无理方程的解法
高次方程分式方程无理方程的解法教程
高次方程分式方程无理方程的解法教程高次方程的解法教程:高次方程是指方程中的最高次项的指数大于1的方程。
一般来说,高次方程的解法相对比较复杂,需要通过一定的代数运算和分解因式的方法逐步求解。
以下是一个示例来说明解高次方程的步骤:假设我们要解方程:x^3-5x^2+6x=0第一步:因式分解观察方程,我们可以发现x是公因子,所以我们可以将方程进行因式分解,得到:x(x^2-5x+6)=0第二步:化简因式继续观察因式(x^2-5x+6),我们可以发现它可以被进一步分解成(x-2)(x-3),所以方程可以进一步化简为:x(x-2)(x-3)=0第三步:等式成立条件我们知道,一个数的乘积等于0的时候,其中至少有一个因子等于0。
所以我们得到以下三个解:x=0,x-2=0,x-3=0解得:x=0,x=2,x=3因此,方程的解是x=0,x=2,x=3分式方程的解法教程:分式方程是指方程中含有分式的方程,需要通过合理的方法消去分式并求出方程的解。
以下是一个示例来说明解分式方程的步骤:假设我们要解方程:2/(x-1)+3/(x+2)=1第一步:通分观察方程,我们可以发现,左边的两个分式的分母互为相反数,所以我们可以通过通分来消去分母。
将方程两边乘以(x-1)(x+2),得到:2(x+2)+3(x-1)=(x-1)(x+2)第二步:化简将方程进行化简,得到:2x+4+3x-3=x^2+x-2第三步:整理将方程整理为标准形式,得到:x^2-x-3=0第四步:因式分解或使用求根公式我们可以尝试将方程进行因式分解或使用求根公式来求解。
这里我们使用求根公式来求解。
根据求根公式 x = (-b ± √(b^2 - 4ac))/(2a),我们可以得到:x=(1±√(1+12))/2计算得到:x=(1±√13)/2因此,方程的解是x=(1+√13)/2,x=(1-√13)/2无理方程的解法教程:无理方程是指方程中含有无理数的方程,需要通过合理的方法化简方程并求出方程的解。
初中数学 无理数方程的解如何计算
初中数学无理数方程的解如何计算无理数方程是含有无理数的方程,其中无理数是指不能表示为两个整数的比值的实数。
解决无理数方程的关键是找到方程中无理数的近似解。
下面将介绍一些常见的无理数方程类型及其解法,以帮助初中数学学生更好地理解和解决无理数方程。
一、平方根无理数方程平方根无理数方程是指含有平方根的方程。
例如,√x = 3是一个平方根无理数方程,其中√x是一个无理数。
1. 消去平方根法:对于方程√x = a,其中a是已知的有理数,可以将方程两边平方,得到x = a^2。
例如,对于方程√x = 3,可以平方得到x = 3^2 = 9。
因此,方程的解是x = 9。
2. 迭代法:迭代法是一种逼近法,通过不断逼近无理数的近似值来解方程。
对于方程√x = a,可以使用迭代法求解。
- 初始值:选择一个合适的初始值,例如取x = 1作为初始值。
- 迭代过程:通过迭代公式x' = (x + a/x)/2,不断更新x的值,直到x的值足够接近无理数的近似值。
- 迭代停止条件:可以设置一个迭代停止条件,例如当两次迭代之间的差值小于某个给定的精度时,停止迭代。
- 迭代结果:最终得到的x值即为方程的近似解。
二、立方根无理数方程立方根无理数方程是指含有立方根的方程。
例如,∛x = 2是一个立方根无理数方程,其中∛x是一个无理数。
1. 消去立方根法:对于方程∛x = a,其中a是已知的有理数,可以将方程两边立方,得到x = a^3。
例如,对于方程∛x = 2,可以立方得到x = 2^3 = 8。
因此,方程的解是x = 8。
2. 迭代法:对于立方根无理数方程,可以使用迭代法求解。
- 初始值:选择一个合适的初始值,例如取x = 1作为初始值。
- 迭代过程:通过迭代公式x' = (2*x + a/(x^2))/3,不断更新x的值,直到x的值足够接近无理数的近似值。
- 迭代停止条件:设置一个迭代停止条件,例如当两次迭代之间的差值小于某个给定的精度时,停止迭代。
无理方程巩固练习
无理方程巩固练习无理方程是指方程中含有无理数的方程。
由于无理数具有无限不循环小数的性质,所以在解无理方程时,通常需要通过变形、化简和平方或者借助一些常见无理数的性质来求解。
接下来,我们将通过一些例题来巩固练习无理方程的解法。
例题1:求解方程√(x+3)+√(2-x)=5解法:首先,我们可以通过平方的方法消去其中一个根式。
方程两边同时平方,得到x+3+2-x+2√[(x+3)(2-x)]=25、化简得到5+2√[(x+3)(2-x)]=25、再继续化简,得到2√[(x+3)(2-x)]=20。
继续消去系数2,得到√[(x+3)(2-x)]=10。
再次平方,得到(x+3)(2-x)=100。
继续化简后,得到2x^2-4x-94=0。
将方程移项化简,得到x^2-2x-47=0。
通过求根公式,我们可以求解得到x=1±√48例题2:求解方程√(x-2)+√(x-4)=√(x+5)。
解法:这个方程涉及到多个根式,我们可以通过将其中的根式移项来化简。
将√(x-2)、√(x-4)两个根式移到一边,得到√(x+5)-√(x-2)-√(x-4)=0。
为了方便求解,我们可以对等式两边进行平方变换。
平方得到(x+5)+(x-2)+(x-4)-2√[(x+5)(x-2)]-2√[(x+5)(x-4)]+2√[(x-2)(x-4)]=0。
继续化简,得到3x-1-2√[(x+5)(x-2)]-2√[(x+5)(x-4)]+2√[(x-2)(x-4)]=0。
再移项,得到2√[(x+5)(x-2)]+2√[(x+5)(x-4)]=3x-1接下来的步骤依然是通过多次平方来消去根式。
继续平方,得到4[(x+5)(x-2)]+4√[(x+5)(x-2)]√[(x+5)(x-4)]+4[(x+5)(x-4)]=(3x-1)^2进一步化简,得到4(x^2+3x-10)+4√[(x+5)(x-2)]√[(x+5)(x-4)]+4(x^2+x-20)=9x^2-6x+1继续移项和化简,得到8x^2+8x-160+4√[(x+5)(x-2)]√[(x+5)(x-4)]=9x^2-12x+1整理后,得到x^2-20x+161-4√[(x+5)(x-2)]√[(x+5)(x-4)]=0。
无理方程怎么解教师巧用柯西不等式速解高中数学双根式方程
无理方程怎么解教师巧用柯西不等式速解高中数学双根式方程无理方程一般指含有无理数的方程,其中最常见的是双根式方程。
双根式方程是指方程的解可以表示为两个无理数的有理运算。
解决双根式方程的一种有效方法是巧用柯西不等式。
柯西不等式是数学中常用于解决无理不等式的方法之一,也适用于双根式方程的求解。
以下是如何巧用柯西不等式解决高中数学双根式方程的步骤:1.确定方程的形式:双根式方程一般可以写成√a+√b=c,其中a、b、c是已知的实数。
2.假设方程的解为x=√p+√q,其中p和q是要确定的实数。
3. 平方等式:将x = √p + √q 的两边平方,得到x² = (√p +√q)² = p + 2√pq + q。
4. 根据双根式方程的形式,将√a + √b = c 代入x² = p +2√pq + q,得到x² = a + 2√(ab) + b。
5.根据柯西不等式,对于任意两个实数p和q,有(p+q)²≤(1²+1²)(p²+q²),即p+q≤√(2(p²+q²))。
6. 将x² = a + 2√(ab) + b 的两边应用柯西不等式,得到x² ≤a + 2√(2ab) + b,即x ≤ √(a + 2√(2ab) + b)。
7. 比较 x 和√(a + 2√(2ab) + b) 的形式,可以推断出 x 的取值范围为0 ≤ x ≤ √(a + 2√(2ab) + b)。
8. 根据x = √p + √q 的定义,可以得出√p ≥ 0,√q ≥ 0。
同时结合第7步的结论,可以推断出√(a + 2√(2ab) + b) ≥ 0。
9. 根据第8步的结论,可以得出a + 2√(2ab) + b ≥ 0。
10. 根据第9步的结论,可以将x² = a + 2√(ab) + b 改写为x² - (a + 2√(ab) + b) = 0。
高中数学中的无理数方程的解法
高中数学中的无理数方程的解法在高中数学中,我们经常会遇到各种各样的方程,其中有一类特殊的方程叫做无理数方程。
无理数方程是指方程中含有无理数的方程,例如根号2、根号3等。
