴x→a 时,lim f(x)=0,lim F(x)=0;⑵在点a 的某去心邻域内f(x )与F(x )都可导,且F(x )的导数不等于0; ⑶x→a 时,lim(f'(x)/F'(x))存在或为无穷大 则 x→a 时,lim(f(x)/F(x))=lim(f'(x)/F'(x))注: 它的使用有严格的使用前提。

(完整word版)高等数学求极限的常用方法(附例题和详解)

(完整word版)高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。

2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。

要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。

极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。

只好在乘除 时候使用。

例题略。

..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。

第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。

其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。

此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。

洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。

本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。

I. 无穷小量法无穷小量法是求解极限最常见的方法之一。

它的基本思想是将待求极限转化为无穷小量之间的比较。

下面通过一个例题来说明这个方法。

例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。

根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。

因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。

故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。

下面通过一个例题来说明夹逼法的思想。

例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。

然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。

也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。

根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。

故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。

下面通过一个例题来说明泰勒展开法的应用。

例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。

求极限方法总结-全

求极限方法总结-全

( 3) 如果
存在,而 c 为常数,则
精选资料,欢迎下载

( 4) 如果
存在,而 n 是正整数,则
5、复合函数的极限运算法则
设函数
是由函数
与函数
复合而
成的,
在点 的某去心领域内有定义,若
,且存在
,当
时,有
,则
6、夹逼准则
如果 (1) 当
( 或 >M)时 ,
(2)
那么
7、两个重要极限
( 1)
存在,且等于 A
( 2)
精选资料,欢迎下载

8、求解极限的方法
( 1)提取因式法 例题 1、求极限 解: 例题 2、求极限 解: 例题 3、求极限 解:
( 2)变量替换法(将不一般的变化趋势转化为普通的变化 趋势) 例题 1、
精选资料,欢迎下载

解:令
例题 2、 解:令 x=y+1
= 例题 3、 解:令 y=
= ( 3)等价无穷小替换法
精选资料,欢迎下载

注:若原函数与 x 互为等价无穷小,则反函数也与 价无穷小
x 互为等
例题 1、 解:
例题 2、 解:
例题 3、 解:
精选资料,欢迎下载

例题 4、 解: 例题 5、 解: 令 y=x-1 原式 = 例题 6、 解:令
型求极限 例题 1、 解:解法一(等价无穷小) :
精选资料,欢迎下载
Байду номын сангаас

解法二(重要极限) :
( 5)夹逼定理(主要适用于数列) 例题 1、 解: 所以 推广:
例题 2、 解:
精选资料,欢迎下载

1) 所以

大学数学经典求极限方法(最全)

大学数学经典求极限方法(最全)

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

本科高数高等数学极限的巧妙解题30例析

本科高数高等数学极限的巧妙解题30例析

高数极限巧解例析求解函数的极限,历来是高数考试的必考内容,这其中,00型与∞∞型的未定式求极限,更是考察测试的重点方向。

在此例析一些解题诀窍,与众网友共同探讨交流。

一、巧用等价无穷小替换求极限1. 1lim(arcsin arctan )x x x→∞⋅ 解:本题求极限,如果用好等价无穷小替换,将会非常轻松,易如反掌。

解法如下:11arctan~()x x x→∞ ∴原式=arcsin lim0x xx→∞=(arcsin 22x ππ≤≤注意:-,有界函数与无穷小的乘积仍为无穷小。

) 2.2cot (tan sin )lim x x x x x →- 解:本题属于0型未定式,可能很多人第一个想到的就是用洛必达法则,这道题如若用该法则求导,计算量将会非常大,算式也会变得十分复杂,极易出错。

有兴趣的同学不妨试一试,看看求导后的函数表达式会是怎样的。

对于本题,如果采用等价无穷小替换求极限,将会容易得多,具体解题过程如下: 由于cos cot sin x x x =,1tan sin sin (1)cos x x x x-=-所以可得原式=2cos 1sin (1)sin cos lim x x x x x x →⋅- =21cos lim x xx →- [注:21cos ~(0)2x x x -→] =222limx x x → =123. 3332lim ln()1n n n n →∞+- 解:本题求极限,首先用倒代换将函数变形,然后再运用等价无穷小替换。

详细步骤如下: 令31n t= ,则原式=33321lim ln()11n n n n→∞+-=0112lim ln()1t t t t→+- =0113lim ln()1t t t t t→-+- =013lim ln(1)1t t t t →+- [注:33ln(1)~(0)11t t t t t+→--] =013lim[()()]1t t t t→- =3(注意:本题不可用洛必达法则求极限,因为n 属于离散变量,不能求导。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

高等数学经典求极限方法

高等数学经典求极限方法

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

(完整word版)求极限的13种方法

(完整word版)求极限的13种方法

求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。

本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。

一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。

常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。

例1、求极限)1...()1)(1(22lim na aa n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。

解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim naa a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。

常用的变量代换有倒代换、整体代换、三角代换等。

例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。

分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。

解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。

本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。

一、直接代入法直接代入法是求极限的最基本方法之一。

当函数在某一点连续时,可以直接将该点代入函数中来求极限。

例题1:求函数f(x) = x^2在x=2处的极限。

解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。

因此,f(x)在x=2处的极限为4。

二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。

它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。

例题2:求极限lim(x→∞) [(x+1)/x]。

解:我们可以用夹逼法来求解这个极限。

首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。

因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。

根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。

三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。

该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。

例题3:求极限lim(x→0) (sinx/x)。

解:我们可以利用极限的四则运算法则来求解这个极限。

首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。

根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。

求极限的方法及例题总结解读

求极限的方法及例题总结解读

求极限的方法及例题总结解读第一篇:求极限的方法及例题总结解读1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x→2lim(3x-1)=5 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

