4.平方根

合集下载

开方的运算法则公式

开方的运算法则公式

开方的运算法则公式开方运算在数学中可是个挺重要的家伙呢!咱们先来说说啥是开方。

开方啊,简单说就是求一个数的平方根或者立方根等等。

比如说,4 的平方根是多少?咱们都知道是±2,因为2 的平方是4,-2 的平方也是 4 嘛。

这就是开方运算的一个小例子。

那开方的运算法则公式都有啥呢?咱们一个一个来看。

先说平方根的运算法则。

对于正数 a,它的平方根记作±√a。

这里要注意啦,如果 a 是正数,那就有两个平方根,一正一负;要是 a 等于 0 呢,那平方根就只有 0 啦;可要是 a 是负数,那就没有实数平方根了哦。

再来说说立方根。

正数 a 的立方根记作³√a。

不管 a 是正数、负数还是 0 ,都只有一个立方根。

比如 8 的立方根是 2,因为 2 的立方是 8;-8 的立方根就是 -2 咯。

开方运算还有一些公式,像√(ab) = √a × √b(a≥0,b≥0)。

这个公式啥意思呢?给您举个例子,比如说要算√12,咱们可以把 12 拆成4×3,那√12 就等于√4×√3,也就是2√3。

还有√(a/b) = √a / √b(a≥0,b>0)。

比如说√(18/2) ,就等于√18 / √2 ,算出来是 3。

我记得之前教过一个学生,叫小明。

这孩子啊,刚开始学开方的时候,那叫一个迷糊。

给他讲平方根和立方根的区别,他总是搞混。

有一次做作业,题目是求9 的平方根,他居然给我写了个3 就交上来了。

我把他叫到办公室,耐心地给他又讲了一遍:“小明啊,你想想,哪个数的平方是 9 呀?”他眨眨眼睛,想了一会儿说:“3 啊。

”我笑着摇摇头说:“还有 -3 呢,所以 9 的平方根是 ±3 ,记住啦!”从那以后,小明可认真了,每次遇到开方的题目都会多想一想。

在实际应用中,开方运算也特别有用。

比如说,您要计算一个正方形的边长,知道了面积,就得通过开方来求边长。

再比如,建筑工人在计算一些材料的尺寸时,也会用到开方运算。

平方根加减计算方法

平方根加减计算方法

平方根加减计算方法1. 什么是平方根平方根是指一个数的平方等于另一个数时,这个数被称为这个数的平方根。

例如,4的平方根为2,因为2²=4。

平方根的计算常常被用到数学、物理、工程等领域。

2. 平方根的计算计算平方根通常可以用算术方法或者数值逼近的方法来求解。

算术方法:以求解根号2为例,可以列出如下的等式:(100+x)² = 10000 +2*100*x +x² ≈ 10000 +400x其中,x为要求解的数,≈表示“近似等于”,因为当x很小的时候,2*100*x 和x²的贡献可以被忽略不计。

为了简化计算,我们规定x的小数点后两位是0,即x=0.01。

那么,我们得到:(100+0.01)² ≈ 10000+400*0.0110000+2*100*0.01+0.01² ≈ 10000+410000+2+0.0001 ≈ 10004x ≈ (10004)^(1/2) -100因此,根号2约等于99.98-100=-0.02。

这个结果是显然不对的,因为根号2是一个正数。

我们可以继续进行类似的计算,每次都用更精确的近似值来替换原来的x,如此一直进行下去,直到得到满足要求的精度。

这种方法的优点是简单易懂,但是因为要一直进行类似的运算,所以计算速度较慢。

数值逼近的方法:这种方法比较灵活,可以用不同的策略来逼近平方根。

其中,牛顿迭代法是一种常用的方法。

牛顿迭代法:以求解根号2为例,假设要求解f(x)=x²-2=0的根,我们可以选定一个x0作为初始值,然后用如下的公式进行迭代:x1 = (x0+f(x0)/f'(x0))x2 = (x1+f(x1)/f'(x1))x3 = (x2+f(x2)/f'(x2))…其中,f'(x)表示f(x)对x的一阶导数。

在这种计算方法中,我们可以迭代任意次数,直到得到满足要求的精度。

初中数学鲁教版(五四制)七年级上册第四章 实数2 平方根-章节测试习题(23)

初中数学鲁教版(五四制)七年级上册第四章 实数2 平方根-章节测试习题(23)

