芜湖市2020版中考数学试卷A卷(新版)

合集下载

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省初中学业水平考试数学(试题卷)(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2【知识考点】有理数大小比较.【思路分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解题过程】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的除法运算法则计算得出答案.【解题过程】解:原式=a6÷a3=a3.故选:C.【总结归纳】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:54700000用科学记数法表示为:5.47×107.故选:D.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解题过程】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.【总结归纳】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是13【知识考点】算术平均数;中位数;众数;方差.【思路分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解题过程】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.【总结归纳】本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解题过程】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【总结归纳】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD 的长度为()A.B.C.D.4【知识考点】相似三角形的判定与性质;解直角三角形.【思路分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解题过程】解:∵∠C=90°,AC=4,cosA=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.【总结归纳】本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【知识考点】命题与定理.【思路分析】根据垂径定理,平行四边形的性质判断即可.【解题过程】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()B.B.C.D.【知识考点】动点问题的函数图象.【思路分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解题过程】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.【总结归纳】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.【知识考点】实数的运算.【思路分析】直接利用二次根式的性质化简进而得出答案.【解题过程】解:原式=3﹣1=2.故答案为:2.【总结归纳】此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解题过程】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解题过程】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.【知识考点】平行四边形的性质;翻折变换(折叠问题).【思路分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB =PB,即可求解.【解题过程】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.【总结归纳】本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【知识考点】解一元一次不等式.【思路分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解题过程】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【知识考点】作图﹣轴对称变换;作图﹣旋转变换.【思路分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解题过程】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【总结归纳】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【知识考点】列代数式;规律型:数字的变化类.【思路分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解题过程】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.【总结归纳】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数的定义和直角三角形的性质解答即可.【解题过程】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,注意方程思想与数形结合思想的应用.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.【知识考点】列代数式;一元一次方程的应用.【思路分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解题过程】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.【总结归纳】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【知识考点】全等三角形的判定与性质;圆周角定理;切线的性质.【思路分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解题过程】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.【总结归纳】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解题过程】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【知识考点】一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;二次函数的最值.【思路分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m 上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解题过程】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【总结归纳】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【知识考点】四边形综合题.【思路分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP =∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解题过程】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.【总结归纳】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。

