第三章 分子的对称性
合集下载
第三章:分子对称性和点群

σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。
群论第3章

NH3
CO,NO,HCN
C3v
C∞v
③ Cnh 群 属于Cnh点群的分子中具有一个Cn轴和一个垂直于Cn轴的σh 对称元素:Cn和σh 因σhCn=Sn,故(n-1)个旋转必产生(n-1)个象转 实际上 Cnh群是Cn群和Cs群的直积,阶次为2n 。
Cnh Cn Cs E, Cn1 , Cn 2 ,..., Cn n1 E, h = E, Cn1 , Cn 2 ,..., Cn n1 , h , hCn1 Sn , hCn 2 ,..., hCn n1
第三章. 分子对称性与分子点群
3.1 分子对称性
利用对称性原理和概念探讨分子的结构和性质,是人们认 识分子的重要途径,是了解分子结构和性质的重要方法。 ① 能简明地表达分子的构型 Ni(CN)42-离子具有D4h点群的对称性,用D4h这个符号就可以 准确地表达 9 个原子在同一平面上, Ni 原子在中心位置, 周围4个-CN完全等同,Ni-C-N都是直线型,互为90°角。 ② 简化分子构型的测定工作
3.分子的对称操作和对称元素:
分子是有限物体,在进行对称操作时,分子中至少有一 点不动------点操作 只有四种类型的对称操作和对称元素 a. 旋转操作------旋转轴(Cn)
b. 反映操作------镜面( σ )
c. 反演操作------ 对称心(i) d. 象轴(旋转反映)操作------象转轴(反轴)Sn 右手坐标系:讨论对称操作时,常将分子定位在右手坐 标轴系上,分子的重心处在坐标原点,主轴与Z轴重合。 主轴:分子中轴次最高的轴。
Cnh 待 定 分 子 是 否 直 线 型 N Y i Td
例:有两个分子群 D2 { E,C2(x),C2(y),C2(z) }
第三章分子对称性和点群

A(c) A(a) A( f ) 0 1
0
0
001
cos 4
3
sin 4
3 0
sin 4
3
cos 4
3 0
0 0Βιβλιοθήκη cos 43sin 4
3
1 0
sin 4
3
cos 4
3 0
0
0
1
A (a) 1
A (b) 1
A (c) 1
表示的分类:
(1)等价表示 若A(g)是群G的一个表示, X是一正交变换矩阵, 则 B(g)=X-1A(g)X
规则二. 点群中所有不可约表示的维数的平方和等于群的阶 n. l12 l22 lk 2 n
在 D3中, l12 l22 l32 6
从而 l1 l2 1, l3 2
规则三. 点群中不可约表示特征标间的正交关系:
k
h j r (R j ) * s (R j ) n rs
j 1
对不可约表示: (R) 2 n
3
y2 a21 a22 a23 x2 , yi aij x j
y3 a31 a32 a33 x3
j 1
(i=1,2,3)
矩阵的迹 (trace) 或特征标 (character):
( A) TrA aii
i
相似变换:
A S1AS
TrA TrA
(S为正交矩阵) St S SSt E
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
3.1.1 n重对称轴, Cn (转动)
转角 2 / n
分子的对称性

对称元素是几何元素:点、线、面。 联系:对称元素是通过对称操作表现出来 点对称操作:分子中至少有一点保持不动的操作。
4.1.1 旋转轴和旋转操作
1. 基转角:能够得到等价构型的最小旋转角。
轴次(n):
C4:
特殊的旋转轴: C∞轴
2. 主轴:一般来说,一个分子中轴次最高的旋转轴。
3. 付轴:除主轴外其余的旋转轴。
S4点群
S6(C3i)点群 1
2. D点群 Dn点群:
D2点群
D3点群 [Co(en)3]3+ 三草酸合铁(III)
Dnh点群
D2h点群 CH2=CH2 对-二氯苯
D3h点群 BF3
环丙烷
பைடு நூலகம்
D4h点群
(PtCl4)2-
D5h点群 (二茂铁) D6h点群 (苯)
Dnd点群
D2d点群 丙二烯
分子的对称性
对称的世界
4.1 对称操作和对称元素
1. 对称操作: 不改变分子中任何两原子间的距离而使其成为等价构 型的操作或动作。 2. 对称元素: 对称操作进行时所依据的几何元素。 3. 复原:分子经过某种动作后,所有同类的原子都与 动作前完全重合,无法区分分子构型是动作前还是动 作后。