章节测试题1.【答题】4的平方根为______.【答案】±2【分析】本题考查了平方根.【解答】4的平方根为;故答案是:.2.【答题】16的平方根是______,算术平方根是______.【答案】±4,4【分析】本题考查了平方根和算术平方根.【解答】∵42=16,(−4)2=16,∴16的平方根为±4;算术平方根为4.故答案为±4,4.3.【答题】已知x、y为实数,且+(y+2)2=0,则y x=______.【答案】-8【分析】本题考查了平方根.【解答】根据几个非负数的和为0,则这几个非负数都为0,即x-3=0,y+2=0,解得x=3,y=-2,所以.故答案为:-8.4.【答题】16的算术平方根是______.【答案】4【分析】本题考查了算术平方根的定义.【解答】16的算术平方根是4,故答案为45.【答题】比较大小:______2(填“>”或“<”或“=”)【答案】>【分析】本题考查了平方根.【解答】∵2=,∴>2.6.【答题】如果一个正数的平方根是a+3和2a-15,则这个数为______.【答案】49【分析】根据正数的平方根有两个,且互为相反数,由此可得a的方程,解方程即可得到a的值;进而可得这个正数的平方根,最后可得这个正数的值.【解答】∵一个正数的平方根是a+3和2a-15,∴a+3和2a-15互为相反数,即(a+3)+(2a-15)=0;解得a=4,则a+3=-(2a-15)=7;则这个数为72=49;故答案为49.7.【答题】已知,则=______.【答案】3【分析】本题考查了平方根.【解答】∵,∴x-2=0,y-1=0,解得:x=2,y=1,∴.8.【答题】9的平方根是______.【答案】±3【分析】本题考查了平方根.【解答】∵,∴9的平方根是±3.故答案为:±3.9.【答题】若2a-4与5-a是一个正数的平方根,则这个正数是______.【答案】36【分析】本题考查了平方根.【解答】∵2a-4与5-a是一个正数的平方根,∴2a-4+5-a=0,∴a=-1,∴这个正数是:(2a-4)2=(-2-4)2=36.故答案为:36.10.【答题】9的算术平方根是______,【答案】3【分析】本题考查了算术平方根.【解答】∵32=9,∴9的算术平方根是3,即.故答案为:3.11.【题文】小丽想用一块面积为900cm2的正方形纸片,沿着边的方向裁出一块面积为600cm2的长方形纸片,使它的长宽之比为4∶3,她不知道是否裁得出来,正在发愁,小明见了说:“别发愁,一定能用这块正方形纸片裁出需要的长方形纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?【答案】见解答.【分析】根据算术平方根的概念求出正方形的边长,根据长方形纸片的面积求出边长,计算比较得到答案.【解答】同意小明的说法.面积为900cm2的正方形纸片的边长为30cm.设长方形的长为4xcm,宽为3xcm,根据边长与面积的关系得4x×3x=600.解得x=.因此长方形纸片的长为4cm.∵<7.5,∴4<30.∴小丽能用这块纸片裁出符合要求的纸片.12.【题文】某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)【答案】开发商不能实现这个愿望.【分析】根据100m2列方程,解得长方形的长和宽,再求出196m2正方形的边长,比较大小.【解答】设长方形花坛的宽为xm,则长为2xm.依题意,得2x·x=100,∴x2=50.∵x>0,∴x=,2x=2.∵正方形的面积为196m2,∴正方形的边长为14m.∵2>14,∴开发商不能实现这个愿望.13.【题文】(1)已知:y=,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+1和a+3,求这个数x.【答案】(1)±1;(2)1.【分析】(1)先根据平方根有意义的条件确定出x的值,继而确定出y的值,从而即可求;(2)根据一个正数的两个平方根互为相反数即可得.【解答】(1)∵y=,∴x-2017≥0且2017-x≥0,∴x≥2017且x≤2017,∴x=2017,y=-2016,∴x+y=2017-2016=1,∴x+y的平方根是±1.(2)根据题意,得a+1+a+3=0,解得a=-2,∴a+1=-1,a+3=1,这个数x为1.14.【题文】已知:与互为相反数,求(x+y)2016的平方根.【答案】±1【分析】根据相反数的性质列出算式,根据非负数的性质列出二元一次方程组,解方程组求出x、y的值,根据平方根的概念解答即可.【解答】由已知可得:+=0,则,解得,,∴(x+y)2016=1,∴(x+y)2016的平方根是±1.15.【题文】如果a、b、c是△ABC的三边,满足(b-3)2+(a-5)2+│c-4│=0,求△ABC的周长.【答案】△ABC的周长为12【分析】利用绝对值的性质以及偶次方的性质得出a,b,c的值,进而求出△ABC的周长.【解答】∵(b-3)2≥0,(a-5)2≥0,│c-4│≥0,且(b-3)2+(a-5)2+│c-4│=0,∴(b-3)2=0,(a-5)2=0,│c-4│=0,∴b=3,a=5,c=4,∴△ABC的周长为a+b+c=5+3+4=12.16.【题文】一个正数x的平方根是3a-4和1-6a,求a及x的值.【答案】a的值是-1,x的值是49【分析】根据一个正数有两个平方根,且它们互为相反数,可直接根据互为相反数的两数和为0,列式求解出a的值,再根据乘方代入求出x即可.【解答】由题意得3a-4+1-6a=0,解得a=-1.∴3a-4=-7.∴x=(-7)2=49.答:a的值是-1,x的值是49.17.【题文】求下列式中的x的值.(2x+1)2=9.【答案】x=1或x=-2.【分析】利用平方根定义开方即可求出x的值.【解答】开方得:2x+1=±3,即2x+1=3或2x+1=-3,解得:x=1或x=-2.18.【题文】一个正数的平方根是与,求和的值.【答案】a=-2x=49【分析】根据平方根的定义得出2a-3+5-a=0,进而求出a的值,即可得出x的值.【解答】∵一个正数的x的平方根是2a-3与5-a,∴2a-3+5-a=0,解得:a=-2,∴2a-3=-7,∴x=(-7)2=49.19.【题文】如图所示,在长和宽分别是的矩形纸片的四个角都剪去一个边长为的小正方形.(1)用表示纸片剩余部分的面积;(2)当,且剪去部分的面积等于剩余部分的面积时,求正方形的边长的值.【答案】(1)(2)【分析】(1)根据题意可知纸片剩余部分的面积=矩形的面积-四个小正方形的面积;(2)根据剪去部分的面积等于剩余部分的面积列方程,然后解方程即可.【解答】(1).(2)依题意.即:,,∵x取正数,答:正方形的边长是.20.【题文】已知和是关于x,y的二元一次方程:ax+by=1的两个解,求的值.【答案】1【分析】根据方程的解满足方程,可得关于a,b的方程组,解方程组可得a、b的值,然后代入即可得答案.【解答】由题意,得,解得,所以.。