2020年全国各地中考数学试题120套(上)打包下载安徽芜湖

2020年全国各地中考数学试题120套(上)打包下载安徽芜湖

2020年全国各地中考数学试题120套(上)打包下载安徽芜湖数 学 试 卷1D 6 CABDD 12甘C . 11C . 18D . 20 A . 9B . 10A . 19B . 16 1C . 6 10 .二次函数y = ax 2 + bx + c 的图象如下图,反比例函数 y = a 与正比例函数y =〔 b + c 〕x 在同一坐标系入一、选择题〔此题共10个小题,每题4分,共 在每题给出的四个选项中, 只有一项符合题意的,40 分.〕请把你认为正确的选项前字母填写在该题后面的括号中.1 . — 6的绝对值是〔〕 3. 一个几何体的三视图如下图,那么那个几何体是〔〕E F第8題用9 . 如下图,在圆O O 内有折线 OABC ,其中OA = 8, AB = 12,/ A =Z B = 60°,那么 BC 的长为〔〕 A . 6 B . — 62 . 2018年芜湖市承接产业转移示范区建设成效明显, 可记作〔〕 A . 238 X 108 元B . 23. 8X 109 元238亿元,用科学记数法 D . 0. 238 X 1011 元第.癖图4. 以下命题中是真命题的是〔〕A .对角线互相垂直且相等的四边形是正方形 C .两条对角线相等的平行四边形是矩形 5. 要使式子 时2有意义,a 的取值范畴是〔〕aB .有两边和一角对应相等的两个三角形全等 D .两边相等的平行四边形是菱形A . a 丰 0 D . a 》一2且a 丰0 F , AD = 4, BC = 8,那么 AE + EF 等于〔〕 季度完成固定资产投资C . 2. 38X 1010元B . a >— 2 且 0C . a > — 2 或 a 丰 0 6 . 以下数据:16, 20, 22, 25, 24, 25的平均数和中位数分不为〔〕 A . 21 和 22 B . 22 和 23 C22 和 24 .D . 21 和 23 7 .关于x 的方程(a — 5)x 2— 4x — 1 = 0有实数根,那么a 满足〔〕 A . a > 1 B . a > 1 且 a * 5 C . a > 1 且 a 丰 5 D .5& 如图,在等腰梯形 ABCD 中,AD // BC ,对角线 AC 丄BD 于点O , AE 丄BC , DF 丄BC ,垂足分不为 E 、、填空题〔此题共 6个小题,每题5分,共30分.〕将正确的答案填表在题中的横线上.11.一个正多边形的每个外角差不多上 _________ 36°,那个正多边形的边数是.12. ______________________________________ 因式分解:9x 2— y 2— 4y — 4= .13. 如图,光源 P 在横杆 AB 的正上方,AB 在灯光下的影子为 CD , AB // CD , AB = 2m , CD = 6m ,点P 到CD的距离是2.7m ,那么AB 与CD 间的距离是 ____________________ m .CA ------------------------ D14. ___________________________________________________________________ X 1、x 2 为方程 x 2+ 3x + 1 = 0 的两实根,那么 X 12+ 8x 2 + 20= ________________________________________ .15. 假设两圆相切,圆心距是 ____________________________________ 7,其中一圆的半径为 10,那么另一个圆的半径为 .16.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图2的图标. 那么图标中阴影部分图形AFEGD 的面积= _____________ . 沏睫和 第皿题贮三、解答题〔本大题共有8小题,共80分.〕解承诺写明文字讲明和运算步骤.17.〔此题共有2小题,每题6分,总分值12分〕An〔1〕运算:(1)2018x ( 2 )— 3+ (sin 58°— — )0+ 1^3— 4cos60°| 解:2x 5 1〔2〕求不等式组的整数解3x 8 10解:中的大致图象可能是〔〕18.〔本小题总分值8分〕图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m , AE、BF、CH都垂直于地面,EF = 16cm, 求塔吊的高CH 的长.19.〔本小题总分值 8分〕某中学生为调查本校学生平均每天完成作业所用时刻的情形,随机调查了 50名同学,以下图是依照调查所得数据绘制的统计图的一部分. 请依照以上信息,解答以下咨询题: 〔1〕将统计图补充完整;〔2〕假设该校共有1800名学生,依照以上调查结果估量该校全体学生每天完成作业所用总时刻. 解:20.〔本小题总分值8分〕用长度为20m 的金属材料制成如下图的金属框,下部为矩形,上部为等腰直角 三角形,其斜边长为2x m .当该金属框围成的图形面积最大时, 图形中矩形的相邻两边长各为多少?要求出金属框围成的图形的最大面积.解:&J 1二」•二二工哋I 忙21.〔本小题总分值8分〕如图,直角梯形ABCD中,/ ADC = 90°, AD // BC,点E在BC上,点F在AC 上,/ DFC = Z AEB .〔1〕求证:△ ADF CAE;〔2〕当AD = 8, DC = 6,点E、F分不是BC、AC的中点时,求直角梯形ABCD的面积〔1〕证明:弟21世尺22 •〔本小题总分值8分〕”端午〃节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子假设干,放入不透亮的盒中,现在随机取出火腿粽子的概率为3;妈妈发觉小亮喜爱吃的火腿3粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为1 •〔1〕请运算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?〔2〕假设妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取 2 只,咨询恰有火腿粽子、豆沙粽子各1只的概率是多少?〔用字母和数字表示豆沙粽子和火腿粽子,用列清法运算〕解:如图,初)是€)袒的直径丄f曲“了是劣孤山上点T过M点作0D的切交d 的趣长线于卩点小m与交于N点*(1)求土(2)若T;r> = l.PA = £ 过n点作TX?旷MP交0门于C克•求LC的崔.23. 〔本小题总分值12分〕如图,BD是O O的直径,0A丄OB, M是劣弧&B上一点,过点M点作O O的切线MP交OA的延长线于P点,MD与0A交于N点.〔1〕求证:PM = PN;3〔2〕假设BD = 4, PA= 2 A0,过点B作BC // MP交O 0于C点,求BC的长.〔1〕证明:〔2〕解:郎图,在平面直苇坐标系中放赶一矩彫ViCO-3顶点为A<0.1).TK-3 onomG*将此矩形沿着过瑞一厉a(-皆心的直线FT向右下方制折・n、u的对宣点分別为B\C:24. 〔本小题总分值14分〕如图,在平面直角坐标系中放置一矩形ABC 0,其顶点为A〔0,1〕、B〔—3 .'3, 1〕、C〔—3;3, 0〕、O〔0, 0〕.将此矩形沿着过E〔—.:3, 1〕、F 〔—却,0〕的直线EF向右下方翻折,B、C的对应点分不为B'、C'.〔1〕求折痕所在直线EF的解析式;〔2〕一抛物线通过B、E、B '三点,求此二次函数解析式;〔3〕能否在直线EF上求一点P,使得△ PBC周长最小?如能,求出点P的坐标;假设不能,讲明理由. 解:2 01 0年芜湖市初中毕业学业考试数学试题参考答案一•选择題(本人飲共2小锁•毎小SU分•満分40分・)二、填空题(本大题共6小题,每题5分,满分30分•)11.十12. (3鼻一〉+2)(3立一y- 2)13.1. 8 14. -1 15. 3 或1716.寺一+历三、斛答题(本大JS共8小癒•共80分)解答应写明文字说明和运畀歩骤.17.(本小题满分12分〉(1)................................................................................................................................... 嶄,厚式= 1X8 + 1+1 13-2 I .................................................................................................................................. 3 分=8 — 1 + 2—= 11—fz............................................................................................ 6 分(2)................................................................................................................................... 解,由①得小A- 2. 2分由②得a <6. ...................................................................................................................... 4分•;— 2 V 工W 6.・•・满足不等式组的整数解为一1、0、1、2、3、丄、5、6. ................................... 6分18.(本小题满分8分)無:根据題意徊HE = 3. 5X16 = 56, 4R = EF = 16. ......................................................... 2 分VZ ACH = ZCBG-ZCM. = 15". .\Z ACB = ZCAB,- CB = AB = 16./•CG = BCsin30° = 8. .......................................................................................................... 6 分CH = CG+ HG = CU — DF: + \D = 8 — 56 + 5 = 69.•••塔吊的髙CH为69m. ............................................................................................. 8分所以该枝全体学生每天完成作业所用总时间为3400小时. ....................... 8分数孚试赵泰考答慕第1页(共乙页)20•(水小题满分8分)解:艰据题意可得:等腰直角三角形的言角边长为总护•矩形的一边长为2迥・其相邻边长为二―主J?至匕.10-(2+ f2)x .......................................................................... 2分所以该金JK框00成的面枳S=2rr・:10 — (2+/F)工]+ £x J2 ar • !2 x一(3亠2总)丁一20工(0 < ^< 10-5扭)【1比处未注明h的取值范SI不扣分】......................................................................................................................................... d分当「令7。

芜湖市2020版中考数学二模试卷A卷

芜湖市2020版中考数学二模试卷A卷

芜湖市2020版中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2019七上·平遥月考) 在,-|-1|,0,-9四个数中,负数的个数是()A . 1B . 2C . 3D . 42. (2分)(2016·泸州) 将5570000用科学记数法表示正确的是()A . 5.57×105B . 5.57×106C . 5.57×107D . 5.57×1083. (2分) (2017七下·单县期末) 下列计算正确的是()A . x3+x3=x6B . x3÷x4=C . (m5)5=m10D . x2y3=(xy)54. (2分)(2020·西安模拟) 如图,AB//CD。

