第4章 钢结构轴心受力构件——格构式 PPT
《钢结构格构柱》PPT课件
{
a)
b)
缀条
l1 l0 l1
缀板
x 1 y 1
肢件
x 1
y
肢件
图4-6 格构式柱
1
肢件:受力件。 由 2 肢(工字钢或槽钢)、 4 肢(角钢)、 3 肢 (园管)组成。
a)
x y
b)
2 EI y
l
2 y
(4-10)
(4-12)
y ,cr
2 E 2 y
2、绕虚轴屈曲 绕虚轴屈曲时,不能忽略剪切变形影响,这时,
N x ,cr
EI x EI x 2 ( l x ) lx
2 2
N b,cr
2 EI
l2
x ,cr
式中
2 E 2 E 2 ( x ) x2
I1 A i
2 1
② 计算
引入单肢节间段长细比1,且 1= l1 /i1 代入式:
1 2 EI x
l
2 x
2 1
12 EA
因为 Ix=Aix2, x= lx /ix ,代入得:
2 2 2 1 1 1 2 1 2 12 x x
③ 计算 x
x
y
c)
x y
d)
x y
图4-7 格构式柱的截面型 式
4.4.2整体稳定临界力
公式(4-9)仍然是适用的。
N b,cr
2 EI
l
2
1 2 EI 1 2 1 l
( 4- 9)
1、绕实轴屈曲 绕实轴屈曲时,与实腹截面一样,可忽略剪切变形 的影响,并写成弹性与非弹性通式,得
4-钢结构设计原理-轴心受力构件1 钢结构设计原理
4 轴
主要内容:
心
受 力
1、轴心受拉构件的强度和刚度
构
件 设
2、轴心受压构件的强度
计
3、轴心受压实腹式构件的整体稳定
4、轴心受压格构式构件的整体稳定
5、轴心受压实腹式构件的局部稳定
6、轴心受压格构式构件的局部稳定
7、轴心受力构件的刚度
学习目标
1.掌握轴心受拉构件强度的计算方法、净截面的概念;
4
轴
心 受
所谓分支点失稳,是指当荷载逐渐增加到某一数值
力 构
时,结构除了按原有变形形式可能维持平衡之外,还可
件 设
能以其他变形形式维持平衡,这种情况称为出现平衡的
计
分支。出现平衡的分支是此种结构失稳的标志。
对于受偏心压力的细长直杆,当荷载逐渐增大而趋
于某一数值时,其原有变形形式急剧增大,致使结构丧
失承载能力。这种失稳现象称为极值点失稳。
结构或构件在外力增加到某一数值时,稳定的平衡
状态开始丧失,稍有扰动,结构变形迅速增大,使结构 丧失正常工作的能力,称为失稳。
在桥梁结构中,总是要求沿各个方向保持稳定的平
衡,也即沿各个方向都是稳定的,避免不稳定的平衡或 随遇平衡。
结构稳定问题的两种形式:
第一类稳定问题,分支点失稳问题; 第二类稳定问题,极值点失稳问题。
4
轴 心 受 力 构 件 设 计
4.3.3轴压稳定理论的沿革——具有初始缺陷的实际轴心压杆的稳 定问题
有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的
单曲线函数关系到实际状态杆件多曲线函数关系的沿革。传统的
理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在
钢结构设计原理-轴心受力构PPT课件
轴 入缀条或缀板的截面面积。
心
受
力
构
件
设
计
12
4.6.2 轴心受压格构式构件整体稳定
格构式受压构件也称为格构式柱,其分肢通常采用槽
钢和工字钢,构件截面具有对称轴。当构件轴心受压
4 丧失整体稳定时,不大可能发生扭转屈曲和弯扭屈
轴 曲,往往发生绕截面主轴的弯曲屈曲。因此计算格构
心
受 力
式轴心受压构件的整体稳定时,只需计算绕截面实轴
实腹式轴心受压构件在弯曲屈曲时,剪切变形影响很
小,对构件临界力的降低不到1%,可以忽略不计。格
4 构式轴心受压构件绕虚轴弯曲屈曲时,由于两个分肢
轴 心
不是实体相连,连接两分肢的缀件的抗剪刚度比实腹