等价构型:物理上不可区分的构型。 恒等构型:物理上不可区分且化学上不可区分的构 型,是等价构型的特例。
SF6:
主轴:C4 副轴:C3,C2 对称操作的矩阵表示:
4.1.2 对称中心和反演操作
对称中心 i
4.1.3 镜面(对称面)和反映操作
镜面σ
σv:通过主轴的对称面 σd:通过主轴且平分两个副轴C2的夹角的对称面 σh:垂直主轴的对称面
三种镜面 σv σd 和 σh
4.1.1 旋转轴和旋转操作
1. 基转角:能够得到等价构型的最小旋转角。
轴次(n):
C4:
特殊的旋转轴: C∞轴
2. 主轴:一般来说,一个分子中轴次最高的旋转轴。
3. 付轴:除主轴外其余的旋转轴。
S4点群
S6(C3i)点群 1
2. D点群 Dn点群:
D2点群
D3点群 [Co(en)3]3+ 三草酸合铁(III)
Dnh点群
D2h点群 CH2=CH2 对-二氯苯
D3h点群 BF3
环丙烷
பைடு நூலகம்
D4h点群
(PtCl4)2-
D5h点群 (二茂铁) D6h点群 (苯)
Dnd点群
D2d点群 丙二烯
分子的对称性
对称的世界
4.1 对称操作和对称元素
1. 对称操作: 不改变分子中任何两原子间的距离而使其成为等价构 型的操作或动作。 2. 对称元素: 对称操作进行时所依据的几何元素。 3. 复原:分子经过某种动作后,所有同类的原子都与 动作前完全重合,无法区分分子构型是动作前还是动 作后。
等价构型:物理上不可区分的构型。 恒等构型:物理上不可区分且化学上不可区分的构 型,是等价构型的特例。
SF6:
主轴:C4 副轴:C3,C2 对称操作的矩阵表示:
4.1.2 对称中心和反演操作
对称中心 i
4.1.3 镜面(对称面)和反映操作
镜面σ
σv:通过主轴的对称面 σd:通过主轴且平分两个副轴C2的夹角的对称面 σh:垂直主轴的对称面
三种镜面 σv σd 和 σh
第三章 分子的对称性与点群

Cnh群中有1个C n轴,垂直于此轴有1个σh 。阶 次为2n。C1h点群用Cs 记号。 若分子有一个n重旋转轴和一个垂直于轴的水平 对称面就得到Cnh群,它有2n个对称操作,{E,Cn1,
Cn2……Cnn-1 ,σh , Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
4)结合律
若A, B, C G, 则A( BC ) ( AB )C
2. 群的乘法表
根据群的定义,可以得到群的乘法表
C3v点群的乘法表
3.群的一些相关概念 (1)群的构成:群元素可以是各种数学对象或物理 动作,可以进行某种数学运算或物理动作。 (2)群的分类:群有各种类型,如旋转群,置换群, 点群,空间群,李群…… (3)群阶:群所含的元素个数称为群阶, (4)类:群中某些对称元素在相似变换中互为共轭 元素的可分为一类。如C3v 点群中的元素可分为三类, E元素成一类,C31与 C32旋转成一类。三个σv 平面而成一类。 (5)子群:在一些较大的群中可以找到一些较小的 群,称为子群。例如:C3v 群中有子群 C3 。子群也 要满足群的四个要求。
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
Cn2……Cnn-1 ,σh , Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
4)结合律
若A, B, C G, 则A( BC ) ( AB )C
2. 群的乘法表
根据群的定义,可以得到群的乘法表
C3v点群的乘法表
3.群的一些相关概念 (1)群的构成:群元素可以是各种数学对象或物理 动作,可以进行某种数学运算或物理动作。 (2)群的分类:群有各种类型,如旋转群,置换群, 点群,空间群,李群…… (3)群阶:群所含的元素个数称为群阶, (4)类:群中某些对称元素在相似变换中互为共轭 元素的可分为一类。如C3v 点群中的元素可分为三类, E元素成一类,C31与 C32旋转成一类。三个σv 平面而成一类。 (5)子群:在一些较大的群中可以找到一些较小的 群,称为子群。例如:C3v 群中有子群 C3 。子群也 要满足群的四个要求。
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
第三章 分子的对成性与点群