北师大版数学八年级上册2《平方根》教案4

北师大版数学八年级上册2《平方根》教案4

北师大版数学八年级上册2《平方根》教案4一. 教材分析《平方根》是北师大版数学八年级上册第2章的一节内容。

本节主要让学生理解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。

通过学习本节内容,学生能进一步理解数学与生活的联系,提高学习数学的兴趣。

二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。

但是,对于平方根的概念和求法,学生可能比较陌生。

因此,在教学过程中,需要通过具体的例子和实际应用,帮助学生理解和掌握平方根的相关知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够运用平方根解决实际问题,提高数学应用能力。

3.培养学生的逻辑思维能力和合作交流能力。

四. 教学重难点1.平方根的概念。

2.求一个数的平方根的方法。

3.平方根在实际生活中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体的问题和实例,引导学生探究平方根的概念和求法,再通过小组合作交流,巩固所学知识,提高学生的数学应用能力。

六. 教学准备1.准备相关的问题和实例。

2.准备课件和教学素材。

3.准备小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:如果一个正方形的边长是4厘米,那么它的面积是多少?引导学生思考如何求解这个问题,进而引出平方根的概念。

2.呈现(15分钟)讲解平方根的概念,并通过具体的例子让学生理解平方根的意义。

例如,求16的平方根,可以引导学生思考:什么数乘以自己等于16?学生可以通过试错法,找到16的平方根是4。

同时,讲解负数的平方根,以及无理数和有理数平方根的区别。

3.操练(10分钟)让学生独立完成一些求平方根的练习题,巩固所学知识。

可以设置一些层次性的题目,让学生根据自己的能力选择练习。

4.巩固(5分钟)通过小组合作学习,让学生讨论并总结求一个数的平方根的方法。

每个小组分享自己的心得,大家共同总结出求平方根的步骤。

平方根和算术平方根

平方根和算术平方根

平⽅根和算术平⽅根平⽅根和算术平⽅根1、什么叫做平⽅根?如果⼀个数的平⽅等于9,这个数是⼏?±3是9的平⽅根;9的平⽅根是±3。

⼀般地,如果⼀个数的平⽅等于a ,那么这个数叫做的a 平⽅根,也称为⼆次⽅根。

数学语⾔:如果a x =2,那么x 就叫做a 的平⽅根。

4的平⽅根是;149的平⽅根是。

的平⽅根是0.81。

如果225x =,那么x = 。

2的平⽅根是?2、平⽅根的表⽰⽅法:⼀个正数a 的正的平⽅根,记作“a ”,正数a 的负的平⽅根记作“a -”。

这两个平⽅根合起来记作“a ±”,读作“正,负根号a ”.表⽰,= 。

2的平⽅根是;如果22x =,那么x = 。

3、平⽅根的性质:⼀个正数的平⽅根有2个,它们互为相反数;0只有1个平⽅根,它是0本⾝;负数没有平⽅根。

求⼀个数的平⽅根的运算叫做开平⽅。

4、算术平⽅根:正数有两个平⽅根,其中正数的正的平⽅根,叫的算术平⽅根. 例如,4的平⽅根是2±,2叫做4的算术平⽅根,记作4=2;2的平⽅根是2±,2叫做2的算术平⽅根,记作22=。

5、算术平⽅根的性质:(双重⾮负性)⑴ 0≥0a ≥。

⑵),0(2≥=a a a )0(2≤-=a a a , )0()(2≥=a a a⼆、【题型分类讲解】题型⼀、求平⽅根1、36的平⽅根是;2、的算术平⽅根是;3、下列计算正确的是()A 2B = C.636=± D.992-=-4、下列说法中正确的有。

①只有正数才有平⽅根;②-2是4的平⽅根;③的平⽅根是;④的算术平⽅根是;⑤的平⽅根是-6 ⑥5、如果a 是b 的⼀个平⽅根,则b 的算术平⽅根是;6平⽅根是; 25 的平⽅根是___,4的算术平⽅根是_____,7、2)8(-= ;2)8(= ;若72=x ,则=x _____。

8、22)4(+x 的算术平⽅根是()A 、 42)4(+xB 、22)4(+xC 、42+x D 、42+x 9、⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是()A .()1+aB .()1+±aC .12+aD .12+±a10、若9,422==b a ,且0A. 2-B.5±C. 5D. 5-题型⼆、运⽤算术平⽅根进⾏运算计算下列各式的值1、811441691+-;2、()3616512522?--??-题型三、平⽅根性质的运⽤1、⼀个正数x 的平⽅根分别是a+1和a-3,则a= ;x= 。