若∠1=40°,∠2=65°,则∠CAD=()A . 50°B . 65°C . 75°D . 85°5. (2分)(2019·泰安模拟) 以下是某初中九年级10名学生参加托球测试成绩成绩/个3540456070人数/人12421则这组数据的中位数、平均数分别是()A . 45,49B . 45,48.5C . 55,50D . 60,516. (2分)不等式组的解集是()A . ﹣1≤x≤4B . x<﹣1或x≥4C . ﹣1<x<4D . ﹣1<x≤47. (2分)(2017·天津模拟) 化简,可得()A .B .C .D .8. (2分) (2017八上·乌拉特前旗期末) 一列客车已晚点6分钟,如果将速度每小时加快10km,那么继续行驶20km便可正点运行,如果设客车原来行驶的速度是xkm/h.可列出分式方程为()A . ﹣ =6B . ﹣ =6C . ﹣ =D . ﹣ =9. (2分)有一枚均匀的骰子,骰子上分别标了数字1、2、3、4、5、6,掷一次朝上的数为偶数的概率是()A . 0B . 1C . 0.5D . 不确定10. (2分)(2018·青海) 由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A . 3块B . 4块C . 6块D . 9块11. (2分)(2017·揭西模拟) 若二次函数y=x2﹣2x+c的图象与x轴没有交点,则c的值可能是()A . ﹣3B . ﹣2C . 0D . 212. (2分)蟑螂的生命力很旺盛,它繁衍后代的方法为下一代的数目永远是上一代数目的5倍也就是说,如果蟑螂始祖(第一代)有5只,则下一代(第二代)就有49只,依次类推,推算蟑螂第10代有().A . 712B . 711C . 710D . 7913. (2分)如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AE B的度数是()A . 120°B . 135°C . 150°D . 45°14. (2分) (2017八下·呼伦贝尔期末) 小丽从家出发开车前去观看球赛,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.如图能反映S与t的函数关系的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)15. (1分)(2017·平邑模拟) 分解因式:ax2﹣4ay2=________.16. (1分) (2016八上·泸县期末) 已知,则的值是________.17. (1分)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________ .18. (1分)(2014·深圳) 如图,双曲线y= 经过Rt△BOC斜边上的点A,且满足 = ,与BC交于点D,S△BOD=21,求k=________.19. (1分) (2020七上·东方期末) 若x、y互为倒数,则(-xy) 2018=________;三、解答题 (共7题;共80分)20. (5分)(2016·毕节) 计算:.21. (15分)(2019·凤山模拟) 为了解市民对全市创文工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.22. (5分)已知α,β均为锐角,且tanα=,tanβ=,求α+β的度数23. (15分)(2017·浙江模拟) 如图,△ABC中,AB=AC=10,BC= ,以AB为直径的⊙O分别交BC、AC 于点D、E.(1)求AE;(2)过D作DF⊥AC于F,请画出图形,说明DF是否是⊙O的切线,并写出理由;(3)延长FD,交AB的延长线于G,请画出图形,并求BG.24. (15分)(2017·庆云模拟) 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.25. (10分)(2017·闵行模拟) 如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE 交边AB于点F,联结AC交DE于点G,且 = .(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证: = .26. (15分)(2019·北京模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共80分)20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

安徽省芜湖市2020年(春秋版)中考数学试卷A卷

安徽省芜湖市2020年(春秋版)中考数学试卷A卷

安徽省芜湖市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·重庆) 5的相反数是()A . ﹣5B . 5C . ﹣D .2. (2分)(2016·大庆) 下列图形中是中心对称图形的有()个.A . 1B . 2C . 3D . 43. (2分)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万人次用科学记数法可表示为()人次。

A . 0.464×109B . 4.64×108C . 4.64×107D . 46.4×1064. (2分)下列计算中,正确的是()A . (﹣5)﹣2×50=B . 3a﹣2=C . (a+b)2=a2+b2D . (m+n)(﹣m+n)=﹣m2+n25. (2分)(2019·昆明模拟) 从九年级一班参加跳绳考试的同学中随机抽取10名同学的考试成绩如下:193,184,180,186,180,186,184,186,184,186(单位:厘米).下列表述不正确的是()A . 众数是186B . 平均数是185C . 中位数是185D . 极差是136. (2分)若反比例函数y=的图象经过点(﹣1,2),则这个函数的图象一定经过点()A . (﹣2,﹣1)B . (﹣, 2)C . (2,﹣1)D . (, 2)7. (2分)(2019·海门模拟) 如图所示是一个圆柱形机械零件,则它的主视图是()A .B .C .D .8. (2分) (2018八上·揭西期末) 如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A . 750B . 1350C . 1200D . 1050二、填空题 (共8题;共8分)9. (1分)(2016·梧州) 点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是________.10. (1分)在函数y=中,自变量x的取值范围是________ .11. (1分) (2017八上·忻城期中) 化简: ________12. (1分)已知一组数据:的平均数是2,方差是3,另一组数据:,,…的方差是________13. (1分) (2017八下·嵊州期中) 如图,在平行四边形ABCD中,BE平分∠ABC交边AD于E.已知AB=8,BC=10,则DE= ________ .14. (1分)(2018·东营) 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为________.15. (1分) (2019八下·淮安月考) 若连续抛掷一枚质地均匀的骰子两次得到的点数分别为、,则最大值是________;16. (1分)(2018·温州模拟) 用22根火柴可以拼成形如图1的7个单层小正方形,也可以拼成形如图2的8个双层小正方形.若n根火柴可以拼成个单层小正方形,也可以拼成个双层小正方形.对所有满足要求的n,与都存在一个固定的数量关系,若用含的代数式表示,则=________.三、解答题 (共10题;共96分)17. (5分)(2017·商河模拟) 计算:()﹣2﹣(π﹣)0+| ﹣2|+4sin60°.18. (5分)先化简,再求值÷,其中x满足x2-x-1=0.19. (5分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF与AD交于点F,求证:AE=BF。

2020年安徽省中考数学试卷(含解析)

2020年安徽省中考数学试卷(含解析)

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( )A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是139.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2020•安徽)计算:√9−1=.12.(5分)(2020•安徽)分解因式:ab2﹣a=.13.(5分)(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,AB QR 的值为 .四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2020•安徽)观察以下等式:第1个等式:13×(1+21)=2−11, 第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意; x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意;故选:D .9.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF ,∴AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q , ∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。

2020年安徽省芜湖中考数学试题(word版及答案)

2020年安徽省芜湖中考数学试题(word版及答案)

初中毕业学业考试数学试卷温馨提示:L数学试卷共8页,三大题.共24小题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟.请合理分配时间.2.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中。

1.-8的相反数是()A. -8B. 一1C. -D. 88 82.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A. 3.1x106西弗g. 3.1X1O'西弗 C. 3.1x10-3西弗口. 3.1x10、西弗3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()。

:D.六棱柱4.函数中,自变量X的取值范围是()A x<6B x>6 C. x<-6 D. x>-65.分式方程汩=—匚的解是(), ZN工一2 2-x /尸 X6.如图,已知aABC中,ZABC=45° ,F是高AD和BE的交点,CD=4,则线段DF的长度为()产 ------- 今一A. 2& B. 4 C. 3& D. 4& 第6题图7.已知直线),=辰+。

经过点(k, 3)和(1, k),则k的值为()A. 6B. 土6C.五D. ±728.如图,直径为10的OA山经过点C(0, 5)和点0(0, 0), B是y轴右侧。