受
力 构
式构件的腹板弱,构件在微弯平衡状态下,除弯曲变
件 设
形外,还需要考虑剪切变形的影响,因此稳定承载力
增加加工焊 接工作量
4
轴
心 受
用材增多,
力 构
加工量较少, 截面形式、
件
材料单价较 尺寸均受限
设 计
低
制,连接复
杂
ix 和 iy 相同 或接近(矩 形管),回 转半径大, 抗压稳定性 好,用材省,
圆管单价较 高,与其它 构件连接时 相对较繁
抗扭刚度大
3
1)假定柱的长细比 ,一般在60~100范围内,当轴力大 而计算长度小时,λ 取较小值,反之λ取较大值。如轴力很 小,λ可取容许长细比。根据 λ及截面分类查得 φ值,按下 式计算所需的截面面积As
4
轴
心
受
力
构 件
,
设
计
2)求截面两个主轴方向所需的回转半径
钢结构课件:轴心受力构件PPT课件
第36页/共171页
§3 受压构件的整体稳定
忽略残余应力
残余应力对轴心受压短柱平均应力~应变曲线的影响
第22页/共171页
§3 受压构件的整体稳定
研究结构极限承载能力,可依屈曲后性能将稳定问题分为如下三类:
P
(1)稳定分岔屈曲
分岔屈曲后,结构还可承受荷载增量。
P
轴心压力作用下的杆以及中面受压的
平板都具有这种特征。
平板具有相当可观的屈曲后强度可工
程设计利用。
第23页/共171页
v v
§3 受压构件的整体稳定
第20页/共171页
§3 受压构件的整体稳定
6) 第一类稳定、第二类稳定
结构丧失稳定时,平衡形式发生改变的,称为丧失了第一类稳定性或称 为平衡分枝失稳。
第二类稳定性的特征是结构丧失稳定时弯曲平衡形式不发生改变,只是
由于结构原来的弯曲变形增大将不能正常工作。也称为极值点失稳。
第21页/共171页
§3 受压构件的整体稳定
§3 受压构件的整体稳定
2) 平衡状态的分枝 3) 临界力、临界应力
随遇(中性)平衡是从稳定平衡过渡到不稳定平衡的临界状态; 中性平衡时的轴心压力,称为临界力; 相应的截面应力,称为临界应力。
无缺陷的轴心受压构件发生弯曲屈曲时,构件的变形发生了性质上的变化 ,即构件由直线形式改变为弯曲形式,且这种变化带有突然性。
图净截面面积的计算
第12页/共171页
§2构件的强度和刚度
格构式轴心受力构件PPT课件
缀板的净距由分肢的稳定和强度条件确定:
l01 1i1
缀板的刚度要求:同一截面处两侧缀板线刚度之和 不得小于构件较大分肢线刚度的6倍。缀板一般取 纵向高度 hb 2c ,3 厚度 tb c 40和6mm。
缀板与肢体间用角焊缝连接,共同承受Mb1和Vb1的 作用。搭接长度一般可采用20~30mm,可采用三 面围焊或仅用端部纵向焊缝。
2. 轴心受压格构式柱的计算
1) 整体稳定计算
a. 格构式构件整体稳定性的特点 取决于对虚轴的稳定性 必须考虑剪切变形对稳定承载力的影响 用加大长细比来考虑剪切变形对稳定承载力的影响, 加大后的长细比称为换算长细比。
2 EI
1
N cr
l02
•
1
2 EI
l02
k GA
0x 2x 2 EA
/
A1 y
当为缀板时
0 x 2x 12 0 y 2y 12
缀件为缀条的三肢组合构件
0x
2x
42 A
A1(1.5 cos2 )
0y
2y
42 A
A1 cos2
A1 — 构件截面各斜缀条 毛截面面积之和
— 构件截面内缀条所
在平面与x轴的夹角
2) 分肢的稳定计算
可视为单独的轴心受压实腹式构件,两缀条或缀 板间的长细比 1 计算,如满足下列要求,对分肢的 稳定性和强度可不另作验算。
作,而仅考虑腹板计算高度边缘范围内两侧宽度各
为
的部分作为有效截面。但计算构件整
体稳定系数时,仍用全截面。
15.1.6 实腹式轴心受压构件的设计
1. 轴心受压构件一般采用双轴对称截面,如图所示:
轧制宽翼缘H型