2020年山东省烟台市中考数学试卷和答案解析

2020年山东省烟台市中考数学试卷和答案解析

2020年山东省烟台市中考数学试卷和答案解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)4的平方根是()A.2B.﹣2C.±2D.解析:根据平方根的定义,求数4的平方根即可.参考答案:解:4的平方根是±2.故选:C.点拨:本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解即可.参考答案:解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.解题的关键是轴对称图形与中心对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(3分)实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定解析:根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.参考答案:解:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,实数a离原点最远,所以绝对值最大的是:a.故选:A.点拨:此题主要考查了有理数大小比较,正确掌握有理数大小的比较方法是解题关键.4.(3分)如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.解析:结合三视图确定各图形的位置后即可确定正确的选项.参考答案:解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B.点拨:本题考查了由三视图判断几何体的知识,解题的关键是能够正确的确定各个图形的位置,难度不大.5.(3分)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变解析:由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.参考答案:解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.点拨:本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.6.(3分)系统找不到该试题7.(3分)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1解析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.参考答案:解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA 2=;∵△OA2A3为等腰直角三角形,∴OA 3=2=;∵△OA3A4为等腰直角三角形,∴OA 4=2=.∵△OA4A5为等腰直角三角形,∴OA 5=4=,……∴OA n的长度为()n﹣1.故选:B.点拨:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出斜边是解题关键.8.(3分)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB于点D,则∠ADC的度数为()A.60°B.70°C.80°D.85°解析:根据等腰三角形的性质,三角形的外角的性质即可得到结论.参考答案:解:∵OA=OB,∠AOB=140°,∴∠A=∠B=(180°﹣140°)=20°,∵∠AOC=60°,∴∠ADC=∠A+∠AOC=20°+60°=80°,故选:C.点拨:本题考查了圆周角定理,等腰三角形的性质,三角形外角的性质,正确的识别图形是解题的关键.9.(3分)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.解析:先求出最小的等腰直角三角形的面积=××42=1cm2,可得平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,再根据阴影部分的组成求出相应的面积即可求解.参考答案:解:最小的等腰直角三角形的面积=××42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2cm2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.点拨:本题考查图形的剪拼、七巧板,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.10.(3分)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4解析:由已知条件得EF是三角形的中位线,进而根据三角形中位线定理求得EF的长度.参考答案:解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.点拨:本题主要考查了三角形的重心,三角形的中位线定理,关键正确利用重心定义得EF为三角形的中位线.11.(3分)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan ∠DAE的值为()A.B.C.D.解析:先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.参考答案:解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.点拨:本题考查了翻折变换,矩形的性质,解直角三角形,勾股定理,灵活运用这些性质进行推理是本题的关键.12.(3分)如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<1解析:根据图象,找出双曲线y3落在直线y1上方,且直线y1落在直线y2上方的部分对应的自变量x的取值范围即可.参考答案:解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.点拨:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为1260°.解析:利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出它的边数,再根据多边形的内角和公式计算即可.参考答案:解:∵正n边形的每个外角相等,且其和为360°,∴=40°,解得n=9.∴(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.点拨:本题主要考查了正多边形外角和与内角和等知识.解题的关键是明确正多边形的每个外角相等,且其和为360°,比较简单.15.(3分)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是m>0且m≠1.解析:根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,然后求出两个不等式的公共部分即可.参考答案:解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)>0,解得m>0且m≠1.故答案为:m>0且m≠1.点拨:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16.(3分)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为18.解析:根据﹣3<﹣1确定出应代入y=2x2中计算出y的值.参考答案:解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.点拨:本题主要考查函数值的计算,理解题意是前提条件,熟练掌握函数值的定义是解题的关键.17.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).解析:画出平面直角坐标系,作出线段AC,BD的垂直平分线的交点P,点P即为旋转中心.参考答案:解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).点拨:本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.18.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是②③④.解析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.参考答案:解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣,故④正确;故答案为②③④.点拨:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.解析:先将括号里面的两个分式通分,进而进行分式的减法,再将除法转化为乘法,进行约分化简,最后代入求值即可.参考答案:解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.点拨:本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的前提.20.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.解析:(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.参考答案:解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共用25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.点拨:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这10000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?解析:(1)设销售A型口罩x只,销售B型口罩y只,根据“药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3”列方程组解答即可;(2)根据题意即可得出W关于m的函数关系式;根据题意列不等式得出m的取值范围,再结合根据一次函数的性质解答即可.参考答案:解:设销售A型口罩x只,销售B型口罩y只,根据题意得:,解得,经检验,x=4000,y=5000是原方程组的解,∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,10000﹣m≤1.5m,解得m≥4000,∵﹣0.1<0,∴W随m的增大而减小,∵m为正整数,∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,最大利润为5600元.点拨:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y 值的增减情况.22.(9分)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O 经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).解析:(1)证明:连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;(2)根据平行四边形的性质得到BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角三角形即可得到结论.参考答案:(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.点拨:本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,弧长的计算,正确的作出辅助线是解题的关键.23.(9分)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:测量对象男性(18~60岁)女性(18~55岁)抽样人数(人)20005000200002000500020000平均身高(厘米)173175176164165164根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用176厘米,女性应采用164厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)计算器按键顺序计算结果(近似值)计算器按键顺序计算结果(近似值)0.178.70.284.31.7 5.73.511.3解析:(1)根据样本平均数即可解决问题.(2)利用等腰三角形的性质求出∠BAC即可.参考答案:解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.故答案为176,164.(2)如图2中,∵AB=AC,AF⊥BC,∴BF=FC=50cm,∠FAC=∠FAB,由题意FC=10cm,∴tan∠FAC===5,∴∠FAC=78.7°,∴∠BAC=2∠FAC=157.4°,答:两臂杆的夹角为157.4°点拨:本题考查解直角三角形的应用,样本平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD 之间存在怎样的数量关系?并说明理由.解析:【问题解决】在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH =CF,即可得出结论;【类比探究】过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.参考答案:【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.点拨:本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.25.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x =,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.解析:(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;(3)以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即可求解.参考答案:解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,DF最大时m=1,∴点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=2或,即=2或,解得:m=1或﹣2(舍去)或或(舍去),故m=1或.点拨:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