解无理数方程是高中数学的重要内容之一,本文将介绍一些常见的无理数方程的解法。
一、一次无理数方程一次无理数方程是指方程中只含有一个无理数的方程,通常形式为ax+b=0,其中a和b是已知的有理数,x是未知的无理数。
解一次无理数方程的方法有两种:代入法和平方消去法。
代入法是将方程中的无理数代入到方程中,求解出有理数的值。
例如,对于方程根号2x+1=0,我们可以将根号2x代入到方程中,得到2x+1=0,进一步解得x=-1/2。
平方消去法是通过平方的性质来求解方程。
例如,对于方程根号3x+2=0,我们可以将方程两边平方,得到3x+2=0,进一步解得x=-2/3。
二、二次无理数方程二次无理数方程是指方程中含有二次无理数的方程,通常形式为ax^2+bx+c=0,其中a、b和c是已知的有理数,x是未知的无理数。
解二次无理数方程的方法有两种:配方法和求根公式。
配方法是通过配方将二次无理数方程转化为一次无理数方程,然后再采用一次无理数方程的解法进行求解。
例如,对于方程根号2x^2+3x-1=0,我们可以将方程两边平方,得到2x^2+3x-1=0,进一步解得x=(-3±根号17)/4。
求根公式是一种直接求解二次无理数方程的方法,根据二次无理数方程的一般形式ax^2+bx+c=0,我们可以使用求根公式x=(-b±根号(b^2-4ac))/(2a)进行求解。
例如,对于方程根号3x^2+4x-2=0,我们可以使用求根公式,进一步解得x=(-2±根号(4+24))/6。
三、其他无理数方程除了一次和二次无理数方程,高中数学中还存在其他类型的无理数方程,例如分式无理数方程和高次无理数方程。
分式无理数方程是指方程中含有无理数的分式的方程,通常形式为ax+b/c=0,其中a、b和c是已知的有理数,x是未知的无理数。
无理方程怎么解?教师:巧用柯西不等式速解高中数学双根式方程
无理方程怎么解?教师:巧用柯西不等式速解高中数学
双根式方程
无理方程是指定义域内解不存在的方程组成的类,没有定义的实数解。
柯西不等式是一种有效解决无理方程的方法,也称为解析不等式。
其基本
思想是将表达式x未知变量分开,将两边分解成多个清晰的子问题,从而
解出无理方程。
要求解高中数学双根式方程,可以使用柯西不等式的技巧。
首先,将
双根式方程写成ax^2+bx+c = 0的形式,其中a、b、c是实数;若b^2-
4ac>0,则有二根,此时可以将双根式方程拆成ax^2+bx+c = 0和
ax^2+bx-c = 0两个不等式,并分别解出它们的根。
若b^2-4ac=0,则有一根,此时可以将双根式方程拆成ax^2+bx+c = 0和ax^2+bx+c≥0两个不
等式,并分别解出它们的根。
最后,由于无理方程没有定义的实数解,要
想得出有理方程的实数解,可以在双根式方程结果中进行限制条件排除,
确定有理解。
总之,运用柯西不等式解高中数学双根式方程,步骤如下:首先将双
根式方程写成ax^2+bx+c = 0的形式;其次,根据b^2-4ac的值,将双根
式方程拆分成不等式,并分别解出它们的根;最后,在双根式方程的解中
进行限制条件排除,得出有理解。
解方程无理方程的解法与应用
解方程无理方程的解法与应用无理方程是指方程中包含有无理数的项或者是无理数的根的方程。
无理数是指无法用两个整数的比表示的数,如根号2、根号3等。
解无理方程需要采用一些特殊的方法和技巧,本文将讨论解无理方程的一些常见方法,并介绍无理方程在实际应用中的一些案例。
一、根号2问题的解法根号2是一个经典的无理数,它的值无法用有限小数或者分数来表示。
当我们遇到类似于"x^2=2"的方程时,需要利用开平方的性质来求解。
首先将方程转化为"x=根号2"的形式,然后将根号2的平方根转换为十进制数,最后得出方程的解为"x=±1.414"。
二、根号3问题的解法类似于根号2的问题,当遇到"x^2=3"这样的方程时,需要求解根号3的近似值。
通过计算,可以得出根号3的近似值为1.732,所以方程的解为"x=±1.732"。
三、分式无理方程的解法有时候,无理方程可能不仅包含根号,还可能包含有分式。
例如"1/x=根号3"这样的方程需要采用逆运算的方式来求解。
首先将方程转化为"x=1/根号3"的形式,然后利用有理化的方法,将分式转化为x=根号3/3。
所以方程的解为"x=根号3/3"。
四、无理方程的应用案例无理方程在实际生活中有着广泛的应用,以下是一些常见的应用案例:1. 建筑工程中的角度计算:有时候需要根据建筑的特殊需求计算出特定角度的大小,这就需要解一些含有无理数的方程来求解。
2. 自然科学研究中的模型建立:无理方程可以用来建立科学模型,例如物理学中的振动方程、光学中的折射方程等。
3. 金融领域中的风险评估:无理方程可以用来评估金融风险,帮助投资者做出更合理的决策。
总结起来,解方程无理方程的解法涉及到开平方、有理化等数学技巧,解出无理方程对于理解数学知识、解决实际问题起着重要的作用。
上海初二下数学无理方程
上海初二下数学无理方程
无理方程是指方程中含有无理数的方程。
在上海初二下学期的数学课程中,学生会学习到一些基础的无理方程的解法方法。
一般来说,解无理方程的方法有两种:化为二次方程和换元法。
化为二次方程的方法是将无理方程的两边进行适当的变形,使其化为一个二次方程。
例如,对于方程√x + 2 = 5,可以将方程两边都减去2,得到√x = 3,再将方程两边的平方,得到x = 9,即方程的解为x = 9。
换元法是将无理方程中的无理数部分进行适当的换元,使方程变为一个简单的代数方程。
例如,对于方程√(x+3) = 2,可以令y = x + 3,那么方程可以化为√y = 2,再将方程两边的平方,得到y = 4,即方程的解为x + 3 = 4,解得x = 1。
除了这两种常见的解法之外,还有一些特殊的无理方程,需要根据具体情况采用不同的解法,如有理化、分离变量等。
需要注意的是,在解无理方程时,要注意检验解的合法性,因为无理数的平方可能有两个解,只有满足方程的条件才是方程的真正解。
上海初二下学期的数学课程中,学生会学习到一些基础的无理方程的解法方法,并通过练习题来巩固和应用所学的知识。
第7讲 无理方程(讲义)解析版
第7讲 无理方程模块一:无理方程的概念和解法知识精讲1.无理方程的概念方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.2.解无理方程的方法通过平方把无理方程转化为整式方程,再求解.3.解无理方程的一般步骤(1)方程两边平方,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.例题解析例1.下列方程是哪些是关于x 的无理方程?(1)49=;(2)26250-=;(3)1211x -=;(41=;(5)27-=;(6)21x -=.【难度】★【答案】(1)、(2)、(3)、(4)、(6)是无理方程.【解析】根据无理方程的概念,方程中含有根式,并且被开方数是含有未知数的代数式的方程叫做无理方程,可知(1)、(2)、(4)、(6)都是无理方程,12x =,可知(3)也是无理方程.【总结】考查无理方程的概念,方程中根号内含有未知数即可.例2.下列哪个方程有实数解()A 0=B 30+=C 2=D x=-【难度】★【答案】D【解析】根据二次根式的双重非负性,对A 选项,1x ³³无实数解;对B 330+³¹,可知方程无实数解;对C 选项,1040x x -³ìí--³î,x 无解,即方程无实数解;故选D .【总结】考查对无理方程解的判断,根据二次根式双重非负性即可进行简单判定.例3.若方程1k +=有解,则k 的取值范围是________.【难度】★【答案】1k ³.【解析】移项得1k =-,方程有解,根据二次根式的非负性,可得10k -³,得1k ³.【总结】考查无理方程有解的应用,根据二次根式的非负性即可进行判断.例4.不解方程,说明下列方程是否有实数根:(10=;(2)2(()()a b a b a b -=-£.【难度】★【答案】(1)有唯一实数根12x =;(2)当a b <时,方程无实数根;当a b =时,方程有无数个实数根.【解析】(1)根据二次根式的非负性,可得:120120x x -³ìí-³î,即得x 的定义域为12x =,0==,即得方程有唯一实数根12x =;(2)当a b <0a b =-<,根据二次根式非负性,可知方程无实数根; 当a b =时,等式恒成立,可知方程有无数实数根,满足240x x -³即可.