15.1.7 格构式轴心受压构件的设计
钢结构第四章
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。
钢结构 第四章11
4.5
柱头和柱脚
一、梁与柱的连接 方位: 1. 顶部连接 2. 侧面连接 支撑方式 1. 铰接 2. 刚接
柱的顶部与梁(桁架)连接的部分称为柱头。 作用是通过柱头将上部结构的荷载传到柱身。
柱的顶部与梁(桁架)连接的部分称为柱头。 作用是通过柱头将上部结构的荷载传到柱身。 设计的原则:传力明确、 安全可靠、 经济合理, 便于制造和安装。
式中: A — 两个柱肢的毛截面面积之和; A1x — 斜缀条的毛截面面积之和; λ — 整个柱对虚轴的长细比。
x
2
2、绕虚轴(x-x轴) 需要先计算,换算长细比,再以此查稳定系数, 查出稳定系数后的计算公式,为
N x f A
双肢缀板柱
λ 0x
λ 1 l 01 i1
λ λ
第4 章
4.1 4.2 4.3 4.4 4.5
轴心受力构件
概述 轴心受拉构件 实腹式轴心受压构件 格构式轴心受压构件 柱头和柱脚的设计
4.1 概述 一、定义:
指只承受通过构件截面形心线的轴向力作用 的构件。
轴心受力构件广泛应用于各种钢 结构之中,如网架与桁架的杆件、 钢塔的主体结构构件、双跨轻钢厂 房的铰接中柱、带支撑体系的钢平 台柱等等。
4.3.1 轴心受压构件的强度和刚度
一、强度
N σ f An
λy l 0y iy λ
二、刚度要求
l 0x λx λ ix
4.3.2 轴心受压构件的稳定问题
一、稳定问题的概念 • 稳定平衡状态是指结构或构件或板件没有
突然发生与原受力状态不符的较大变形而起头承 载能力的状态。 • 突然发生与原受力状态不符的较大变形而丧失承 载能力叫丧失稳定(简称失稳)。 • 失稳之前的最大力则称为稳定承载力或临界力 —— 相应的应力称为临界应力
《钢结构格构柱》PPT课件
28a 250
节点板
图例题4-2
设计内容: 1、按绕实轴屈曲设计槽钢截面; 2、以对实轴、虚轴的长细比性相同设计槽钢间距; 3、验算槽钢对虚轴的稳定性; 4、验算缀材强度和焊缝。
[解 ]
1、按实轴选截面和回转半径(图4-2)。
x x1
y y
104 b=250
28a 250
节点板
图例题4-2
④ 计算 l x
A l x 1 27 2 A1x
l x
设计时,应先假设(斜)缀条面积,然后,用式(4- 15)算 ,再根据 查x。稳定验算公式同实腹式 x x 构件。
4.7.2缀板式柱
a)
b)
V/2=1/2 l1/2 1/2
δ
•一般各缀板等距离布置, 刚度相等。缀板内力按 缀板与肢件组成的多层 框架分析。屈曲时,除 发生格构柱整体弯曲外, 所有肢件也都发生S形弯 曲变形,如图4-9所示。
l1 T V1 a
(4-89)
式中a是两柱肢轴线间的距离。
缀板在柱肢连接处A的弯矩:
V1l1 M 2
V1/2 A l1
(4-90)
T
可见,缀板一般按受弯构件设计。 但因剪力、弯矩较小,可按构造 设计。
V1/2
a/2
分离体Ⅱ
构造设计要点: ① 同一截面处缀板(或采用型钢的横杆)线刚度 之和不得小于柱肢线刚度的 6倍。如果柱截面接近正方 形,且x和y方向的长细比又接近相等时,可取
1/ 2 Sd cos
1 Sd cos 2
斜杆伸长:
Sd ld l1 d EAd 2 EAd sin cos
一根斜杆 毛截面面积
第4章(格构式)
第四章 格构式轴心受压构件一.填空和选择题1.格构式轴心受压构件的等稳定性的条件 y ox λλ= 。
2.对于缀板式格构柱,单肢不失稳的条件是 max 15.0λλ< ,且不大于40 。
3.缀条式格构柱的缀条设计时按 轴心受压 构件计算。