八年级上册平方根知识点

八年级上册平方根知识点

八年级上册平方根知识点在八年级的数学学习中,平方根是一个非常重要的知识点。

平方根是指一个数的平方等于原数的数值,可以用符号√表示,例如√9=3,√16=4。

在本文中,我将详细介绍八年级上册平方根的相关知识点。

一、平方根的符号及表示方法平方根用符号√来表示,如√9表示9的平方根,读作“根号9”或“9的根号”。

平方根还可以用字母表示,例如a的平方根可以表示为√a。

当a为正整数完全平方数时,√a是有理数,否则是无理数。

例如√4=2,√9=3,但√2是无理数,不是有理数。

二、简化√n的步骤当n是一个正整数时,n的因数中,相同的因子成对出现,例如16的因数为1、2、4、8、16。

而且它们都是成对出现的,其中2与8、4与4配对,所以可以得到以下简化√n的步骤:1.将n进行质因数分解,使因数中每个质数的指数都为2的倍数。

2.把每个根号内部成对的质因数提取出来,得到这个数的基本根式。

例如:√36=√(2²×3²)=√2²×√3²=2√3。

三、平方根的运算法则1.平方根的分配律:对于任意正实数a和b,有√(a×b)=√a×√b。

例如:√20=√(4×5)=√4×√5=2√5。

2.平方根的合并同类项:对于任意正实数a和b,有√a±√b=√(a±b)。

例如:√7+√5=√(7+5)=√12。

3.平方根的乘法公式:对于任意非负实数a和b,有√a×√b=√(ab)。

例如:√7×√5=√(7×5)=√35。

4.平方根的倒数法则:对于任意正实数a,有1/√a=√a/√(a×a)=√a/a。

例如:1/√5=√5/√25=√5/5。

四、平方根的应用平方根除了在数学中的运算中有着广泛的应用外,在我们的日常生活中也经常会遇到。

例如:1.计算三角形的斜边长度。

设三角形两个直角边分别为a和b,则三角形的斜边长度为√(a²+b²)。

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4

人教版数学七年级下册6.1《平方根》教案4一. 教材分析《平方根》是人教版数学七年级下册第六章的第一节内容,主要介绍了平方根的概念、求平方根的方法以及平方根的性质。

本节内容是学生学习实数系统的关键,也是进一步学习立方根、算术平方根等概念的基础。

二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力和抽象思维能力。

但是,对于平方根的概念和性质,学生可能初次接触,需要通过具体例题和实际操作来理解和掌握。

三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,自主探索和理解平方根的概念和性质。

六. 教学准备1.课件和教学素材。

2.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题引入平方根的概念,如“一个正方形的边长是6厘米,求这个正方形的面积。

”让学生思考如何求解这个问题,从而引出平方根的概念。

2.呈现(15分钟)利用课件呈现平方根的定义和性质,通过具体例题和实际操作,让学生理解和掌握平方根的概念和性质。

3.操练(10分钟)让学生分组进行练习,运用平方根的概念和性质解决实际问题,如求一个数的平方根,判断一个数是否为完全平方数等。

4.巩固(10分钟)让学生独立完成练习题,教师进行个别辅导,巩固学生对平方根的概念和性质的理解。

5.拓展(10分钟)引导学生思考平方根的应用,如在几何、物理、化学等领域的应用,让学生感受数学与实际生活的紧密联系。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固平方根的概念和性质。

7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生课后巩固所学知识。

8.板书(5分钟)教师根据教学内容进行板书设计,突出平方根的概念和性质。

第四节 平方根法

第四节 平方根法

§ 4 平方根法与改进的平方根法4.1 平方根法(Cholesky 分解法)定理 2.3 设A 是对称正定矩阵,则存在唯一的非奇异下三角阵L ,使得T LL A =且L 的对角元皆为正数。

[证明] A 是对称正定矩阵,各阶顺序主子式均大于零,故A 可分解U L A ~= L ~ 为单位下三角矩阵,U 为上三角矩阵。

令),,(2211nn u u u diag D =,U D P 1-=则P 单位上三角矩阵,DP L A ~=, A 对称DP L A L D P A T TT ~~===由Doolittle 分解的唯一性,L P T~= DP P A T =对任意θ≠=-x P y x 1,,由A 正定,)()(1111>===----Ay y x AP x P xAP P x Dx x T T T T T所以D 正定,D 的对角元素为正数。

令 ),,(~2211nn u u u diag D =则TT T TLLP D P D P D D P A ===~)~(~~ 唯一性T T GG LL A ==GL G GG L G LL L G L T T T TT T 111111)()()(------===1)(-T T G L 是上三角阵,G L 1-是下三角阵,所以 1)(-T T G L =G L 1-=I , 即 G L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=nn n n l l l l l l L21222111000 比较可得⎪⎩⎪⎨⎧+=-==-=∑∑-=-=nk i l l l a l n k l a l kk k j kj ij ik ik k j kj kk kk ,,1/)(,,2,1)(112/1112→=→→=→),,3(),,3,2(222111n i l l n i l l i i ⎪⎩⎪⎨⎧==⇔=yx L b Ly b AX T⎪⎩⎪⎨⎧-=-==-=∑∑+=-=1,,1,/)(,,2,1/)(111n n k l x l y x n k ly l b y kknk j j jk k k kk k j j kj k k乘除法计算量)6(3n O 4.2 改进的平方根法(T LDL 法) T LDL A =其中L 为单位下三角阵,D 为对角矩阵。