A 优弧上一点,则N0BC的余弦值为()A- B. 3 C.且 D.士2 42 59.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长 为(〃 +1)cm的正方形(〃>0),剩余部分沿虚线乂剪拼成一个矩形(不 重叠无缝隙),则矩形的面积为()A. (2a 2+5a )cm 2B. (3« + 15)c/n 2C. (6a + 9)c 〃/D. (6d + 15)cn/210,二次函数y = ad+法+ c 的图象如图所示,则反比例函数y = B 与一次函数x y = Z?x+c 在同一坐标系中的大致图象是()二、填空题(本大题共6小题.每小题5分.共30分.)将正确的答案填在题中 的横线上.11. 一个角的补角是36° 35' .这个角是 _______o 12.因式分解/一2/),+92=o 13.方程组9T2 = 7解是 __________ 。

2020年安徽省中考数学试题及参考答案(word版,有答案及评分标准)

2020年安徽省中考数学试题及参考答案(word版,有答案及评分标准)
函数关系式;在以下图的坐标系中画出该函数图象;指出金额在什
么范畴内,以同样的资金能够批发到较多数量的该种水果.
【解】
〔3〕经调查,某经销商销售该种水果的日最高销量与零售价之间的函
数关系如图〔2〕所示,该经销商拟每日售出60kg以上该种水果,
且当日零售价不变,请你关心该经销商设计进货和销售的方案,
使得当日获得的利润最大.
A. B.
C. D.
8.函数 的图象如图,那么 的图象可能是………………………………………【】
9.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD= ,BD= ,那么AB的长为…………【】
A.2 B.3 C.4 D.5
10.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切
=1…………………………………………………………………8分
16.证:∵AB是⊙O的直径,∴∠ACB=90°
∵MP为⊙O的切线,∴∠PMO=90°
∵MP∥AC,∴∠P=∠CAB
∴∠MOP=∠B…………………………………………………………6分
故MO∥BC.……………………………………………………………8分
圆圆心,那么∠AIB的度数是……………………………………………【】
A.120°B.125°C.135°D.150°
二、填空题〔本大题共4小题,每题5分,总分值20分〕
11.如图,将小王某月手机费中各项费用的情形制成扇形统计图,那么表示短信费
的扇形圆心角的度数为.
12.因式分解: .
13.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角〔如下图〕,
四、〔本大题共2小题,每题8分,总分值16分〕
17.〔1〕猜想: ……………………………………………3分

安徽省2020年中考数学试题(解析版)

安徽省2020年中考数学试题(解析版)

2020年安徽省初中学业水平考试数学试题卷考生须知:1.本试卷满分120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2【答案】A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a 【答案】C【解析】【分析】先处理符号,化为同底数幂的除法,再计算即可.【详解】解:()63a a -÷ 63a a =÷3.a =故选C .【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键. 3.下列四个几何体中,主视图为三角形的是 A. B. C. D.【答案】A【解析】试题分析:主视图是从物体正面看,所得到的图形.A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是长方形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .考点: 简单几何体的三视图.4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为()A. 0.547B. 80.54710⨯C. 554710⨯D. 75.4710⨯【答案】D【解析】【分析】根据科学记数法的表示方法对数值进行表示即可.【详解】解:54700000=5.47×107,故选:D .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -=【答案】A【解析】【分析】根据根的判别式逐一判断即可.【详解】A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键.6.冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13 【答案】D【解析】【分析】分别根据众数、平均数、方差、中位数的定义判断即可.【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键. 7.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,4 【答案】B【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.8.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 4 【答案】C【解析】【分析】先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD . 【详解】∵∠C=90°, ∴cos =AC A AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得22AB AC -, ∵DBC A ∠=∠,∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45∴BD=154,故选:C .【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键.9.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题; B .∵四边形OABC 是平行四边形,且OA=OC, ∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题; C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假. 10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A. B.C. D.【答案】A【解析】【分析】根据图象可得出重叠部分三角形的边长为x,3x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为32x,面积为y=x·32x·1223,B点移动到F点,重叠部分三角形的边长为(4-x),34x,面积为y=(4-x)·34x·12)234x-,两个三角形重合时面积正好为3由二次函数图象的性质可判断答案为A,故选A.【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.二、填空题(本大题共4小题,每小题5分,满分20分)11.91=______.【答案】2【解析】 【分析】根据算术平方根的性质即可求解.【详解】91-=3-1=2.故填:2. 【点睛】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质. 12.分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1).13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x =上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.【答案】2【解析】【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABO S k =建立方程求解即可.【详解】解: 矩形ODCE ,C 在k y x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABO S k ∴= 由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时AB QR的值为__________.【答案】 (1). 30 (2).3【解析】【分析】 (1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出223AP QP a -=即可解答.【详解】解:(1)由题意可知,∠D+∠C=180°,∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR ,∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°, ∴∠B=90°,则∠A=180°-∠B=90°,由折叠可知,∠DAQ=∠BAP=∠PAQ ,∴∠DAQ=∠BAP=∠PAQ=30°,故答案为:30;(2)若四边形APCD 为平行四边形,则DC ∥AP ,∴∠CQP=∠APQ ,由折叠可知:∠CQP=∠PQR ,∴∠APQ=∠PQR ,∴QR=PR ,同理可得:QR=AR ,即R 为AP 的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ ,设QR=a ,则AP=2a ,∴QP=12AP a =,∴=,∴AB QR a==【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质.三、解答题15.解不等式:2112x -> 【答案】32x >【解析】【分析】根据解不等式的方法求解即可. 【详解】解:2112x -> 212x ->23x >32x >. 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法.16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点);()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可;(2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.四、解答题17.观察以下等式:第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭ 第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭ 第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭ 第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭ ······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【答案】(1)112112866⎛⎫⨯+=- ⎪⎝⎭;(2)2121122n n n n-⎛⎫⨯+=- ⎪+⎝⎭,证明见解析. 【解析】 【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.【详解】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=- ⎪⎝⎭; (2)2121122n n n n-⎛⎫⨯+=- ⎪+⎝⎭, 证明:∵左边=2122122111222n n n n n n n n n n--+-⎛⎫⨯+=⨯==- ⎪++⎝⎭=右边, ∴等式成立.【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75, 36.90.60, 42.00.90tan sin tan ︒≈︒≈︒≈ )【答案】75米【解析】【分析】设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果.【详解】解:设山高CD=x米,则在Rt△BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∴4tan36.90.753x xBD x=≈=︒,在Rt△ABD中,tanADABDBD∠=,即tan4243ADx︒=,∴44tan420.9 1.233AD x x x=⋅︒≈⋅=,∵AD-CD=15,∴1.2x-x=15,解得:x=75.∴山高CD=75米.【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键.五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a元.线上销售额为x元,请用含,a x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.【答案】()1()1.04a x-;()21.5【解析】【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a+-=求解x即可得到比值.【详解】解:()12020年线下销售额为()1.04a x-元,故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a∴=∴ 2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键. 20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析. 【解析】 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案. 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA = CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠=∠ ,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒ ,CAB EBC ∴∠=∠ ,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】(1)60,108°;(2)336;(3)12【解析】 【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案;(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率. 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12. 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由; ()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【解析】 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组; (3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值. 【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∴直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k , ∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1, ∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.【答案】(1)见解析;(2)152+;(3)见解析 【解析】 【分析】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论. 【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩, ∴△EAF ≌△DAB(SAS), ∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x,则EB=1+x,BC=AD=AE=x,∵AF∥BC,∠E=∠E,∴△EAF∽△EBC,∴EA AFEB BC=,又AF=AB=1,∴11xx x=+即210x x--=,解得:152x+=,152x-=(舍去)即AE=15+;(3)在EG上截取EH=DG,连接AH,在△EAH和△DAG,AE ADHEA GDAEH DG=⎧⎪∠=∠⎨⎪=⎩,∴△EAH≌△DAG(SAS),∴∠EAH=∠DAG,AH=AG,∵∠EAH+∠DAH=90º,∴∠DAG+∠DAH=90º,∴∠EAG=90º,∴△GAH是等腰直角三角形,∴222AH AG GH+=即222AG GH=,∴GH=2AG,∵GH=EG-EH=EG-DG,∴2EG DG AG-=.【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.。