【总结】考查对无理方程解的判断,对部分方程根据二次根式双重非负性即可进行判定.例5.用换元法解方程231x x --=y =.则该方程转换整式方程是____________.【难度】★【答案】260y y --=.y =,可得2235x x y -=-,原方程即为251y y --=, 整理即为260y y --=.【总结】考查用“换元法”对无理方程进行变形转化,注意最终要化成整式形式.例6.解下列方程:(1x =;(23x =.【难度】★★【答案】(1)3x =;(2)5x =.【解析】(1)两边平方,得:223x x +=,整理得:2230x x --=,解得:13x =,21x =-,经检验,21x =-是原方程的增根,即原方程的根为3x =;(23x =+,两边平方得:()()()21263x x x -+=+,因式分解整理得:()()530x x -+=,解得:15x =,23x =-,经检验,23x =-是原方程的增根,即原方程的根为5x =.【总结】考查无理方程的解法,注意方程增根的检验.例7.解下列方程:(1)10x =-;(2)()30x +=;【难度】★★【答案】(1)20x =;(2)1x =.【解析】(1)两边平方,得:()()24510x x +=-,整理得:224800x x -+=,解得:14x =,220x =,经检验,14x =是原方程的增根,即原方程的根为20x =; (2)由原式得:30x +=或10x -=,解得:11x =,23x =-, 经检验,23x =-是原方程的增根,即原方程的根为1x =.【总结】考查无理方程的解法,注意无理方程的验根.例8.解下列方程:(11=+;(2)5x =.【难度】★★【答案】(1)x =;(2)4x =.【解析】(1)两边平方得:22721x x +=-+,整理得:260x --=,配方法解得:1x =2x =,经检验,2x =是原方程的增根,即原方程的根为x =(25x =-,两边平方得()24155x x -=-,整理得214400x x -+=, 解得:14x =,210x =,经检验,210x =是原方程的增根,即原方程的根为4x =.例9.133=.【难度】★★【答案】154x =-,254x =.a =1a =,原方程即为1133a a +=,解得:13a =,213a =,3=13=,解得:154x =-,254x =,经检验,154x =-,254x =都是原方程的根.【总结】考查利用“换元法”解无理方程,注意观察无理方程含未知数的根式之间的联系.例10.解方程:(1)2233x x +-=-; (2)3(5)2x x ++=.【难度】★★【答案】(1)192x =-,23x =;(2)15x =-,20x =.【解析】(1()0y y =³,得22239x x y +=-,原方程即2953y y --=-,整理得2560y y --=,解得:11y =-(舍),26y =,6=,平方整理得223270x x +-=,解得:192x =-,23x =,经检验,192x =-,23x =都是原方程的根;(2()0y y =³,得2251x x y +=-,原方程即()22312y y +-=,整理得23250y y +-=,解得:153y =-(舍),21y =,1=,平方整理得250x x +=,解得:15x =-,20x =,经检验,15x =-,20x =都是原方程的根.【总结】考查用“换元法”解无理方程,注意根据元的取值范围舍去增根.例11.解下列方程:(17=;(21=+.【难度】★★【答案】(1)12x =;(2)9x =+.【解析】(17=-,两边平方得4349x x +=-+-移项得42=,两边平方得39x -=,解得:12x =,经检验,12x =是原方程的根;(2)两边平方得2151x x -=+++7x =-,两边平方整理得218290x x -+=,配方法解得:19x =+,29x =-,经检验,29x =-是原方程的增根,即原方程的根是9x =+【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例12.=.【难度】★★★【答案】5x =.【解析】平方得2116x x x -+--=-24x =-,两边平方整理得2213150x x -+=,解得:132x =,25x =,经检验,132x =是原方程的增根,即原方程的根是5x =.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例13.解下列方程:2660x x ---=.【答案】x =()0y y =³,则有2222x x y --=,由此原方程可变形得:2236620x x x ----=,整理即为22320y xy x --=,因式分解法解得:123y x =-,2y x =23x =-x =,由23x =-,整理得2518180x x --=,解得:1x =,2x =经检验,1x =x =,可解得:1x =-,经检验,1x =-是原方程的增根,综上所述,原方程的根是x =【总结】考查较复杂的换元法的转化解无理方程,注意方程增根的检验.模块二:无理方程的根的讨论知识精讲3.增根的概念无理方程在化整式方程求解过程中,整式方程的解如果使得无理方程左右两边不相等,那么这个解就是方程的增根.例题解析例1.关于x 1=有一个增根x =4,求:(1)a 的值;(2)方程的根.【难度】★★【答案】(1)5a =;(2)20x =【解析】(1)移项,两边平方得:241x x a -=+++,移项得5x a =--,两边平方得:()()()224525x a x a x a +=---+,将4x =代入有()24412a a a +=++, 整理得22150a a --=,解得:13a =-,25a =,当25a =时,4x =是方程增根,当13a =-时,4x =不是方程增根,由此即得5a =;(2)将5a =代入上述平方整理的方程即有()()()245510525x x x +=---+,移项整理得224800x x -+=,解得:14x =,220x =,由题意可得14x =是原方程的增根,即得原方程的根是20x =.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.例2.2x m =-有一个根是1x =,求实数m 的值.【难度】★★【答案】0m =.【解析】因为方程有一个根是1x =,12m =-,平方整理得2240m m -=, 解得:10m =,22m =,经检验,22m =是方程的增根,应舍去,即得0m =.【总结】考查无理方程根的意义,代入转化为其它未知数的求值即可.例3.若关于x 20kx -+=有实数根,求k 的取值范围. 【难度】★★★【答案】1k ³或0k <.()0a a =³,则有242a x -=,原方程即为24202a a k --×+=,整理即为22440ka a k ++-=,当0k =时,则有2a =-是增根,应舍去;当0k ¹时,分解因式得()()2220ka k a +-+=,解得:12a =-(舍),222k a k-=,因为方程有实数根,则应有2220k a k-=³,分类讨论得1k ³或0k <,即得k 的取值范围为1k ³或0k <.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性进行求解计算.例4.若关于x 20x m ++=只有一个实数根,求m 的取值范围.【难度】★★★【答案】6m £.()0a a =³,则有23x a =-,原方程即为()2230a a m +-+=,整理即为2260a a m ++-=,因为方程只有一个实数根,则方程有且仅有一根满足0a ³,则另一根必满足0a <,根据韦达定理可得:12602m a a -=£,得m 的取值范围是6m £.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性进行求解计算.模块三:无理方程的应用知识精讲4.应用寻找题目中的等量关系,列方程,求解,根据实际情况进行取舍.例题解析例1.用一根56厘米的细铁丝弯折成一个直角三角形,使它的一条直角边长为7厘米,求这个直角三角形的另两条边的长度.【难度】★★【答案】24cm 和25cm .