一个对称面只能产生两个反映操作:
ˆ n
ˆ (n为奇数) Eˆ(n为偶数 — 垂直主轴的对称面
d — 包含主轴且平分垂直主轴的两个二重轴之间的夹角
PtCl4:其对称面如上图所示。
5.象转轴(映轴)Sn和旋转反映操作 Sˆn
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜 面反映,可以产生分子的等价图形。则将该轴和垂直该轴 的镜面组合所得的元素称为象转轴或映轴。
分子的偶极矩是一个矢量,是分子的静态性质,分子的任何对称操 作对其大小和方向都不起作用。
只有分子的电荷中心不重合,才有偶极矩,重合,则无。 极性分子——永久偶极短0 一般分子——诱导偶极矩I
分子的对称性反映出分子中原子核和电子云空间分布 的对称性,因此可以判断偶极矩是否存在。
判据:若分子中有对称中心或有两个对称元素相交于 一点, 则分子不存在偶极矩。
象转轴和旋转—反映连续操作相对应,但和连续操作的
次序无关。即 :
Sˆn cˆnˆ h ˆ hcˆn
转900
Cˆ 4
ˆ h
(A)
例如CH4,其分子构型可用图(A)表示: CH4没有C4,但存在S4
注意:①当分子中存在一个Cn轴和一个垂直Cn的对称 面,则分子必存在Sn轴。
PtCl4有C4 且有 ,有h S4
D4h群:XeF4
D6h群:苯
Dh群: I3-
3) Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹
角的镜面σd.
对称元素 1个Cn轴,n个垂直Cn的二重轴,n个σd面 4n阶。
D2d : 丙二烯
C C C
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
结构化学 第三章 分子的对称性chap3

[Co(NH2CH2CH2NH2)3]3+是一实例.
何其相似!
C2
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; 三条C2旋转轴分别从每个N–N 键中心穿过通向Co. z C2 x y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
元素 操作 阶
E,nC2Cn ˆ ,C ˆ 2 ,,C ˆ n1, nC ˆ ˆ,C E
试观察以下分子模型并比较:
(1) 重叠型二茂铁具有
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
S5, 所以, C5和与之垂直
的σ也都独立存在;
CH4中的映轴S4与旋转反映操作
•
注意: C4和与之垂直的σ都不独立存在
交叉式C2H6
S6=C3 + i
对称操作与对称元素
的镜面σd.
D2d : 丙二烯
元素 E,nC2Cn 操作 阶
n
ˆ ,C ˆ ,,C ˆ ˆ,C E
2 n
n1 n
ˆ , nC 2
2n
丙二烯(CH2=C=CH2)
对称元素 3C2 , 2 d
D2d群
D2d : B2Cl4
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
Z
对称操作,共有9个对称操作. 但每条S4必然也是C2,
S42与C2对称操作等价,所以将3个S42划归C2,
穿过正四面体每条 棱并将四面体分为 两半的是一个σd ,
Y X
共有6个σd 。
从正四面体的每个顶点到 对面的正三角形中点有一 条C3穿过, 所以共有4条C3, 可作出8个C3对称操作。
何其相似!
C2
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; 三条C2旋转轴分别从每个N–N 键中心穿过通向Co. z C2 x y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
元素 操作 阶
E,nC2Cn ˆ ,C ˆ 2 ,,C ˆ n1, nC ˆ ˆ,C E
试观察以下分子模型并比较:
(1) 重叠型二茂铁具有
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
S5, 所以, C5和与之垂直
的σ也都独立存在;
CH4中的映轴S4与旋转反映操作
•
注意: C4和与之垂直的σ都不独立存在
交叉式C2H6
S6=C3 + i
对称操作与对称元素
的镜面σd.