安徽省芜湖市2020年(春秋版)数学中考一模试卷A卷

安徽省芜湖市2020年(春秋版)数学中考一模试卷A卷

安徽省芜湖市2020年(春秋版)数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·上饶模拟) 在- 、- 、-|-2|、- 这四个数中,最大的数是()A .B .C .D .2. (2分)(2019·海门模拟) 江苏省南通市总面积约有8544平方公里,将数8544用科学记数法表示为()A . 854.4×10B . 85.44×102C . 8.544×103D . 0.8544×1043. (2分) (2019·新华模拟) 如图,在锐角△ABC中,延长BC到点D,点O是AC边上的一个动点,过点O 作直线MN∥BC,MN分别交∠ACB、∠ACD的平分线于E,F两点,连接AE、AF。

在:下列结论中:①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形。

其中正确的是()A . ①④B . ①②C . ①②③D . ②③④4. (2分)某学校要招聘一名教师,分笔试和面试两次考试,笔试、面试和最后得分的满分均为100分,竞聘教师的最后得分按笔试成绩:面试成绩=3:2的比例计算.在这次招聘考试中,某竞聘教师的笔试成绩为90分,面试成绩为80分,则该竞聘教师的最后成绩是()A . 43分B . 85分D . 170分5. (2分) (2019八下·融安期中) 下列根式中,最简二次根式是()A .B .C .D .6. (2分)(2019·梧州) 如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A . 12B . 13C . 14D . 157. (2分) (2015七下·宽城期中) 某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的是()A . 2(x﹣10)=120B . 2[x+(x﹣10)]=120C . 2(x+10)=120D . 2[x+(x+10)]=1208. (2分)如图,一根木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处,木杆折断之前的高度是()A . 5mC . 7mD . 8m9. (2分)(2017·路南模拟) 如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A . 5B . 6C . 7D . 810. (2分) (2019八下·杭州期末) 如图,点A,B在函数(,且是常数)的图像上,且点A在点B的左侧过点A作轴,垂足为M,过点B作轴,垂足为N,与的交点为C,连结、 .若和的面积分别为1和4,则k的值为()A . 4B .C .D . 6二、填空题 (共8题;共12分)11. (1分)(2020·黄石模拟) 计算: = ________.12. (1分) (2019七上·兴平月考) 按一定规律排列的一列数依次为,- ,,- ,,…,若按此规律排列下去,则这列数中第7个数是________.13. (1分)解分式方程检验时,可以直接把根代入最简公分母,看最简公分母是否为________,若为________,则是原分式方程的增根;若最简公分母不为________,则是原分式方程的解.14. (1分) (2019七上·淮安月考) 如图,搭第一个图形需要根火柴棒.(1)搭一搭,填一填:三角形个数…火柴棒根数________________________________________…(2)搭个这样的三角形需要________根火柴棒.(3)搭40个这样的三角形需要________根火柴棒.(4)搭个这样的三角形需要________根火柴棒.15. (1分) (2019八下·方城期末) 将函数的图象向上平移3个单位长度,得到的函数图象的解析式为________.16. (1分)(2018·益阳模拟) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.17. (1分)(2019·江北模拟) 如图,在菱形ABCD中,AB=5,tanD= ,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C’处,点D落在D’处,C’D’与AB交于点F,当C'D’⊥AB时,CE 长为 ________.18. (5分)先化简,再讨论:,讨论当原式的值为整数时,整数x的取值.三、解答题 (共7题;共56分)19. (6分) (2017九上·重庆期中)如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.(1)求证:DE=BE;(2)求证:EF=CE+DE.20. (10分) (2019九上·淮阴期末) 课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.21. (5分)(2016·济宁) 2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.22. (5分)(2018·遵义模拟) 风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)23. (15分)(2020·玉林) 如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D 的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.24. (5分)(2019·邹平模拟) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=- 时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m ,离地面的高度为 m的Q处时,乙扣球成功,求a的值.25. (10分) (2016九上·海南期中) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共12分)11-1、12-1、13-1、14-1、14-2、14-3、14-4、15-1、16-1、17-1、18-1、三、解答题 (共7题;共56分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省初中学业水平考试数学(试题卷)(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2【知识考点】有理数大小比较.【思路分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解题过程】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的除法运算法则计算得出答案.【解题过程】解:原式=a6÷a3=a3.故选:C.【总结归纳】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:54700000用科学记数法表示为:5.47×107.故选:D.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解题过程】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.【总结归纳】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是13【知识考点】算术平均数;中位数;众数;方差.【思路分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解题过程】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.【总结归纳】本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解题过程】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【总结归纳】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD 的长度为()A.B.C.D.4【知识考点】相似三角形的判定与性质;解直角三角形.【思路分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解题过程】解:∵∠C=90°,AC=4,cosA=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.【总结归纳】本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【知识考点】命题与定理.【思路分析】根据垂径定理,平行四边形的性质判断即可.【解题过程】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()B.B.C.D.【知识考点】动点问题的函数图象.【思路分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解题过程】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.【总结归纳】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.【知识考点】实数的运算.【思路分析】直接利用二次根式的性质化简进而得出答案.【解题过程】解:原式=3﹣1=2.故答案为:2.【总结归纳】此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解题过程】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解题过程】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.【知识考点】平行四边形的性质;翻折变换(折叠问题).【思路分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB =PB,即可求解.【解题过程】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.【总结归纳】本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【知识考点】解一元一次不等式.【思路分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解题过程】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【知识考点】作图﹣轴对称变换;作图﹣旋转变换.【思路分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解题过程】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【总结归纳】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【知识考点】列代数式;规律型:数字的变化类.【思路分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解题过程】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.【总结归纳】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数的定义和直角三角形的性质解答即可.【解题过程】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,注意方程思想与数形结合思想的应用.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.【知识考点】列代数式;一元一次方程的应用.【思路分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解题过程】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.【总结归纳】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【知识考点】全等三角形的判定与性质;圆周角定理;切线的性质.【思路分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解题过程】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.【总结归纳】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解题过程】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【知识考点】一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;二次函数的最值.【思路分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m 上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解题过程】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【总结归纳】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【知识考点】四边形综合题.【思路分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP =∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解题过程】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.【总结归纳】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。