【解析】设另外一条直角边长为xcm ,依题意可得756x ++=,解得:24x =,经检验,24x =是原方程的根且符合25cm =,即另两边长分别为24cm 和25cm .【总结】考查直角三角形勾股定理的应用,用周长列式解题,注意应用题也要验根.例2.建一块场地,用600块正方形的砖头铺成,如果把场地的面积扩大到原来面积的2倍还多0.6平方米,且正方形的砖头的边长增加10厘米,则需要铺540块方砖,求原场地的面积.【难度】★★【答案】224m .【解析】设原场地的边长为xm ,100.1cm m =,则扩大后场边长为()0.1x m +, 依题意得()225400.126000.6x x +=´+,整理得22754520x x --=,解得:115x =,2255x =-(舍),由此得原场地面积为2221600600245x m æö=´=ç÷èø.【总结】考查根据题意找准等量关系列方程解应用题,注意单位的统一.例3.若Q 点在直线21y x =+上,且Q 到点P (0,2),求Q 点的坐标.【难度】★★【答案】1355Q æö-ç÷èø,或()13Q ,【解析】设点()21Q x x +,=平方整理,得:25410x x --=,解得:115x =-,21x =,经检验,115x =-,21x =都是原方程的根,由此代入即得1355Q æö-ç÷èø,或()13Q ,.【总结】考查利用两点间距离公式的应用列方程,注意设出点的坐标.例4.1l 与2l 为两条互相垂直的大路,小李和老王从十字路口O 点同时出发,分别沿着图示的方向以1千米/小时和2千米/小时的速度前进,到达A 与B 地,一座学校座落于距1l 8千米,距2l 5千米的P 处,问:经过多少时间,两人距离学校的路程刚好相等?是几千米?【难度】★★【答案】经过43h 两人距离学校路程相等.【解析】设经过th 两人距离学校距离相等,即AP BP =, 则有OA t =,8AM t =-,5=,平方整理得2340t t -=,解得:143t =,20t =,经检验,143t =,20t =都是原方程的根,但20t =不符合题意,应舍去,即经过43h 两人距离学校路程相等.【总结】考查利用勾股定理列方程,注意找准等量关系.例5.有一群蜜蜂,一部分飞进了枸杞里,其个数等于总数的一半的平方根,还有全体的89遗留在后面,此外,这群里还有一个小蜜蜂在莲花旁徘徊着,它被一个坠入香花陷阱的同伴的呻吟声所吸引.试问:这群蜜蜂共有多少个?【难度】★★★【答案】这群小蜜蜂共有72个.【解析】设这群蜜蜂共有x 个,根据蜂群总数,依题意可得8119x x +++=,平方整理得221536480x x -+=,解得:192x =,272x =,经检验,192x =是原方程的增根,即得这群小蜜蜂共有72个.【总结】考查根据题意列方程解应用题,注意计算不要遗漏.例6.m 、n 为两段互相垂直的笔直的公路,工厂A 在公路n 上,距离公路m 为1千米.工厂B 距离公路m 为2千米,且距离公路n 为3千米,现在要在公路m 上选一个地址造一个车站P ,使它与A 、B 两厂的距离和为P 的位置?【难度】★★★【答案】车站P 在两公路交点上方211km 或2km 处.【解析】以直线n 为x 轴,以直线m 为y 轴,两直线交点为坐标原点,建立平面直角坐标系,依题意有()10A ,,()23B ,,设点()0P x ,,=二次平方后,整理得:2112440x x -+=,解得:1211x =,22x =,经检验,1211x =,22x =都是原方程的根,即车站P 在两公路交点上方211km 或2km 处.【总结】考查利用建立平面直角坐标系确定点的位置问题.随堂检测1.下列方程是无理方程的是().A .20x -+=B 9x+=C 2=-D 45x =【难度】★【答案】D【解析】根据无理方程的概念,方程中含有根式,并且被开方数是含有未知数的代数式的方 程叫做无理方程,可知D 是无理方程,故选D .【总结】考查无理方程的概念,方程中根号内含有未知数即可.2.根据平方根的意义,直接判断下列方程是否有解,并简述理由:(130+=;(20x +=;(34x =-;(4x +=.【难度】★【答案】(2)有解,(1)、(3)、(4)无解.【解析】根据二次根式的双重非负性,对(1)330+³¹,故方程无实数解;对(2),由20x +³,即有2x ³-0x =-³,可知方程有实数解;对(3),6040x x -³ìí-³î,x 无解,即方程无实数解;对(4),3020x x -³ìí-³î,x 无解,即方程无实数解.【总结】考查对无理方程解的判断,根据二次根式双重非负性即可进行初步判定.3.4x =-的实数解为().A .4x =B .4x <C .4x £D .0x =【难度】★【答案】C44x x ==-=-,可知40x -£,得4x £,故选C .4.用换元法解方程23640x x --+=时,y =.则该方程可转换成整式方程是_________.【难度】★【答案】23280y y --=.y =,可得:2224x x y -=-,原方程即为()234240y y --+=, 整理即为23280y y --=.【总结】考查用“换元法”对无理方程进行变形转化,注意最终要化成整式方程.5.解方程:(12x =;(2)2(3x =.【难度】★【答案】(1)1x =;(2)4x =.【解析】(1)移项两边平方得:()22272x x x +=+,整理得:2340x x +-=, 因式分解法解得14x =-,21x =,经检验,14x =-是原方程的增根, 即原方程的根为1x =;(2)移项得6x =-,两边平方得()()2436x x -=-,整理得:216480x x -+=, 解得:14x =,212x =,经检验,212x =是原方程的增根,即原方程的根为4x =.【总结】考查无理方程的解法,注意方程增根的检验.6.(奉贤2018期末2)下列判断中,错误的是( )A. 方程是一元二次方程B. 方程是二元二次方程C. 方程3233x x x +-=+是分式方程D. 20x -=是无理方程【答案】D ;【解析】解:A 、方程x (x-1)=0是一元二次方程,不符合题意;B 、方程xy+5x=0是二元二次方程,不符合题意;C 、方程3233x x x +-=+是分式方程,不符合题意;D 20x -=是一元二次方程,符合题意,故选:D .7.(闵行期末3)下列说法正确的是(A 4=的根是16x =±;(B x =的根是13x =,21x =-;(C 1x =+变形所得的有理方程是2211x x -=+;(D 10+=没有实数解.【答案】D ;【解析】A 、方程4=的根是16x =,故A 错误;B 、解方程x =得13x =,21x =-,经检验,得21x =-是增根,故原方程的根是3x =,故B 错误;C1x =+变形所得的有理方程是22121x x x -=++,故C 错误;D10+=没有实数解,所以D 正确;故答案选D.8.(崇明2018期中2)下列关于x 的方程一定有实数根的是( )A.2220x x ++=;B.111xx x =--;30+=;x =-.【答案】D ;【解析】A 、根的判别式小于零,故无实数根;B 、x=1是增根,故B 无实数根;C、330+³¹,故原方程无实数根;D 、可解得方程的根为1x =-,故有实数根;因此答案选D.9.(金山2019期末100=的解是_________________【答案】1x =;【解析】依题得10101010x x x x -=+=ìï-³íï+³î或,所以111x x x ==-ìí³î或,所以1x =.10.(松江2018期中20)解方程:3x =.【答案】2x =;【解析】解:原方程化为:3x -=,两边平方,得2(3)23x x -=-,整理,得28120x x -+=,解得122,6x x ==,经检验:12x =是原方程的根,26x =是增根. 所以原方程的根是2x =.11.7+=.【答案】16x =;【解析】解:移项,7=-,两边平方,得749x x -=-+,整理,4=,解得16x =,经检验16x =是原方程的根,故原方程的根是16x =.12.解方程:(110-=;(22-=.【难度】★★【答案】(1)11x =;(2)13x =,211x =.