D2d : 丙二烯
元素 E,nC2Cn 操作 阶
n
ˆ ,C ˆ ,,C ˆ ˆ,C E
2 n
n1 n
ˆ , nC 2
2n
丙二烯(CH2=C=CH2)
对称元素 3C2 , 2 d
D2d群
D2d : B2Cl4
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
Z
对称操作,共有9个对称操作. 但每条S4必然也是C2,
S42与C2对称操作等价,所以将3个S42划归C2,
穿过正四面体每条 棱并将四面体分为 两半的是一个σd ,
Y X
共有6个σd 。
从正四面体的每个顶点到 对面的正三角形中点有一 条C3穿过, 所以共有4条C3, 可作出8个C3对称操作。
(完整版)第三章-分子对称性和群论初步

操作A和B是可交换的。
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在
补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:
iˆ
nLeabharlann =E(n为偶数) ˆi(n为奇数)
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在
补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:
iˆ
nLeabharlann =E(n为偶数) ˆi(n为奇数)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆元素
I--- I C3+---C3– v1--- v1 v2---v2 v3 ---v3
封闭性
结合律 v1(v2 v3) = v1 C3+ = v2
(v1v2)v3 = C3+ v3 = v2
3.5 群的表示
矩阵乘法 矩阵 方阵 对角元素
分子的所有对称操作----点群
如果每一种对称操作可以用一个矩阵(方阵)表示, 矩 阵集合满足群的要求,矩阵乘法表与对称操作乘法表
相似, 矩阵集合---群的一个表示
恒等操作I
矩阵
C2v: I C2 v v
特征标: 对角元素和 9
特征标3
特征标 1
特征标 -1
单位矩阵
I 矩阵, C2 矩阵, v 矩阵, v 矩阵 满足群的要求, 是C2v 点群的一个表示
集合G 构成群
1 –1, 乘法
1X1=1, 1X(-1)= -1 (-1)X1= -1, (-1)X(-1)=1 封闭性 恒等元素1 逆元素 1---1, -1--- -1,
群的乘法表 I A I A
I
I
IA
AA
I
I
A
?
A AI
A A
交叉线上元素 = 行元素 X 列元素
已知,I,A,B构成群, I 为恒等元素, 写出群的乘法表
3) 如果对称中心上无任何原子, 则同类原子是成双出现的.
例如: 苯中C, H
NH3 有无对称中心, 为什么? C2H3Cl有无对称中心, 为什么?
(b) 旋转轴Cp
绕轴旋转3600/p, 等价构型 水分子----绕轴旋转1800, 等价构型 C2轴 C3轴 360/2=180
BF3, 旋转1200, 等价构型 360/3=120
一撇
: 对于某对称面对称
双撇
:对于某对称面反对称
群的所有种类的不可约表示的特征标均相等的对称操 作,属于相同的类。Class
C3v点群,三类 I, C3,v
矩阵: X-1AX=B A与B同属一类。
X-1IX= X-1X=I 单位矩阵自成一类
3.8 可约表示: 不可约表示的数目 笛卡尔坐标中可约表示计算方法:
v1( v2 v3 )三个原子镜面上: 3×1=3
I , C3+ , C3 , v1 , v2 , v3 15 0 0 3 3 3 特征标表---不可约表示 可约表示 = A+B+·+ · · A,B,不可约表示, ,A出现次数, ,B出现次数
Ni = 1/h (R) i(R)
I
I I
A
A
B
B
A
B
A
B
3.4 Group Theory Applied to Point Groups 分子---对称操作----对称操作集合-----?
CHCl3
I C3 C32 C33 v1 v2
v3 集合 I, C3+,C3–, v1,v2, v3
恒等元素 对称操作 I
PI= IP
D2h,D3h,D4h, D5h,D6h, Dh
C , 个v , h ,i
C
Cp,p 个v ,一个h
D6h
T,4C3,3C2 ,三C2两两垂直 Th, 4C3,3C2 ,i
Td,正四面体分子,甲烷,SO424C3
3C2 6
点群O
点群Oh
SF6,UF6
3.3 群论 群的定义
集合G (I, A, B, C, ·,), 定义‘‘乘法’’运算 · ·
= X-1ABX = X-1(AB)X =X-1CX =C
I A B C 符合群的定义,
也是群的一个表示
A,B,C ·· ·I · 相似变换后