第4讲:平方根_教案

第4讲:平方根_教案
2.用代数式表示实数a(a>0)的平方根:
3.观察下列各式: , , ,…请你找出其中规律,并将第n(n≥1)个等式写出来
答案与解析
1.【答案】C
【解析】根据负数没有平方根,得到a﹣2012大于等于0,然后根据a的范围化简绝对值,移项后两边平方即可求出所求式子的值.
2.【答案】
解:用代数式表示实数a(a>0)的平方根为: ,故答案为: .
【解析】本题考查了平方根,关键是根据平方根的定义解答.
3.【答案】
解: , ,
… ,
故答案为: .
【解析】本题考查了实数平方根,解决本题的关键是找到规律.
本节讲了2个重要内容:
1.算术平方根及其双重非负性
2.平方根及其性质
1.求下列各式的值:
(1) ; (2) ; (3) .
2.计算:
(1)﹣ ;(2) ;(3) ;(4)± .
类型三:利用平方根的意义求字母的值
【例题】
1.一个正数的平方根是2a﹣3与a﹣12,则这个正数为( )
A.3B.5C.7D.49
【解析】D
解:由题意得,2a﹣3+a﹣12=0,解得,a=5,
∴2a﹣3=7,∵7²=49,故选:D.
【总结与反思】一个正数有两个平方根,它们互为相反数
1. 的平方根是( )

•求一个数a的平方根的运算叫做开平方,a叫做被开方数。(开平方与平方互为逆运算)



类型一算术平方根概念及性质
例1求下列各数的算术平方根:
(1)900; (2)1; (3) ; (4)14.
【解析】(1)因为 ,所以900的算术平方根是30,即 ;
(2)因为 ,所以1的算术平方根是1,即 ;

平方根公式大全

平方根公式大全

平方根公式大全一、平方根的定义。

如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根。

例如,因为(±2)^2 = 4,所以±2是4的平方根。

二、平方根的表示。

正数a的平方根记为±√(a),读作“正负根号a”。

其中√(a)表示a的正平方根(又叫算术平方根),-√(a)表示a的负平方根。

例如9的平方根表示为±√(9)=±3。

三、算术平方根的性质(针对正数a)1. √(a)≥slant0(算术平方根是非负的)。

2. (√(a))^2=a(一个数的算术平方根的平方等于这个数本身)。

四、平方根的运算公式。

1. 对于非负数a、b,√(ab)=√(a)·√(b)(a≥slant0,b≥slant0)。

- 例如:√(12)=√(4×3)=√(4)×√(3) = 2√(3)。

2. √(frac{a){b}}=(√(a))/(√(b))(a≥slant0,b > 0)。

- 例如:√(frac{2){3}}=(√(2))/(√(3))=(√(2)×√(3))/(√(3)×√(3))=(√(6))/(3)。

3. 当a≥slant0时,(√(a))^2=a;当a < 0时,√(a^2)=| a|=-a(这个公式体现了算术平方根与绝对值的联系)。

- 例如:√((- 5)^2)=| - 5|=5。

4. 若x^2=a(a≥slant0),则x=±√(a),这是求平方根的基本公式。

例如,已知x^2=25,则x = ±√(25)=±5。

平方根算术平方根二次根式的区别

平方根算术平方根二次根式的区别

平方根算术平方根二次根式的区别平方根、算术平方根和二次根式,听起来好像很复杂,但其实它们就像是数学世界里的三位小伙伴,各有各的性格,互相之间的关系也挺有意思的。

平方根嘛,简单来说就是一个数乘以它自己可以得到的结果,比如说,4的平方根就是2,因为2乘2等于4。

再比如,9的平方根就是3,3乘3等于9。

这就好比我们在生活中找钥匙,钥匙一插就能开门,平方根就能帮你找到那个“密钥”。

算术平方根,这个词听起来好像很高大上,但其实它就是平方根的一个特定情况。

算术平方根专门指非负的那一部分,换句话说,算术平方根只考虑正数和零,不包括负数。

这样说可能有点抽象,咱们用个例子吧,比如16的算术平方根就是4,因为4是正数,而4虽然也能乘以自己得到16,但它不在算术平方根的范畴内。

就像你在逛街时,不会去买那些不合适的鞋子,对吧?算术平方根就是要找适合的那双。

然后再聊聊二次根式,这玩意儿就更有趣了。

二次根式指的就是包含平方根的那些表达式,比如说√(x+1)或√(2y3)。

这里面其实暗藏着很多故事。

想象一下,这就像是做一道美味的菜,菜里有各种材料,平方根就是那些重要的调味品。

它让整个表达式更加丰富,也更具吸引力。

二次根式就像是我们生活中各种复杂的情况,简单的数和复杂的数可以结合在一起,产生新的可能性。

二次根式在我们解决方程的时候也扮演了重要角色。

比如,某个方程的解可能涉及平方根,那你就得用到二次根式。

这就像在玩解谜游戏,你得一步一步地探索,最终找到出口。

就算你在过程中遇到麻烦,也没关系,数学就是个不断尝试的过程,失败也是成功之母,谁没犯过错呢?有些人可能会问,这三者到底有什么用呢?咱们生活中随处可见的都能用到,比如建筑、物理、工程等等。