【解析】(11=,两边平方得2351x x +=+++,移项得3x =-,两边平方整理得210110x x --=,解得:111x =,21x =-,经检验,21x =-是原方程的增根,即原方程的根为11x =;(2)移项两边平方得2324x x +=-++,移项得1x =+,两边平方整理得214330x x -+=,解得:13x =,211x =, 经检验,13x =,211x =都是原方程的根.【总结】考查含有多个二次根式的无理方程的解法,两边多次平方即可.13.解方程:(1)241017x x -=;(2)22330x x +-=.【难度】★★【答案】(1)172x =,21x =-;(2)192x =-,23x =.【解析】(1()0y y =³,得22252x x y -=-,方程即()22217y y -+=,整理得22210y y +-=,解得:172y =-(舍),23y =,3=,平方整理得22570x x --=,解得:172x =,21x =-,经检验,172x =,21x =-都是原方程的根;(2()0y y =³,得22239x x y +=-,原方程即29530y y --+=,解得:11y =-(舍),26y =6=,平方整理得223270x x +-=,解得:192x =-,23x =,经检验,192x =-,23x =都是原方程的根.【总结】考查用“换元法”解无理方程,注意根据二次根式的非负性舍去相应增根.14.有两块正方形木板,其中大的一块木板面积比小的木板面积大45平方米,小的木 板的边长比大的木板的边长短3分米,求这块小木板的面积.【难度】★★【答案】小木板面积为25602.5225m .【解析】设小木板面积为2xm ,则大木板面积为()245x m +,由30.3dm m =,依题意可得0.3-=,移项整理得74.85=,即得:274.855602.5225x ==,经检验,5602.5225x =是原方程的根,即小木板面积为25602.5225m .【总结】考查根据题意列方程解应用题,注意题目中的单位换算.15.如果y 轴上一点P 到两点A (3,5)、B (-1,-2)的距离相等,求P 点的坐标.【难度】★★【答案】29014P æöç÷èø,.【解析】设点()0P x ,=, 平方得22103445x x x x -+=++,解得:2914x =,经检验,2914x =是原方程的根, 即29014P æöç÷èø,.【总结】考查利用两点间距离公式确定点的位置问题.16.1-=.【难度】★★【答案】5x =.【解析】23x =-,根据题意,1=,23x +=-,1x =-,平方整理得250x x -=,解得:10x =,25x =,经检验,10x =是原方程的增根,即原方程的根是5x =.【总结】考查有特殊形式的无理方程的解法,注意观察好含未知数的根式之间的关联.17.712=.【难度】★★★【答案】7x =.()0a a =³1a =,原方程即为1712a a -=,解得:143a =,234a =-(舍)43=,解得:7x =,经检验,7x =是原方程的根.【总结】考查利用“换元法”解无理方程,注意观察两个无理式之间的关联.18.已知a 为非负整数,若关于x 的方程240x a -+=至少有一个整数根, 求a 的值.【难度】★★★【答案】2a =或6a =.()0m m =³,则有21x m =-,原方程即为()22140m am a ---+=,得26201m a m -=³+,由0m ³,可得2620m -³,则有203m ££,因为x 为整数,则2m 为整数,同时a 为整数,则m 必为有理数,由此可得:0m =或1m =,当0m =时,得6a =;当1m =时,得2a =;综上,2a =或6.【总结】考查无理方程根的判定,利用换元法根据二次根式的非负性和题目要求求解计算19.A 地在M 地的正北方向12千米处,B 地在M 地的正东方向12千米处,某人从B 地出发向正西方向行至C 地,再沿CA 方向到达A 地,这样比由B 地到M 地再到A 地的路程少4千米,求M 地与C 地之间的距离.【难度】★★★【答案】5MC km =.【解析】如图建立平面平面直角坐标系,点M 为原点,则有()012A ,,()120B ,,设()0C a ,,根据两点间距离公式AC =,1241212a +-+=+8a =+,解得:5a =,经检验,5a =是原方程的根,即得5MC km =.【总结】考查根据构造平面直角坐标系解方程问题.。
无理方程的解法
无理方程的解法
无理方程解法包括以下几种方法:
1. 开平方法:对于形如$\sqrt{a+bx}=c$的无理方程,可先将其平方得到$a+bx=c^2$,进而解出$x=\dfrac{c^2-a}{b}$
2. 合并同类项:对于形如$\sqrt{ax^2+bx+c}+px+q=0$的无理方程,可以将方程展开并合并同类项,然后将含有无理数
$\sqrt{ax^2+bx+c}$的项移项,再两边平方,最后得到一个关于$x$的一元二次方程,即可以使用求根公式解出$x$的值
3. 倍角公式:对于形如$\sqrt{a\sin x+b\cos x}=c$的无理方程,可以使用倍角公式将$\sqrt{a\sin x+b\cos x}$化为形如
$\sqrt{a'\sin(2x+\alpha)}$的表达式,然后再使用开方法解出$x$的值
4. 代换法:对于形如$\sqrt[3]{ax^2+bx+c}=d$的无理方程,可以将$\sqrt[3]{ax^2+bx+c}$代入新变量$t$,得到一个关于$t$的一元方程$(t-d)^3=ax^2+bx+c$,可以解出$t$的值,进而解出$x$的值
5. 因式分解法:对于形如$\sqrt{a(x-b)(x-c)}=d$的无理方程,可以先将方程右侧的无理数平方,然后再将方程展开并化简得到一个关于$x$的一元二次方程
需要注意的是,解无理方程时要注意检查解的合法性,因为在开方、平方等过程中可能会存在增根、减根的情况。
无理方程
三、解无理方程的基本思想:
解无理方程的基本思想是“转化”,将无理方 程转化为有理方程。即:
转
化
无理方程
有理方程
解无理方程的关键是:设法将无理方程转化 为有理方程。
四、解无理方程的基本方法 (1)两边平方法
两个根式互为倒数时
(2)换元法 五、验根 根号外与根号内含未知数项的系数 对应相等或成比例(成倍数)时
1
x=2 x 1 1 的根是_______.
9 y 4 , 则所得的有理方程为__________. y x
3、用换元法解方程
9 1 4 x
x 4 时, x9 4
4、若关于x的方程 <0 m_____.
3 x m 无实数解,则
x=k 5、 x k k x 的根是________. x1=1,x2=-2 6、 x 2 x x 2 的根为____________.
(2) x 5
两边平方法
(3) x 2 3 x 1 x2 (5) x 1 9 (6) 1 x
(4)3 x 2 15x 2 x 2 5 x 1 2 x 1 2 x2 x 5 x9 2
换元法
练习题: 1、在一元一次方程、一元二次方程、分式方程、 分式方程、无理方程 无理方程中必须验根的是___________________. 2、方程 设y
把解得的无理方程的根代入原方程检验, 既要看每一个根式是否有意义,同时还要看 方程的左右两边是否相等,只有同时满足以 上两点的根才是原方程的根,否则是增根。
六、基本题型 1、判断方程属于哪种类型 5x 5x 2 (5) 3 2 1 5 x 5x 2 (3) 3 ( 4) 5 x 2 2 x 2 2 1
高次方程、分式方程、无理方程的解法
通过换元可将原方程化为关于 t的一元二次方程.
方
法
1. 移项,平方可把无理方程化为有理方程
提 炼
2.换元可以使解方程的过程变得简便
3.解无理方程时应注意检验
一化二解三检验
课 堂 小
1.三种方程高次、分式、无理方程的解法 结 2.一个方法——换元 3.一个思想——等价转化的数学思想
典 型
x1x2 2xa 的解为负数
x2 x1 (x2)x (1)
例 题
求实数 a的范围.
解: 左边通分
4x5 2xa (x2)x (1) (x2)x (1)
所以 4 x 5 2 x a,2x5a
所以 x 5 a 0 且 5 a 1
2
2
解得 a5且 a7
方
1.在分式方程两边同乘以最简公分母,
典
例6(1)解方程 x7x1
型
例
x 7 (x 1)2 *
解: x 7 0
x 1 0
题
为什么会产 生增根?
解得 x2 ( x3为增根 )
此题也可先解出方程*的根, 再代回原方程检验.