4.对于缀条式格构柱,单肢不失稳的条件是 max 17.0λλ< 。
5.格构式轴压构件绕虚轴的稳定计算采用了大于x λ的换算长细比ox λ是考虑(D )。
A 格构构件的整体稳定承载力高于同截面的实腹构件B 考虑强度降低的影响C 考虑单肢失稳对构件承载力的影响D 考虑剪切变形的影响6.为保证格构式构件单肢的稳定承载力,应(B )。
A 控制肢间距B 控制截面换算长细比C 控制单肢长细比D 控制构件计算长度7.格构式轴压柱等稳定的条件是(D )A .实轴计算长度等于虚轴计算长度B .实轴计算长度等于虚轴计算长度的2倍C .实轴长细比等于虚轴长细比D .实轴长细比等于虚轴换算长细比8.格构式柱中缀材的主要作用是(B )A 、保证单肢的稳定B 、承担杆件虚轴弯曲时产生的剪力C 、连接肢件D 、保证构件虚轴方向的稳定9.格构柱设置横隔的目的是( A )A 保证柱截面几何形状不变B 提高柱抗扭刚度C 传递必要的剪力D 上述三种都是10.由二槽钢组成的格构式轴压缀条柱,为提高虚轴方向的稳定承载力应(D )A .加大槽钢强度B .加大槽钢间距C .减小缀条截面积D .增大缀条与分肢的夹角二.简答题:1现行钢结构设计规范关于轴心压杆整体稳定设计如何考虑这些因素的影响?原因是什么?残余应力,初偏心,初弯曲,使得构件的整体稳定承载力下降。
2.格构式轴压柱应满足哪些要求,才能保证单肢不先于整体失稳?柱对实轴的长细比y λ和对虚轴的换算长细比ox λ均不得超过容许长细比[λ]:缀条柱的分肢长细比1λ<0.7m ax λ缀板柱的分肢长细比1λ<0.5m ax λ且不应大于403.格构柱绕虚轴的稳定设计为什么要采用换算长细比?格构式轴压柱绕虚轴失稳时,剪力主要由缀材分担,柱的剪切变形较大,剪力造成的附加绕曲影响不能忽视,故对虚轴失稳计算采用换算长细比。
钢结构原理-第4章轴心受力构件
《钢结构原理》 第4章 轴心受力构件
4.4.4.2 初弯曲的影响
假设构件变形 为正弦曲线:
x
y0 v0 sin l v0为初始挠度
《钢结构原理》 第4章 轴心受力构件
平衡微分方程:
d2y
x
EI dx2 NyNv0sin l
可得:Yy0y1N v0NEsinlx
vm
v0
v
《钢结构原理》 第4章 轴心受力构件
对于有孔洞的构件,在孔洞附近存在着高额应力集 中现象,孔洞边缘的应力较早地达到屈服应力而发展塑 性变形。由于应力重分布,净截面的应力最终可以均匀 地达到屈服强度fy。
孔洞处截面应力分布 (a) 弹性状态应力 (b)极限状态应力
《钢结构原理》 第4章 轴心受力构件
施工中的钢屋架及支撑
济南遥墙机场候机大厅 管桁架及柱
《钢结构原理》 第4章 轴心受力构件
输电塔
广播电视塔
网架
《钢结构原理》 第4章 轴心受力构件
4.1.3 轴心受力构件的截面形式
(a)
y
y
y
x
x
x
x
x
x
y
y
y
y
x
x
y
y
x
x
y
y
x
x
y
(b) x
y x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
y
(c) x
《钢结构原理》 第4章 轴心受力构件
4.4.4.1 纵向残余应力的影响 残余应力性质:截面内自相平衡的初始应力 产生原因:焊接、轧制、加工切割等 测量方法:锯割法
格构式轴心受压构件
2、 缀材计算
(1)缀条计算
①缀条受力计算
一个缀材面上的剪力
V1
V 2
一个缀条的内力
N1
V1
ncos
图4.18 缀条的内力
V1——分配到一个缀材面上的剪力 n ——一个缀材面承受剪力的斜缀条数。单系缀条时,n=1, 交叉缀条时,n=2
α——缀条与横向剪力的夹角
②缀条的各项验算
强度验算 缀条稳定验算
柱的横隔
五、格构式轴心受压构件的设计步骤
1、首先确定所采用分肢的截面形式