你看看那些高楼大厦,设计师在计算的时候就得用到平方根和算术平方根。

想象一下,一栋大楼的设计师,手里拿着图纸,脑子里转着各种公式,简直就是个数学魔法师!所以,理解这些概念,能让我们更好地应对实际生活中的各种挑战。

初中数学《平方根》同步练习题(1)及答案

初中数学《平方根》同步练习题(1)及答案

6.1平方根同步练习(1)知识点:1.算术平方根:一般地,如果一个正数的平方等于a,那么这个正数叫做a的算术平方根。

A叫做被开方数。

1.平方根:如果一个数的平方等于a,那么这个数叫做a的平方根2.平方根的性质:正数有两个平方根,互为相反数0的平方根是0负数没有平方根同步练习:一、基础训练1.9的算术平方根是()A.-3 B.3 C.±3 D.812.下列计算不正确的是()A 2 B=C=0.4 D-63.下列说法中不正确的是()A.9的算术平方根是3 B±2C.27的立方根是±3 D.立方根等于-1的实数是-14的平方根是()A.±8 B.±4 C.±2 D.5.-18的平方的立方根是()A.4 B.18C.-14D.146_______;9的立方根是_______.7(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)234)二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C+1 D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-112.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9413.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁球的半径是多少厘米?(球的体积公式为V=43πR3)三、综合训练15.利用平方根、立方根来解下列方程.(1)(2x -1)2-169=0; (2)4(3x +1)2-1=0;(3)274x 3-2=0; (4)12(x +3)3=4.答案:1.B2.A =2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±23 7.6.403,12.61 8.(1)±10 (2)0 (3)±35(4)±1 (5)±87(6)±0.3 9.(1)-3 (2)-2 (3)14 (4)±0.5 10.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.14.解:设小铁球的半径是rcm ,则有43πr 3×8=43π×123,r =6, ∴小铁球的半径是6cm .点拨:根据溶化前后的体积相等.15.解:(1)(2x -1)2=169,2x -1=±13,2x =1±13,∴x =7或x =-6.(2)4(3x +1)2=1,(3x +1)2=14, 3x +1=±12,3x =-1±12,x =-12或x =-16. (3)274x 3=2,x 3=2×427, x 3=827,x =23.(4)(x +3)3=8,x +3=2,x =-1. 6.1平方根同步练习(2)知识点:1.算术平方根:一般地,如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根。

根号4等于±2还是2

根号4等于±2还是2

根号4等于±2还是2
±√4=±2,√4=2。

√4是根式。

根式的定义:
含有开方(求方根)运算的代数式,叫根式。

即含有根号的
表达式。

算术平方根定义:
如果一个非负数x的平方等于a,那么这个非负数x叫做
a的算术平方根,记作。

其中,a叫做被开方数。

例如:因为2和-2的平方都是4,且只有2是正数,所以2就是4的算术平方根。

由于正数的平方根互为相反数,因此正数的平方根可分别记作和,可合写为。

例如5的平方根可以分别记作和,可
合写为。

0的平方根仅有一个,就是0本身。

而0本身也是非负数,因此0也是0的算术平方根。

可记作
扩展资料:
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。

一个正数有两个实平方根,它们互为相反数,负数有两个共轭的纯虚平方根。

如果一个非负数x的平方等于a,即,,那么这个非负数x叫做a的算术平方根。

a的算术平方根记为,读作“根号a”,a叫做被开方数(radicand)。

求一个非负数a的平方根的运算叫做开平方。

一个正数如果有平方根,那么必定有两个,它们互为相反数。

显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

参考资料:
百度百科-平方根。

《平方根》PPT经典课件4

《平方根》PPT经典课件4

算大术多平 数方计根算是器准都确有数,有键时,它用的它算可术以平求方出根一是个近正
(2)运用你发现的规律,探究下面的问题: (由3)算因术为平,方所根以的意义可>知;x= ,
设32长方形纸片的长D为.3x cm,宽为2x cm.
∴经历运用计=5算6.器探求数学规律的活动,发展合情推理的能力.
已知 2.06≈1.435,填空: 求经一历个 运正用数计(算非器完探全求平数方学数规)的律算的术活平动方,发根展的合近情似推值理,的能力.
小明见了说:“别发愁,一定能用一块 面积大的纸片裁出一块面积小的纸片.
用计算器求下列各式的值:
同学们,我们在上节课分别学习了算术平方根的定义,知道了乘方与开方互为逆运算.
算术平方根是准确数,有时它的算术平方根是近
易错点:弄错小数点移动的位数与方向.
课后练习
1.估算无理数的大小时,通常采用“夹逼法”,即两边无限逼近, 逐级夹逼,从而确定其值所在的大致___范__围_______.
2 用计算器计算,若按键顺序为 4 · 5 - 0 · 5
÷ 2 = ,则相应的算式是( C )
A. 4 ×5-0×5÷2= B.( 4 ×5-0×5)÷2=
C. 4 . 5 -0.5÷2=
D.( 4 . 5 -0.5)÷2=
3 (中考·湘西州)计算 3 2 的结果精确到是
(可用科学计算器计算或笔算)( C )
(3)因为,所以
>;
用计算器求下列各式的则值:它的算术平方根是由
因为50>49,所以 >7.
2 3 的小数点向左移动
3所0以大正方形的边B长.是0两. 位dm.得到的.本题易错之处在于小数点移动方
C.6和7之间
D.7和8之间