典
例6(2)解方程 2x2x15
型
例
解:移项, 2x12x5
题
两边平方,化简得 2 x 2 1x 1 1 2 0
典 型 例
解:令
x2 2 2x2 1
t
原方程可化为
t 3 2 t
题
即 t22t30
解得 t13,t21
所以
x2 2 2x2 1
3
或
x2 2 2x2 1
1
典
即 7x210或 x230
型 例
题
解得 x17 7,x27 7,x33,x43
第七讲 无理方程 -【寒假预习】八年级数学核心考点+重难点讲练与测试(沪教版)(原卷版)
第07讲无理方程目录考点一:无理方程的概念和解法考点二:无理方程的根的讨论考点三:无理方程的应用【基础知识】一、无理方程的概念和解法1.无理方程的概念方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.2.解无理方程的方法通过平方把无理方程转化为整式方程,再求解.3.解无理方程的一般步骤(1)方程两边平方,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.二、无理方程的根的讨论增根的概念无理方程在化整式方程求解过程中,整式方程的解如果使得无理方程左右两边不相等,那么这个解就是方程的增根.三、无理方程的应用应用寻找题目中的等量关系,列方程,求解,根据实际情况进行取舍.【考点剖析】【考点1】无理方程的概念和解法例1.下列方程是哪些是关于x 的无理方程?(1)33429x ; (2)2236250x --=; (3)1211x -=;(4241x a x -=; (5)2137x a -=;(6)22113x x x --=例2.下列哪个方程有实数解( )A 110x x +-=B 530x ++=C 142x x ---=D 2x x -=-例3.若方程12x k -=有解,则k 的取值范围是________.例4.不解方程,说明下列方程是否有实数根:(112120x x --=;(2)22()4()()a b x x a b a b ---≤.例5.用换元法解方程223351x x x x --+时,设235x x y -+=.则该方程转换整式方程是____________. 例6.解下列方程:(123x x +; (21263x x x -+=.【变式1】解下列方程:(1)2510x x +=-; (2)()310x x +-=;【变式2】.解下列方程:(12721x x +=-+;(2)5415x x -=.例7.1113113x x x x -++-.【变式1】解方程:(1)222352393x x x x +-++-;(2)22513(5)2x x x x +++=.例8.解下列方程:(1437x x +-=; (22151x x -+.【变式1】2116x x x ---例9.解下列方程:2266220x x x x x -----.【考点2】无理方程的根的讨论例1.关于x 241x x a -+有一个增根x =4,求:(1) a 的值;(2) 方程的根.【变式1】2222x m x m +-有一个根是1x =,求实数m 的值.【变式2】.若关于x 4220x kx -+=有实数根,求k 的取值范围.【变式3】.若关于x 320x x m +++=只有一个实数根,求m 的取值范围.【考点3】无理方程的应用例1.用一根56厘米的细铁丝弯折成一个直角三角形,使它的一条直角边长为7厘米,求这个直角三角形的另两条边的长度.例2.建一块场地,用600块正方形的砖头铺成,如果把场地的面积扩大到原来面积的2 倍还多0.6平方米,且正方形的砖头的边长增加10厘米,则需要铺540块方砖,求原场地的面积.例3.若Q 点在直线21y x =+上,且Q 到点P (0,2)的距离为2,求Q 点的坐标.例4.1l 与2l 为两条互相垂直的大路,小李和老王从十字路口O 点同时出发,分别沿着 图示的方向以1千米/小时和2千米/小时的速度前进,到达A 与B 地,一座学校座落于 距1l 8千米,距2l 5千米的P 处,问:经过多少时间,两人距离学校的路程刚好相等? 是几千米?例5.有一群蜜蜂,一部分飞进了枸杞里,其个数等于总数的一半的平方根,还有全体的89遗留在后面,此外,这群里还有一个小蜜蜂在莲花旁徘徊着,它被一个坠入香花陷阱的同伴的呻吟声所吸引.试问:这群蜜蜂共有多少个?例6.m 、n 为两段互相垂直的笔直的公路,工厂A 在公路n 上,距离公路m 为1千米.工 厂B 距离公路m 为2千米,且距离公路n 为3千米,现在要在公路m 上选一个地址造 一个车站P ,使它与A 、B 两厂的距离和为5P 的位置?【过关检测】一、单选题1.(2022秋·上海奉贤·八年级校考期末)下列关于x 的方程中,没有实数解的是( )A .(1)20x x --=;B (1)(2)0x x --=;C 120x x --=;D (1)(2)0x x --.2.(2022秋·上海宝山·八年级校考阶段练习)下列方程中,有实数解的方程是( )A .2+2=0xB .2222x x x x +=--C .320x +=D 320x -=3.(2022春·上海静安·八年级新中初级中学校考期末)下列说法正确的是( )A .22x y +=B .20x x -=是二项方程C .223x x -=是分式方程D .22x x x-= 二、填空题4.(2022秋·上海浦东新·31x x +=+的根是______.5.(2022春·上海虹口·八年级上外附中校考阶段练习)2482x x --时采用了下面的方法:由()()2224824824824816x x x x x x x x ----=---=---=,2482x x --=2488x x --=,将这两式相加可得24583x x -=-=, 245x -两边平方可解得=1x -,经检验=1x -是原方程的解.请你学习小明的方法,解决下列问题:(122221032a a --222210a a --___________.(2224654254x x x x x +---=,得方程的解为___________.6.(2022秋·上海杨浦·1x -x ﹣2)=0的根是 _____.7.(2022秋·上海普陀·21x k -=无实数解,那么k 的取值范围是______.三、解答题8.(2022秋·上海浦东新·282x x +-.9.(2022秋·上海杨浦·1x +2x =1.10.(2022秋·上海·八年级校考期中)解方程:11x x -=.11.(2022秋·上海·279x x +-=.12.(2022秋·上海·八年级专题练习)解方程(1)5x+x1;(2)已知关于x2m x-m+x=3有一个实数根是x=1,试求m的值.13.(2022秋·上海·八年级专题练习)下面是小明同学解无理方程323x-x的过程:原方程可变形为3﹣x23x-(第一步)两边平方,得3﹣x=2x﹣3……(第二步)整理,得﹣3x=6……(第三步)解得x=2……(第四步)检验:把x=2分别代入原方程的两边,左边=323x-2,右边=2,左边=右边,可知x=2是原方程的解.……(第五步)所以,原方程的解是x=2.……(第六步)请阅读上述小明的解题过程,并完成下列问题:(1)以上小明的解题过程中,从第步开始出错;(2)请完成正确求解方程323x-x的过程.14215212 x xx x-=-15.有一个数,它的平方根比它的倒数的正平方根的3倍多2,求这个数.16.已知点P是x轴上一点,它与点A(-9,3)之间的距离是15,求点P的坐标.17.某学校修建两块面积相等的绿地,一块是长方形,另一块是正方形.已知长方形绿地的长比宽多14米,且这两块绿地的周长之和为196米,那么长方形绿地的宽是多少?11。
第4讲无理方程
第四讲 无理方程知识梳理:1.方程中含有 ,且 是含有未知数的代数式,这样的方程叫做无理方程.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等。
用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根。
已知下列关于x 的方程:其中无理方程是____________________(填序号). 2.代数方程的分类:方程方程方程 代数方程方程典型例题:可化为一元二次方程的无理方程1.平方法解无理方程 【例1】解方程71x x +-=分析:移项、平方,转化为有理方程求解. 解:移项得:71x x +=+.3231)6(;21)5(;721)4(;071)3(;015)2(;015122=-++=+=+-=-+=++=++xx x xx x a x x x x x )(两边平方得:2721x x x +=++ 移项,合并同类项得:260x x +-= 解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根.所以,原方程的解是2x =.说明:含未知数的二次根式恰有一个的无理方程的一般步骤:①移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.【例2】解方程3233x x -++=分析:直接平方将很困难.可以把一个根式移右边再平方,这样就可以转化为上例的模式,再用例4的方法解方程.解:原方程可化为:3233x x -=-+两边平方得:329633x x x -=-+++整理得:63142337x x x x +=-⇒+=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根.把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.说明:含未知数的二次根式恰有两个的无理方程的一般步骤:①移项,使方程的左边只保留一个含未知数的二次根式;②两边平方,得到含未知数的二次根式恰有一个的无理方程;③一下步骤同例4的说明.2.换元法解无理方程【例3】解方程 223152512x x x x ++++=分析:本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,可以设251x x y ++=,这样就可将原方程先转化为关于y 的一元二次方程处理.解:设251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=,即23250y y +-=,解得:1y =或53y =-. (1)当1y =时,225115010x x x x x x ++=⇒+=⇒=-=或;(2)当53y =-时,因为2510x x y ++=≥,所以方程无解. 检验:把1,0x x =-=分别代入原方程,都适合.所以,原方程的解是1,0x x =-=.说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想. 课堂练习:1.解无理方程 43+=x x (2);1222+=-x x(3);323x x =-- (4).12=-+x x232)1(233)5(22+-=+-+y y y y2.(1)换元法解方程3211=+-+xx x x 时,设y= ,转化为整式方程 。