安徽省2020年中考数学试题(解析版)

安徽省2020年中考数学试题(解析版)

2020年安徽省初中学业水平考试数学试题卷考生须知:1、本试卷满分120分,考试时间为120分钟、2、答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内、3、请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效、4、选择题必须使用2B 铅笔填涂;非选择题必须使用0、5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚、5、保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀、一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的、1、下列各数中比2-小的数是( ) A 、 3- B 、 1- C 、 0 D 、 2【答案】A 【解析】 【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3、【详解】∵|-3|=3,|-1|=1, 又0<1<2<3, ∴-3<-2,所以,所给出的四个数中比-2小的数是-3, 故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小、2、计算()63a a -÷的结果是( )A 、 3a -B 、 2a -C 、 3aD 、 2a【解析】 【分析】先处理符号,化为同底数幂的除法,再计算即可、 【详解】解:()63a a -÷63a a =÷ 3.a =故选C 、【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键、 3、下列四个几何体中,主视图为三角形的是A 、B 、C 、D 、【答案】A 【解析】试题分析:主视图是从物体正面看,所得到的图形、 A 、圆锥的主视图是三角形,符合题意; B 、球的主视图是圆,不符合题意; C 、圆柱的主视图是长方形,不符合题意; D 、正方体的主视图是正方形,不符合题意、 故选A 、考点: 简单几何体的三视图、4、安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( ) A 、 0547B 、 80.54710⨯C 、 554710⨯D 、 75.4710⨯【答案】D 【解析】 【分析】根据科学记数法的表示方法对数值进行表示即可、 【详解】解:54700000=5、47×107,【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键、 5、下列方程中,有两个相等实数根的是( ) A 、 212x x += B 、 21=0x + C 、 223x x -= D 、 220x x -=【答案】A 【解析】 【分析】根据根的判别式逐一判断即可、【详解】A 、212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B 、21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C 、223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D 、220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误、 故选:A 、【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键、6、冉冉的妈妈在网上销售装饰品、最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,、关于这组数据,冉冉得出如下结果,其中错误的是( ) A 、 众数是11 B 、 平均数是12C 、 方差是187D 、 中位数是13【答案】D 【解析】 【分析】分别根据众数、平均数、方差、中位数的定义判断即可、【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15, A 、这组数据的众数为11,此选项正确,不符合题意;B 、这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C 、这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D 、这组数据的中位数为11,此选项错误,符合题意, 故选:D 、【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键、 7、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A 、 ()1,2- B 、 ()1,2-C 、 ()2,3D 、 ()3,4【答案】B 【解析】 【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可、 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∴k ﹤0,A 、当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B 、当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C 、当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D 、当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B 、【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键、 8、如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠、若44,5AC cosA ==,则BD 的长度为( )A 、94B 、125C 、154D 、 4【解析】 【分析】先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD 、 【详解】∵∠C=90°, ∴cos =ACA AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得,∵DBC A ∠=∠,∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45∴BD=154, 故选:C 、【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键、 9、已知点,,A B C 在O 上、则下列命题为真命题的是( ) A 、 若半径OB 平分弦AC 、则四边形OABC 是平行四边形 B 、 若四边形OABC 是平行四边形、则120ABC ∠=︒ C 、 若120ABC ∠=︒、则弦AC 平分半径OB D 、 若弦AC 平分半径OB 、则半径OB 平分弦AC 【答案】B 【解析】 【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可、 详解】A 、∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,B 、∵四边形OABC 是平行四边形,且OA=OC, ∴四边形OABC 是菱形, ∴OA=AB=OB ,OA ∥BC , ∴△OAB 是等边三角形, ∴∠OAB=60º, ∴∠ABC=120º, 真命题;C 、∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D 、只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题, 故选:B 、【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假、10、如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动、在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A 、B 、C、D、【答案】A【解析】【分析】根据图象可得出重叠部分三角形的边长为x,3x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为3x,面积为y=x·32x·1223,B点移动到F点,重叠部分三角形的边长为(4-x),34x,面积为y=(4-x)34x·12)234x-,3由二次函数图象的性质可判断答案为A,故选A、【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论、二、填空题(本大题共4小题,每小题5分,满分20分)1191=______、【答案】2【解析】分析】根据算术平方根的性质即可求解、91=3-1=2、故填:2、【点睛】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质、 12、分解因式:2ab a -=______、 【答案】a (b +1)(b ﹣1)、 【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1)、13、如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数ky x=上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________、【答案】2 【解析】 【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABOS k =建立方程求解即可、 【详解】解:矩形ODCE ,C 在ky x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABOSk ∴=由题意得:21,2k k =解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键、14、在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,CD 落在AP 上的同一点R 处、请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时ABQR 的值为__________、【答案】 (1)、 30 (2)、3【解析】 【分析】(1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出=即可解答、【详解】解:(1)由题意可知,∠D+∠C=180°, ∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR , ∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°, ∴∠B=90°,则∠A=180°-∠B=90°, 由折叠可知,∠DAQ=∠BAP=∠PAQ , ∴∠DAQ=∠BAP=∠PAQ=30°, 故答案为:30;(2)若四边形APCD 为平行四边形,则DC ∥AP , ∴∠CQP=∠APQ ,由折叠可知:∠CQP=∠PQR , ∴∠APQ=∠PQR , ∴QR=PR ,同理可得:QR=AR ,即R 为AP 的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ , 设QR=a ,则AP=2a , ∴QP=12AP a =,∴=,∴AB QR ==,【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质、三、解答题15、解不等式:2112x -> 【答案】32x > 【解析】 【分析】根据解不等式的方法求解即可、 【详解】解:2112x -> 212x -> 23x >32x >、 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法、16、如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点); ()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A 、【答案】(1)见解析;(2)见解析、 【解析】 【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2、 【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A即为所作、【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质、四、解答题17、观察以下等式:第1个等式:121 12 311⎛⎫⨯+=-⎪⎝⎭第2个等式:321 12 422⎛⎫⨯+=-⎪⎝⎭第3个等式:521 12 533⎛⎫⨯+=-⎪⎝⎭第4个等式:721 12 644⎛⎫⨯+=-⎪⎝⎭第5个等式:921 12 755⎛⎫⨯+=-⎪⎝⎭······按照以上规律、解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n个等式: (用含n的等式表示),并证明、【答案】(1)112112866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明见解析、【解析】【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可、【详解】(1)由前五个式子可推出第6个等式为:112112 866⎛⎫⨯+=-⎪⎝⎭;(2)2121122nn n n-⎛⎫⨯+=-⎪+⎝⎭,证明:∵左边=2122122111222n n n nn n n n n n--+-⎛⎫⨯+=⨯==-⎪++⎝⎭=右边,∴等式成立、【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来、18、如图,山顶上有一个信号塔AC,已知信号塔高15AC=米,在山脚下点B处测得塔底C的仰角36.9CBD∠=︒,塔顶A的仰角42ABD∠=︒、求山高CD(点,,A C D在同一条竖直线上)、(参考数据:36.90.75,36.90.60,42.00.90tan sin tan︒≈︒≈︒≈ )【答案】75米【解析】【分析】设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果、【详解】解:设山高CD=x米,则在Rt△BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∴4tan36.90.753x xBD x=≈=︒,在Rt△ABD中,tanADABDBD∠=,即tan4243ADx︒=,∴44tan420.9 1.233AD x x x=⋅︒≈⋅=,∵AD-CD=15,∴1、2x -x =15,解得:x =75、 ∴山高CD =75米、【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键、五、解答题19、某超市有线上和线下两种销售方式、与2019年4月份相比、该超市2020年4月份销售总额增长10%,其中线上销售额增长43%、线下销售额增长4%,()1设2019年4月份的销售总额为a 元、线上销售额为x 元,请用含,a x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值、【答案】()1()1.04a x -;()21.5【解析】 【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a +-=求解x 即可得到比值、【详解】解:()12020年线下销售额为()1.04a x -元, 故答案为:()1.04a x -、()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a ∴=∴ 2020年4月份线上销售额与当月销售总额的比值为: 21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键、20、如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠、【答案】()1证明见解析;()2证明见解析、 【解析】 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案、 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA =CBA DAB ∴≌、()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,∠=∠=︒∠=∠ADC ACB DFA CFB∴∠=∠=∠,DAF FBC EBCBE为半圆O的切线,∴∠=︒∠+∠=︒ABE ABC EBC90,90,ACB∠=︒90,∴∠+∠=︒CAB ABC90,CAB EBC∴∠=∠,∴∠=∠DAF CAB,∠、AC∴平分DAB【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键、六、解答题A B C D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机21、某单位食堂为全体名职工提供了,,,抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为;()2依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率、【答案】(1)60,108°;(2)336;(3)12【解析】 【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案;(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率、 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12、 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键、七、解答题22、在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A 、抛物线21y ax bx =++恰好经过,,A B C 三点中的两点、()1判断点B 是否在直线y x m =+上、并说明理由; ()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值、【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【解析】 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组; (3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值、 【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∴直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k , ∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1, ∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54、 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键、八、解答题23、如图1、已知四边形ABCD 是矩形、点E 在BA 的延长线上、. AE AD EC =与BD 相交于点G ,与AD相交于点,.F AF AB =()1求证:BD EC ⊥; ()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=、【答案】(1)见解析;(215+;(3)见解析 【解析】 【分析】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论、【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△DAB(SAS), ∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x , ∵AF ∥BC ,∠E=∠E , ∴△EAF ∽△EBC , ∴EA AFEB BC=,又AF=AB=1, ∴11x x x=+即210x x --=,解得:x =,x =(舍去) 即AE=12; (3)在EG 上截取EH=DG ,连接AH , 在△EAH 和△DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩, ∴△EAH ≌△DAG(SAS), ∴∠EAH=∠DAG ,AH=AG , ∵∠EAH+∠DAH=90º, ∴∠DAG+∠DAH=90º, ∴∠EAG=90º,∴△GAH 是等腰直角三角形,∴222AH AG GH +=即222AG GH =, ∴, ∵GH=EG-EH=EG-DG ,∴2EG DG AG-=、【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算。