2、根据对实轴(y-y轴)的整体稳定选择分肢截面,方法与 实腹柱的计算相同。
设 y
y []
由 y查 y
A N
y f
iy
l0 y
y
选槽钢型号
3、按对虚轴(x-x轴)的整体确定两分肢的距离。
为了获得等稳定性,应使两方向的长细比相等,即使
第四节 格构式轴心受压构件
一、格构式轴心受压构件的组成
1.截面形式 常用的格构式构件截面形式有两个槽钢或工字钢组成的双肢截面,此外,当轴 心压力较小但长度大时,还可以采用以钢管、角钢组成的三肢、四肢截面,如 图所示。
2.组成
1、绕实轴(y-y)的整体稳定 2、绕虚轴(x-x)的整体稳定
(1)双肢缀条柱的换算长细比
V1=1/2 Ld
L1
V1=1/2
图4.15 缀条柱的剪切变 A
2EA 2
0x
0x 2x 2 EA
γ – 单位剪力作用下的轴线转角。
0x
2x
sin
2 cos2
A A1
取α=45o, 最后得:
双肢缀条柱的换算长细比为
0x
2x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侧缀件面平均分担 V1=V/2
设计缀件及其连接时认为剪力是沿杆全长
不变化的。
大家好
19
4.5 格构式轴心受压构件计算 五、缀件(缀条、缀板)的设计 (一)缀条的设计:
1、斜缀条的设计 2、横缀条的设计: (二)缀板的设计
9
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力
缀板构件: ox 2x 12
λ1 —— 单肢对平行于虚轴的形心轴 的长细比,其计算长度l01取缀板之 间的净距离。
1 l01 i1
i1 —— 分肢对1-1轴(即分大家肢好 的弱轴)的回转半径1。0
大家好
12
4.5 格构式轴心受压构件计算
三、肢件的设计
1、肢件的截面设计: 按对实轴的整体稳定性选择构件截面
设定λy
A Ny f iy = l0y /λy
查表选定截面(即确定分肢型钢规格),然后进行
截面稳定验算
由λy= l0y / iy
大家好
NyA f
13
4.5 格构式轴心受压构件计算
三、肢件的设计 2、肢件间的距离设计c: 按对虚轴的整体稳定确定两分肢的距离 根据对实轴和虚轴的等稳定条件 等稳条件是λox=λy,可得对虚轴的长细比λx的最 大值,对缀条和缀板构件,计算公式如下:
四、格构式压杆的剪力
五、缀件(缀条、缀板)的设计
六、连接节点和构造规定
七、格构式轴心受压构件的设计方法
大家好
2
4.5 格构式轴心受压构件计算
一、格构式轴心受压构件的组成形式: •肢件: 槽钢、角钢、工字钢或钢管 •缀件:为缀条时称缀条构件;为缀板时称缀板构件(柱)。 横贯分肢腹板的轴称为实轴(y), 与缀件平面相垂直的轴称为虚轴(x)。 肢件 缀件
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力 3、单肢的稳定 格构式轴心受压构件的分肢既是组成整体截面的 一部分,在缀件节点之间又是一个单独的实腹式 受压构件。
格构式构件除了需要作为整体来计算其稳定性、 刚度和强度外,还应分别计算各分肢的稳定、刚 度和强度,保证分肢不先于构件整体失稳。
大家好
3
大家好
4
4.5 格构式轴心受压构件计算 一、格构式轴心受压构件的组成形式:
• 缀条:常为单角钢,
• 缀板:用钢板制成,
•可用斜杆组成,
一律按等距离垂直于构件
•也可用斜杆和横杆共同组成 轴线横放。
大家好
5
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
1、对实轴的整体稳定承载力
格构式双肢柱相当于两个并列的实腹式杆件
长细比λy 、截面类型
y
N f
yA
f——为钢材抗压强度设计值.