群的一个表示 方块因子
A, B, C, ·· ·I ·
矩阵
则: A, B, C ·· 群的一个可约表示 ·I, ·
子矩阵a,d,g 子矩阵b,e,h 子矩阵c,f,I 不可约表示:
所有原子运动:特征标贡献 0
对称中心有一个中心原子:
(x,y,z)
特征标-3
(-x,-y,-z)
镜面, 反映操作
镜面外原子0
镜面上每个
原子对特征标 贡献1
H2O v, 3 atoms, 3
v, 1 atom, 1
转动Cp, 转动角度 = 3600/p
转动轴上一个原子贡献: 1+2cos H2O, C2, -1
1) 分子内可以 有多个镜面
最高对 称性旋 转轴
垂直 Z轴 对称面分类 水平对称面h, horizontal
垂直对称面 v, vertical,
苯h v
(d) 象转轴 p-fold rotation-reflection symmetry 沿一转动轴旋转3600/p, 再沿垂直该轴的平面反映,
H2O 9
C2
-1
v
+1
v
+3
特征标 -1 1) 对称操作前后, 原子位置不动 的原子, 才对特 征标有贡献 2) 单个原子贡献 特征标大小
点群的矩阵表示----多个表示 简正坐标---矩阵表示
对称操作前后,简正坐标没有变化, 1
对称操作前后,简正坐标有符号变化, 1
1
-1
1 1 1
1 1
3.10 The Number of Fundamental of Type
H2O
9
-1
1
3
(1+2cos)
NA1= 1/4(9-1+1+3) = 3 NA2=1
NB1=2 NB2=3
水: 3A1+A2+2B1+3B2 平动A1+B1+B2 转动A2+B1+B2
振动2A1+B2
3.11 选择定则
群的表示的特征标的直积 I C2 V V
A1
A2 A1×A2
1
1 1
1
1 1
1
-1 -1
1
-1 -1
相同类型 直积
全对称
A1×A1
R
h, 点群的阶, 对称操作个数
(R), 可约表示中对称操作R的特征标 i(R), 第 i个不可约表示中 对称操作R的特征标 Ni,第 i个不可约表示在可约表示中出现的次数
I,
C3+ ,
C3 ,
v1 ,
v2 , v3
15
点群的阶 h=6,
0
0
3
3
3
NA1= 1/6(R) i(R)
=1/6 (15×1+0×1+0×1+3×1+3×1+ 3×1)
单位矩阵, 也是群的一个表示 单位矩阵, 也是群的一个表示 单位矩阵, 也是群的一个表示
v
3.7 特征标表
红外活性 对称操作
振 动 类 型
平动
拉 曼 活 性
特
征
标 转动R
信息1: 振动类型的简并度, 恒等操作与振动类型交叉点特征标数值
信息
A: 一维不可约表示, 对于主轴对称, 特征标1
信息
O=C=O 碳在对称中心上
(0, 0, 0)---(0, 0, 0)
(x, 0, 0)---(-x, 0 ,0)
(-x, 0, 0)---(x, 0, 0)
HBrClC-CHBrCl 反式二溴二氯 乙烷
苯 对称中心上没有任何原子 分子存在对称中心时:
1) 一个对称中心
2) 对称中心位置上可以有原子
• 对称操作前后, 原子位置不动的原子, 才对特征 标有贡献
2) 位置不动单个原子贡献特征标大小与对称操作 有关
I 恒等操作
n个原子的分子, 3n个坐标
3n×3n 单位矩阵
恒等操作n个原子不动, 每一坐标贡献1, 特征标3n 水分子, 3个原子, 特征标 9
反演操作,对称中心 对称中心无原子, 反演时
=4
I,
C3+ ,
C3 ,
v1 ,
v2 , v3
15
点群的阶 h=6,
0
0
3
3
3
NA2= 1/6(R) i(R)
=1/6 (15×1+0×1+0×1+3×(-1)+3×(-1)+ 3×(-1))
=1
I,
C3+ ,
C3 ,
v1 ,
v2 , v3
15
点群的阶 h=6,
0
0
3
3
3
NE= 1/6(R) i(R)
B: 一维不可约表示, 对于主轴反对称, 特征标-1
信息
E: 二重简并振动, 不可约表示为二维矩阵
F: 三重简并振动
下标g: 相对于对称中心对称
下标u: 相对于对称中心反对称
下标1: 除主轴外, 对某一Cp ,Sp或对某一对称面对称
下标2: 除主轴外, 对某一Cp ,Sp或对某一对称面反对称
矩阵I, A, B, C 是群的一个表示. A = X-1AX, B = X-1BX, C = X-1CX I = X-1IX I A B C 分别称为I A B C 的相似变换矩阵
如果矩阵集合I, A, B, C中, AB=C AB= (X-1AX)( X-1BX)= X-1A(X X-1)BX
C1, 只有恒等操作
象转轴Sp S2, S4, S6 S2 i S 2
点群Cpv, Cp轴, p个通过
旋转轴的垂直对称面
C1v C2v C3v C4v C6v C v
水分子, C2, 2个垂直对称面
NH3 , C3v
C1v C1h Cs
C
Cv, H---I