安徽省芜湖市2020版九年级上学期数学期中考试试卷A卷

安徽省芜湖市2020版九年级上学期数学期中考试试卷A卷

安徽省芜湖市2020版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018九上·永定期中) 用配方法解一元二次方程x2+4x﹣1=0,此方程可变形为()A . (x+2)2=5B . (x﹣2)2= 5C . (x+2)2=1D . (x﹣2)2=13. (2分) (2016九上·鄂托克旗期末) 对于抛物线下列说法正确的是()A . 开口向下,顶点坐标B . 开口向上,顶点坐标C . 开口向下,顶点坐标D . 开口向上,顶点坐标4. (2分)(2020·玉泉模拟) 方程有两个实数根,则k的取值范围是().A . k≥1B . k≤1C . k>1D . k<15. (2分) (2019·阜新) 如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是()A .B .C .D .6. (2分) (2019九上·余杭月考) 在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A . 向左平移2个单位B . 向右平移2个单位C . 向左平移8个单位D . 向右平移8个单位7. (2分)若关于x的一元二次方程x2﹣2mx﹣m﹣ =0有两个相等的实数根,则m的值为()A . m=B . m=﹣C . m=2D . m=﹣28. (2分) (2017九上·鞍山期末) 如图,一次函数与二次函数的图象相交于两点,则函数的图象可能为()A .B .C .D .9. (2分) (2019八下·东莞月考) 如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H ,则DH的长为()A . 24B . 10C . 4.8D . 610. (2分)已知多项式A=x2+2y2﹣z2 , B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A . 5x2﹣y2﹣z2B . 3x2﹣5y2﹣z2C . 3x2﹣y2﹣3z2D . 3x2﹣5y2+z211. (2分) (2019九上·洛阳月考) 已知2017年国家营养改善计划惠及2500万农村学生,到2019年可惠及2800万农村学生,若设惠及学生人数的年平均增长率为,则可列方程为()A .B .C .D .12. (2分) (2018九上·新乡期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)13. (1分) (2019九上·江汉月考) 若点A(a,4)与点B(﹣3,b)关于原点成中心对称,则a+b=________.14. (2分) (2019九上·襄阳期末) 已知方程的两根恰好是Rt△ABC的两条直角边长,则Rt△ABC内切圆的半径为________.15. (1分)若x=﹣1是关于x的方程ax2+bx﹣2=0(a≠0)的一个解,则代数式b﹣a 的值为________.16. (1分) (2019八下·嘉兴期末) 已知反比例函数y= 在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连结AO、AB,且AO=AB,则S△AOB= ________.17. (1分)(2020·海门模拟) 若关于x的方程x2﹣2ax+a﹣2=0的一个实数根为x1≥1,另一个实数根x2≤﹣1,则抛物线y=﹣x2+2ax+2﹣a的顶点到x轴距离的最小值是________.18. (1分)如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则s in∠DAE=________.三、解答题 (共8题;共63分)19. (10分) (2016九上·朝阳期中) 解方程:2x2+x﹣4=0.20. (10分) (2018八上·揭西期末) 如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=300 ,∠ADE=150.(1)求∠BDN的度数;(2)求证:CD=CE.21. (10分)已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.22. (10分) (2020八上·西湖期末) 关于的一元二次方程有两个实数根.(1)求的取值范围;(2)是否存在实数,使方程的实数根互为相反数?若存在,求;若不存在,请说明理由.23. (5分) (2020八下·哈尔滨月考) 图1、图2分别是的网格,网格中每个小正方形的边长均为1,线段的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段为一边且周长为的平行四边形,所画图形的各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段为一边的等腰钝角三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并直接写出该等腰三角形的周长是________.24. (10分) (2019九上·博白期中) 元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时,求宾馆每天的利润;(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?25. (6分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图所示的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图,在四边形ABCD中,BC=AD,AB=__①___.求证:四边形ABCD是___②___四边形.(1)在方框中填空,以补全已知和求证;①________;②________.(2)按嘉淇的想法写出证明.(3)用文字叙述所证命题的逆命题为________26. (2分) (2018九上·江海期末) 已知抛物线经过点A(-2,8).(1)求此抛物线的函数解析式,并写出此抛物线的对称轴;(2)判断点B(-1,-4)是否在此抛物线上.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共63分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芜湖市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共24分)1. (3分) (2019七上·长兴月考) 实数-4的绝对值是()A .B . -4C .D . 42. (3分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=()A . ﹣2B . 0C . 3D . 53. (3分) (2016八上·孝义期末) 若点A(3,2)和点B(a,b)关于x轴对称,则ab的值为()A . 9B .C . 8D .4. (3分)(2019·青岛) 计算的结果是()A . 8m5B . -8m5C . 8m6D . -4m4+12m55. (3分)(2019·青岛) 如图,线段 AB 经过⊙O 的圆心, AC , BD 分别与⊙O 相切于点 C ,D .若 AC =BD = 4 ,∠A=45°,则弧CD的长度为()A . πB . 2πC . 2 πD . 4π6. (3分)(2019·青岛) 如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段 AB ,则点 B 的对应点B′的坐标是()A . (-4 , 1)B . (-1, 2)C . (4 ,- 1)D . (1 ,- 2)7. (3分)(2019·青岛) 如图, BD 是△ABC 的角平分线,AE⊥ BD,垂足为 F .若∠ABC=35°,∠ C =50°,则∠CDE 的度数为()A . 35°B . 40°C . 45°D . 50°8. (3分)(2019·青岛) 已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题 (共6题;共18分)9. (3分) (2020九下·德州期中) 已知,是二元一次方程组的解,则m+3n的平方根为________.10. (3分) (2018七上·山东期中) 若|x-1|+|y+2|=0,则x-y=________.11. (3分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.12. (3分)(2019·青岛) 如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是________°13. (3分)(2019·青岛) 如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD=4 cm,则 CF 的长为________cm .14. (3分)(2019·青岛) 如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走________个小立方块.三、解答题 (共10题;共78分)15. (4分) (2020七上·温州期末) 如图,在平面内有A,B,C三点。

(1)请按要求作图:画直线AC,射线BA,线段BC,取BC的中点D,过点D做DE⊥AC于点E。

(2)在完成第(1)小题的作图后,图中以A,B,C,D,E这些点为端点的线段共有________条。

16. (8分)(2019·青岛)(1)化简: ;(2)解不等式组,并写出它的正整数解.17. (6分)(2019·青岛) 小明和小刚一起做游戏,游戏规则如下:将分别标有数字 1, 2, 3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于 2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18. (6分)(2019·青岛) 为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1) m =________, n =________, a =________, b =________;(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在________组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.19. (6分)(2019·青岛) 如图,某旅游景区为方便游客,修建了一条东西走向的木栈道 AB ,栈道 AB 与景区道路CD 平行.在 C 处测得栈道一端 A 位于北偏西42°方向,在 D 处测得栈道另一端 B 位于北偏西32°方向.已知 CD =120 m , BD =80 m ,求木栈道 AB 的长度(结果保留整数).(参考数据:,,,,, )20. (8分)(2019·青岛) 甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?21. (8分)(2019·青岛) 如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.22. (10.0分)(2019·青岛) 某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?23. (10分)(2019·青岛) 问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张a× b的方格纸(a× b 的方格纸指边长分别为 a , b 的矩形,被分成a× b个边长为 1 的小正方形,其中a≥2 ,b≥2,且 a , b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到 2 个位置不同的 2 ×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有 2 ×4=8种不同的放置方法.探究三:把图①放置在a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a ×2 的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.探究四:把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3 的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在 a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.……问题解决:把图①放置在a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?________(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为 a,b ,c (a≥2 ,b≥2 ,c≥2 ,且 a,b,c 是正整数)的长方体,被分成了a×b×c个棱长为 1 的小立方体.在图⑧的不同位置共可以找到________个图⑦这样的几何体.24. (12分)(2019·青岛) 已知:如图,在四边形 ABCD 中,AB∥CD,ACB =90°, AB=10cm, BC=8cm,OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点 P作PE⊥AB,交 BC 于点 E,过点 Q 作QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当t为何值时,点E在的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻 t ,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.参考答案一、单选题 (共8题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共18分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共78分)15-1、15-2、16-1、16-2、17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、24-4、。

相关文档
最新文档