A —— 各分肢横截面的毛面积之和;
大家好
6
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 轴心受压构件绕虚轴整体弯曲后,沿构件截面 将产生弯矩和剪力。 对实腹式构件来说,剪力引起的附加变形很小, 在进行整体稳定计算时,仅考虑弯矩作用的变 形,忽略剪力的变形;
杆的任意截M 面的 N(y弯 y距 0)1NNN 0 E
sinx
l
杆的任意截V面 d的 大家M 好d剪 xl力 (1N NN 0 E)coslx18
4.5 格构式轴心受压构件计算
四、格构式压杆的剪力
简化后得:
V Af 85
fy 235
构件或受压构件当绕虚轴弯曲时,上述剪
力由缀条承受。对双肢构件,此剪力由双
大家好
8
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力 2. 对虚轴的整体稳定承载力
N f
xA
双肢格构式轴心受压构件对虚轴的换算长细比的计算公式是:
缀条构件: ox 2x 27AA1x
λx —— 整个构件对虚轴的长细比;
A ——各分肢横截面的毛面积之和;
A1x
——一个节间内两侧斜缀条的毛截面面积和: 大家好
4 钢轴心受力构件
4.0 概述 4.1 轴心受力构件的强度和刚度
刚度 整体稳定性
4.2 实腹式轴心受压构件整体稳定计算
4.3
4.4 实腹式轴心压杆的截面设计
4.5 格构式轴心受压构件计算
大家好
1
4.5 格构式轴心受压构件计算
一、格构式轴心受压构件的组成形式:
二、格构式轴心受压构件的整体稳定承载力 三、肢件的设计
c 2 ix2 i12
i1—分肢弱轴的回转半径
l01—缀板间的净间距
求得以上数据后,选择合适数据,然后进行虚轴稳
定性的计算。
大家好
17
4.5 格构式轴心受压构件计算
四、格构式压杆的剪力 当格构式压杆绕虚轴弯曲时,因变形而产生横
向剪力,规范在规定剪力时,以压杆弯曲至中央 截面边缘纤维屈服为条件,导出最大剪力V 和轴 线压力N 之间的关系:
大家好
14
4.5 格构式轴心受压构件计算
三、肢件的设计 缀条构件
由ox
x2
27 A A1
y
x 2 ox27A A1 2y27A A1
A1—一个节间内两侧斜缀条毛截面面积之和 对缀条构件,先给定缀条的截面尺寸A1 0.1A;或 采用最小角钢型号L454或L56 364
大家好
15
4.5 格构式轴心受压构件计算
三、肢件的设计 缀板构件
由 ox x212 y
x
2 ox1 2
2 2 y1
对缀板构件,先假定单肢的长细比λ1, λ1≤0.5λmax且λ1≤ 40
λmax< 50时,取λmax= 50
大家好
16
4.5 格构式轴心受压构件计算
三、肢件的设计 根据λx可得到对虚轴的回转半径ix :
ix= l0x /λx 再根据ix和i1可求得两分肢轴线间距c
大家好
7
4.5 格构Biblioteka 轴心受压构件计算二、 格构式轴心受压构件的整体稳定承载力 2、对虚轴的整体稳定承载力 对格构式构件来说,当绕虚轴失稳时,因肢件之 间不连续,只采用缀条或缀板联系,剪切变形较 大,剪力引起的附加影响不能忽略,通常采用换 算长细比λ0x来替代实际长细比λx,以考虑缀材 剪切变形对格构式轴心受压构件绕虚轴的稳定承 载力的影响。
大家好
11
4.5 格构式轴心受压构件计算
二、 格构式轴心受压构件的整体稳定承载力
3、单肢的稳定
缀条构件: λ1≤0.7λmax
缀板构件:
λ1≤0.5λmax且λ1≤40
λmax< 50时,取λmax= 50
λmax ——为λy 、λ0x中最大值,
1
l01 i1
满足以上条件时,不需要验算分肢的稳定和强度。