初中数学重点梳理:无理方程
无理方程知识定位未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用。
知识梳理1、无理方程:根式方程就是根号内含有未知数的方程。
根式方程又叫无理方程。
有理方程和根式方程(无理方程)合称为代数方程常用方法:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法。
2、解无理方程的步骤:去根号、解有理方程、检验、总结。
注意点:用乘方法化无理方程为有理方程并求出其解后,应验根:1)有理方程的解满足无理方程时,其为无理方程的解; 2)有理方程的解不满足无理方程时,其为无理方程的增根; 3)有理方程的所有解都是无理方程的增根时,原无理方程无解。
例题精讲【试题来源】 【题目】解方程71x x +=【答案】3x =-或2x =【解析】 71x x +=+两边平方得:2721x x x +=++移项,合并同类项得:260x x +-=解得:3x =-或2x = 检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根. 把2x =代入原方程,左边 = 右边,所以2x =是原方程的根. 所以,原方程的解是2x =.说明:含未知数的二次根式恰有一个的无理方程的一般步骤:① 移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边; ② 两边同时平方,得到一个整式方程; ③ 解整式方程;④验根. 【知识点】无理方程(平方法) 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】解方程【答案】x=4 【解析】 解 移项得两边平方后整理得再两边平方后整理得x 2+3x-28=0,所以 x 1=4,x 2=-7.经检验知,x 2=-7为增根,所以原方程的根为x=4.【知识点】无理方程 【适用场合】当堂练习 【难度系数】3【试题来源】【题目】解方程 223152512x x x x ++++= 【答案】1,0x x =-=【解析】 251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=, 即23250y y +-=,解得:1y =或53y =-. (1)当1y =时,225115010x x x x x x ++=⇒+=⇒=-=或; (2)当53y =-时,因为2510x x y ++=≥,所以方程无解.检验:把1,0x x =-=分别代入原方程,都适合.所以,原方程的解是1,0x x =-=【知识点】无理方程(换元法) 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】解方程【答案】x=-2【解析】 解 注意到(2x 2-1)-(x 2-3x-2)=(2x 2+2x+3)-(x 2-x+2).设则u 2-v 2=w 2-t 2, ①u+v=w+t . ②因为u+v=w+t=0无解,所以①÷②得u-v=w-t . ③②+③得u=w ,即解得x=-2.经检验,x=-2是原方程的根【知识点】无理方程【适用场合】当堂练习题【难度系数】4【试题来源】【题目】解方程【答案】【解析】解:方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得3x2+x=x2+6x+9,【知识点】无理方程(公式法)【适用场合】当堂例题【难度系数】4【试题来源】【题目】解方程【答案】x=1/4【解析】即所以移项得【知识点】无理方程【适用场合】当堂练习题【难度系数】4【试题来源】【题目】解方程【答案】x=±2a【解析】根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根【知识点】无理方程【适用场合】当堂例题【难度系数】4【试题来源】【题目】三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值【答案】3【解析】k2﹣6k+12﹣=0k2﹣6k+12﹣=0∵2、k、4分别是三角形的三条边长∴2+4>k∴k<6∴k2﹣6k+12﹣=0k2﹣6k+12+(k﹣6)=0整理得:(k﹣2)(k﹣3)=0∴k=2(不合题意舍去)或k=3【知识点】无理方程【适用场合】当堂练习题【难度系数】3【试题来源】【题目】已知,则x等于【答案】2【解析】解:已知,∴x>0,∴原式可化简为:++3=10,∴=2,两边平方得:2x=4,∴x=2,【知识点】无理方程【适用场合】当堂例题【难度系数】3【试题来源】【题目】方程的所有解的和为【答案】2【解析】解:方程,∴=3,当x≥1时,=3,两边平方得:x2﹣4x+4=9,解得:x=﹣1或x=5,∵x≥1,∴x=5,当x<1时,=3,两边平方得:x2=9,∴x=±3,∵x<1,∴x=﹣3,故所有解的和为:5+(﹣3)=2,【知识点】无理方程【适用场合】当堂练习题【难度系数】4【试题来源】【题目】方程的解的情况是【答案】有无穷多个解【解析】解:将方程变形为…①,若,则①成为,即,得x=10;若,则①成为,即,得x=5;若,即5<x<10时,则①成为,即1=1,这是一个恒等式,满足5<x<10的任何x都是方程的解,结合以上讨论,可知,方程的解是满足5≤x≤10的一切实数,即有无穷多个解.【知识点】无理方程【适用场合】当堂例题【难度系数】5【试题来源】【题目】如果满足=a的实数x恰有6个值,那么a的取值范围是【答案】0≤a≤5【解析】解:=|(x﹣1)(x﹣2)|;①当x﹣1>0,且x﹣2>0,即x>2时,=|x2﹣3x+2﹣5|=|(x﹣)2﹣|,当x=时,=a=,∴0≤a <;②当x ﹣1>0,且x ﹣2<0,即1<x <2时,=|﹣x 2+3x ﹣2﹣5|=|(x ﹣)2+|;当x=时,=a=,∴a=≥;③当x ﹣1<0,且x ﹣2<0,即x <1时,=|x 2﹣3x+2﹣5|=|(x ﹣)2﹣|,当x=时,=a=,∴0≤a <;④当x ﹣1=0或x ﹣2=0,即x=1或x=2时,=|﹣5|=5;综上所述,a 的取值范围是:0≤a≤5 【知识点】无理方程 【适用场合】当堂例题 【难度系数】5习题演练【试题来源】 【题目】解方程 3233x x -+=【答案】1x =【解析】 解:3233x x -=-+两边平方得:329633x x x -=-+++整理得:63142337x x x x +=-⇒+=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根.把22x =代入原方程,左边≠右边,所以22x =是增根. 所以,原方程的解是1x =【知识点】无理方程【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】解方程【答案】x=-1【解析】整理得y 3-1=(1-y)2,即 (y-1)(y 2+2)=0.解得y=1,即x=-1. 经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.【知识点】无理方程【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】解方程【答案】【解析】解观察到题中两个根号的平方差是13,即②÷①便得由①,③得【知识点】无理方程【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】方程+=12的实数解个数为【答案】1【解析】解:由题意得:x+19≥0,∴x≥﹣19,∴x+95≥76,∵+=12,∴x+19是完全平方数,且x+19<144,∴当x+19=0时,不是有理数,舍去,当x+19=1时,不是有理数,舍去,当x+19=4时,不是有理数,舍去,当x+19=9时,不是有理数,舍去,当x+19=16时,不是有理数,舍去,当x+19=25时,不是有理数,舍去,当x+19=36时,不是有理数,舍去,当x+19=49时,=5,符合题意,此时x=30;当x+19=64时,=8,>5,此时8+5>12,∴当x+19>64时,不符合题意.故方程+=12的实数解个数为1个.【知识点】无理方程【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】已知a为非负实数,若关于x的方程至少有一个整数根,则a 可能取值的个数为【答案】3【解析】解:2x﹣a ﹣a+4=0,显然满足条件的x,必使得为整数,否则a=不可能为整数,设=y(y为非负整数),则原式变为2(1﹣y2)﹣ay﹣a+4=0,⇒a=,∵y为非负整数(又4能整除1+y),∴要使a为整数,则y=0,1,3,∵a为非负实数,∴a=6,2.当a=0时,2x+4=0,则x=﹣2,为整数,符合题意,【知识点】无理方程【适用场合】随堂课后练习【难度系数】3。