利用导数的定义求极限这种方法要求熟练的掌握导数的定义。

2.极限运算法则定理1 已知limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在,且有(1)lim[f(x)±g(x)]=A±B(2)limf(x)⋅g(x)=A⋅B (3)limf(x)A=,(此时需B≠0成立)g(x)B说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

.利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。

通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限limx→1例1 3x+1-2x-1(3x+1)2-223x-33lim=lim=x→1(x-1)(3x+1+2)x→1(x-1)(3x+1+2 )4解:原式=。

注:本题也可以用洛比达法则。

例2 limn(n+2-n-1)n→∞nn[(n+2)-(n-1)]分子分母同除以lim=n→∞n+2+n-1limn→∞31+21+1-nn=32解:原式=(-1)n+3nlimnn例3 n→∞2+3。

上下同除以3n=解:原式1(-)n+1lim3=1n→∞2n()+13。

3.两个重要极限sinx=1x→0x(1)lim(2)x→0lim(1+x)=e1xlim(1+1)x=ex;x→∞说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,sin3x3lim=1lim(1-2x)-2x=elim(1+)3=ex例如:x→03x,x→0,x→∞;等等。

高等数学求极限的常用方法(附例题和详解)[1]

高等数学求极限的常用方法(附例题和详解)[1]

高等数学求极限的常用方法(附例题和详解)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等数学求极限的常用方法(附例题和详解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等数学求极限的常用方法(附例题和详解)(word版可编辑修改)的全部内容。

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-limlimlim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握).极限)(limx f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。

其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。

本文将介绍求极限的常用方法,并提供相应的例题和详解。

一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。

具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。

2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。

3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。

则可以得到 lim[f(x)] = lim[g(x)] = A。

下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。

解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。

则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。

二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。

具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。

其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。

大学数学经典求极限方法(新整理)

大学数学经典求极限方法(新整理)

3求极限的各种方法1. 约去零因子求极限x 4 - 1例 1:求极限lim x →1x - 1【说明】 x → 1表明 x 与1无限接近,但 x ≠ 1 ,所以 x - 1 这一零因子可以约去。

【解】limx →1 (x - 1)(x + 1)(x 2 + 1)x - 1= lim(x + 1)(x 2 x →1 + 1) = 6 =42. 分子分母同除求极限x 3 - x 2例 2:求极限lim 3x →∞ 3x + 1 【说明】 ∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

∞【解】lim x 3 - x 2 1 - 1 1 = lim x=x →∞ 3x 3 + 1 x →∞ 3 + 1 3 x 【注】(1) 一般分子分母同除 x 的最高次方;⎧⎪ 0m > n a x n + a x n -1+ + a ⎪(2) lim nn -1 0 = ⎨∞ m < n x →∞ b m x m + b m -1 x m -1 + + b ⎪ a n⎪ b m = n⎩ nx 2 + 3 x 2 + 3 + x 2 + 1⎢ ⎭3. 分子(母)有理化求极限例 3:求极限 lim ( - x →+∞x 2 + 1)【说明】分子或分母有理化求极限,是通过有理化化去无理式。

2【解】 lim ( x →+∞- x + 1) = limx →+∞= lim2 = 0x →+∞例 4:求极限limx →0【解】lim x 3= limtan x - sin x x →0 x 3 x →0 x 3 1 + tan x - 1 + sin x= lim1lim tan x - sin x = 1 lim tan x - sin x = 1 x →01 + tan x + 1 + sin x x →0 x 32 x →0 x3 4【注】本题除了使用分子有理化方法外,及时分.离.极.限.式.中.的.非.零.因.子.是解题的关键4. 应用两个重要极限求极限两个重要极限是1(1 + x ) x= e ,第 一个重要极限过于简单且可通过等价无穷小来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

主要考第二个重要极限。

例5:求极限xx x x ⎪⎭⎫ ⎝⎛-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。

【解】2221212112111lim 121lim 11lim e x x x x x x x xx xx =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。

5.用等价无穷小量代换求极限 【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。

例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-. 例8:求极限xxx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim xx x x +-→ 【说明】∞∞或00型的极限,可通过罗必塔法则来求。

【解】220)sin 1ln(2cos ln lim x x x x +-→xx xx x x 2sin 12sin 2cos 2sin 2lim 20+--=→ 3sin 112cos 222sin lim20-=⎪⎭⎫⎝⎛+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-00)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxx x x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 20)]1ln(1[lim ++→ 【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e ++→=.2)1ln(2lim)]1ln(1ln[2lim00e eex x x x x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -例12:求极限3012cos lim13x x x x →⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【解1】 原式2cos ln 331limx x x ex +⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 20ln 2cos ln 3lim x x x →+-=()01sin 2cos lim 2x x x x→⋅-+=()011sin 1lim22cos 6x x x x →=-⋅=-+ 【解2】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 20cos 1ln 3limx x x→-+=(1)20cos 11lim 36x x x →-==-8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim20>-+-→a x a a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x+++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x a a x x +=-+-∴ a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ . 例14 求极限011lim (cot )x x x x→-. 【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 323230()[1()]3!2!lim x x x x x x x xοο→-+--+= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。

⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211lim dx x f n n f n f n f n n 【解】原式=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n 1212ln 2111102+--=+=⎰dx x例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛∞→n n f n f n f n n 211lim的形式,因而用两边夹法则求解; (2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。

【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 因为11211122222+≤++++++≤+n n nn n n nn n又 nn n n +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim =1 12.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<== (Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界. 于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e ee x x xx x x x x x x xx (使用了罗必塔法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.。

相关文档
最新文档