无理方程解决问题专项练习(含解析答案)
无理方程解决问题专项练习(含解析答案)1. 无理方程的基本概念无理方程是指方程中包含了无理数的表达式。
无理数是不能被表示为两个整数的比值的数。
例如,根号2和pi都是无理数。
2. 解决无理方程的方法解决无理方程的方法主要包括近似解法和精确解法。
下面将介绍两种常见的解法。
2.1 近似解法近似解法是指通过一系列的计算逼近无理方程的解。
这种方法适用于无法通过精确解法得到解的情况。
例题1求方程根号2乘以x等于3的解。
解析将方程转化为x = 3 / 根号2,可以通过计算得到近似解x ≈2.1213。
2.2 精确解法精确解法是指通过数学推导得到无理方程的解的方法。
这种方法适用于一些特殊情况下,可以得到精确解的无理方程。
例题2求方程根号x + 2 = 4的解。
解析将方程转化为根号x = 2,然后进行平方,得到x = 4。
所以方程的解为x = 4。
3. 练题现在,我们来进行一些无理方程的练。
练题1求方程根号x + 1 = 3的解。
练题2求方程根号2x - 1 = 5的解。
请根据上述例题和练题,尝试使用近似解法或精确解法来求解无理方程。
以上是本次无理方程解决问题专项练的内容及答案解析。
练题1解析:将方程转化为根号x = 2,然后进行平方,得到x = 4。
所以方程的解为x = 4。
练题2解析:将方程转化为根号2x = 6,然后进行平方,得到2x = 36,再除以2,得到x = 18。
所以方程的解为x = 18。
谈无理方程的解法
谈无理方程的解法宿城区中扬中学 张家旭根号下含有未知数的方程叫无理方程。
解无理方程的指导思想是通过乘方把无理方程转化为有理方程。
由于在乘方过程中扩大了方程中未知数的取值范围,可能会产生增根,所以,解无理方程一定要验根,验根是必不可少的步骤。
但对一些特殊的方程可考虑用特殊的方法来解,比较方便。
现将解无理方程的基本方法和几种特殊方法归纳如下,供参考。
一、观察法例1、 解方程 )2(5222+-=+x x解:无论x 取什么值时,522+x 恒为正,而)2(2+-x 恒为负,矛盾。
所以,此方程无解。
例2、 解方程 53-=-x x解:根据算术根的定义,要保证x -3有意义,必须要x ≤3,而要使53-=-x x 有意义,必须要使x ≥5,这显然矛盾。
所以,原方程无解。
例3、解方程 638=---x x解:要使8-x 有意义,x ≥8,要使x -3有意义,x ≤3,显然不存在同时满足这两个条件的x 值。
故此方程无解。
例4、解方程 x x x 21679-=-+-分析:这个方程的特点是:左边两个根号下的被开方式的和等于右边根号下的被开方式。
所以,由观察可得其解。
解:原方程可化为)7()9(79x x x x -+-=-+- 由观察得x=7或者x=9 显然x=9是增根。
所以,原方程的解为x=7。
注:我们对一些较为简单的或者是有特殊关系的无理方程,可通过观察,根据算术根的定义或利用根式的有关性质,直接判断它们解的情况。
这样,可不必盲目的去解方程,避免走弯路。
二、直接平方法例5、解方程 x x x =-+2722解:移项得,=+x x 722x+2 两边平方整理得,0432=-+x x 解得,4,121-==x x经检验,42-=x 是增根。
所以,原方程的解为x=1 。
注:含有一个根式的无理方程,通过整理后,通常要进行一次平方,即可把无理方程转化为有理方程。
例6、解方程 1542=+--x x 解:移项、两边平方并整理得,5210+=-x x 两边再平方并整理得, 080242=+-x x 解得x =20, 或者x=4, 经检验,x=4是增根。
无理方程经典例题
无理方程经典例题一、无理方程的定义无理方程就是根号下含有未知数(被开方数是含有未知数)的方程。
例如:√(x +1)=2,√(x - 2)+√(2x + 3)=5等都是无理方程。
二、经典例题及解析1. 解方程:√(x + 3)=x + 1- 解析:- 为了去掉根号,我们对等式两边进行平方,得到(√(x + 3))^2=(x + 1)^2。
- 即x+3=x^2+2x + 1。
- 将其整理为一元二次方程的标准形式:x^2+2x+1 - x - 3 = 0,也就是x^2+x - 2 = 0。
- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b = 1,c=-2),我们可以使用求根公式x=frac{-b±√(b^2)-4ac}{2a}。
- 先计算判别式Δ=b^2-4ac=1^2-4×1×(-2)=1 + 8 = 9。
- 则x=(-1±√(9))/(2)=(-1±3)/(2)。
- 解得x_1=1,x_2=-2。
- 但是,由于我们对原方程进行了平方操作,可能会引入增根,所以需要检验。
- 当x = 1时,左边=√(1 + 3)=√(4)=2,右边=1 + 1 = 2,左边=右边,所以x = 1是原方程的根。
- 当x=-2时,左边=√(-2 + 3)=1,右边=-2 + 1=-1,左边≠右边,所以x=-2是增根,舍去。
- 综上,原方程的解为x = 1。
2. 解方程:√(2x - 1)-√(x - 1)=1- 解析:- 将方程中的一个根号移到等式右边,得到√(2x - 1)=√(x - 1)+1。
- 然后两边平方:(√(2x - 1))^2=(√(x - 1)+1)^2。
- 展开右边得:2x-1=x - 1+2√(x - 1)+1。
- 化简得到:2x-1=x+2√(x - 1)。
- 移项可得:x - 1 = 2√(x - 1)。
- 再次两边平方:(x - 1)^2=(2√(x - 1))^2。
无理方程ppt精品课件
80%
证明代数恒等式
某些代数恒等式可以通过构造无 理方程来证明,例如平方差公式 等。
在几何中的应用
01
02
03
确定点的位置
在平面几何中,通过建立 无理方程可以确定某些特 殊点的位置,例如圆的切 点、抛物线的焦点等。
解决几何问题
某些几何问题可以通过建 立无理方程来解决,例如 求三角形内切圆半径等。
证明几何定理
无理方程ppt精品课件
汇报人:
202X-12-31
目
CONTENCT
录
• 无理方程的基本概念 • 无理方程的解法 • 无理方程的应用 • 无理方程的扩大知识 • 习题与解答
01
无理方程的基本概念
无理方程的定义
无理方程
含有根号或平方根的非线性方程。
描写
无理方程是数学中一类常见的方程,其情势通常为 包含根号或平方根的非线性表达式。
答案4
解方程 $frac{x}{y} + frac{y}{x} = 2$ 的解为 $x = y = pmsqrt{2}$
THANK YOU
感谢凝听
某些几何定理可以通过构 造无理方程来证明,例如 勾股定理等。
在物理中的应用
解决力学问题
在力学中,无理方程可以 用来解决某些涉及速度、 加速度、力等方面的复杂 问题。
解决波动问题
在波动理论中,无理方程 可以用来描写波动现象, 例如弦振动方程等。
解决电磁学问题
在电磁学中,无理方程可 以用来描写电磁波的传播 、散射等现象。
举例
√x + 2 = 0 或 x^2 - 3 = 0。
无理方程的分类
02
01
03
简单无理方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无理方程的解法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
无理方程的解法
未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.
例1 解方程
解移项得
两边平方后整理得
再两边平方后整理得
x2+3x-28=0,
所以 x
1=4,x
2
=-7.
经检验知,x
2
=-7为增根,所以原方程的根为x=4.
说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.
例2 解方程
方公式将方程的左端配方.将原方程变形为
所以
两边平方得 3x2+x=9-6x+x2,
两边平方得 3x2+x=x2+6x+9,
例3 解方程
即
所以
移项得
例4 解方程
解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为
配方得
利用非负数的性质得
所以 x=1,y=2,z=3.
经检验,x=1,y=2,z=3是原方程的根.
例5 解方程
所以
将①两边平方、并利用②得
x2y2+2xy-8=0,
(xy+4)(xy-2)=0.
xy=2.③
例6 解方程
解观察到题中两个根号的平方差是13,即
②÷①便得
由①,③得
例7 解方程
分析与解注意到
(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).
设
则
u2-v2=w2-t2,①
u+v=w+t.②
因为u+v=w+t=0无解,所以①÷②得
u-v=w-t.③
②+③得u=w,即
解得x=-2.
经检验,x=-2是原方程的根.
例8 解方程
整理得y3-1=(1-y)2,
即(y-1)(y2+2)=0.
解得y=1,即x=-1.
经检验知,x=-1是原方程的根.
整理得y3-2y2+3y=0.
解得y=0,从而x=-1.
例9 解方程
边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.
根据合分比定理得
两边平方得
再用合分比定理得
化简得x2=4a2.解得x=±2a.
经检验,x=±2a是原方程的根.。