平方根重点知识

平方根重点知识

81 重点知识: 1、平方根:如果一个数X 的平方等于a ,即X2=a 那么这个数 X 就叫做a 的平方根。

例如,22=4, 2是4的平方根,(2)2=4,- 2是4的平方根,即2和一2都是4的平方根。

2、算术平方根:如果一个正数 X 的平方等于a,即X2=a 那么这个正数 X 就叫做a 的算术平方根。

(特别规定:0的算术平方根 是0)。

例如,22 =4,正数2是4的算术平方根。

虽然(-2)2=4,但—2不是正数,所以—2不是4的算术平方 根。

3、表示方法:平方根:一个非负数 a 的平方根记做 皿,读作“正负根号 a ”;例如:5的平方根记做土 V5,读作“正负 根号5”。

算术平方根:一个非负数a 的算术平方根记作,.a ,读作“根号a ”;例如,5的算术平方根记作,5,读作“根 号5”。

结论: 一个正数有两个平方根,它们互为相反数;0有一个平方根,它是 0本身;负数没有平方根.求一个非负数a 的平方根的运算,叫做开平方.练习题课前准备:写出并熟记 1—— 20的平方:(1) 12 二-22 :——? J 32=.;42=;52 二 ----;62-72:;82>_; 92 =.;102 = (2) 112 口;122 二132二 ; 142二 ; 152二162 -172:182二; 192二; 202 二例1 求下列各数的平方根。

4下列说法是否正确?为什么?(4) 81的平方根是_9 ;(5)2 是一4的算术平方根;(1) 5是25的平方根;(2) 25的平方根是5;(3) — 5是(-5)2的算术平方根;9 (2) 252、判断下列各数,哪些有算术平方根,哪些没有:(1) 121(3) 0 (4)(-5)20.2, - 9,81 , ( - 2) 24),-3求下列各数的算术平方根。

64(2)(1) 225 (3) 0.49 (4) . 625的算术平方根是一3。

例5求下列各式的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.平方根1.算术平方根(1)算术平方根的概念:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方法:正数a 的算术平方根记作“a ”,读作“根号a ”.(3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,当然也没有算术平方根.算术平方根的性质:只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;【例1】求下列各数的算术平方根:(1)0.09;(2)121169;(3)10-8;(4)14 解:(1)∵0.32=0.09,∴0.09的算术平方根是0.3, 即0.09=0.3;(2)∵⎝⎛⎭⎫11132=121169,∴121169的算术平方根是1113. 如何确定一个数的算术平方根求一个数的算术平方根,先找到一个数,使它的平方等于所求的数,再求算术平方根.2.平方根(1)平方根的概念:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).32=9,所以3是9的平方根.(-3)2=9,所以-3也是9的平方根,所以9的平方根是3和-3.(2)平方根的表示方法:正数a 的平方根可记作“±a ”,读作“正、负根号a ”.“ ”读作“根号”,“a ”是被开方数.例如:2的平方根可表示为±2.(3)平方根的性质:若x 2=a ,则有(-x )2=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有02=0,故0的平方根为0;因为任何数的平方都不会是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.【例2-1】求下列各数的平方根:(1)81;(2)(-7)2;(3)11549;(4)10-6;(5)17 解:(1)∵(±9)2=81,∴81的平方根是±9,即±81=±9.(2)∵(±7)2=72=49,∴(-7)2的平方根是±7,即±49=±7.(3)∵11549=6449,又⎝⎛⎭⎫±872=6449, ∴11549的平方根是±87, 即±11549=±87. 【例2-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由.(1)94;(2)0;(3)-9;(4)|-0.81|;(5)-22. 解:3.开平方求一个数a (a ≥0)的平方根的运算,叫做开平方,其中a 叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻找一个数的平方根,也可以利用平方验算所求平方根是否正确.(2)开平方与平方互为逆运算,正数、负数、0可以进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才可以,负数不能开平方,且正数开平方时有两个结果.(3)对于生活和生产中的已知面积求长度的问题,一般可用开平方加以解决.【例3】小明家计划用80块正方形的地板砖铺设面积是20m 2的客厅,试问小明家需要购买边长是多少的地板砖?解:4.a 2与(a )2的关系a 表示a 的算术平方根,依据算术平方根的定义,(a )2=a (a ≥0).a 2表示a 2的算术平方根,依据算术平方根的定义,若a ≥0,则a 2的算术平方根为a ;若a <0,则a 2的算术平方根为-a ,即a 2=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0. (1)区别:①意义不同:(a )2表示非负数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②取值范围不同:(a )2中的a 为非负数,即a ≥0;a 2中的a 为任意数.③运算顺序不同:(a )2是先求a 的算术平方根,再求它的算术平方根的平方;a 2是先求a 的平方,再求平方后的算术平方根.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤运算结果不同: (a )2=a ;a 2=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0. (2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2. 点技巧巧用(a )2=a将(a )2=a 反过来就是a =(a )2,利用此式可使某些运算更为简便.【例4】化简:(6)2=__________;(-7)2=__________.5.平方根与算术平方根的关系(1)区别:①概念不同 平方根的概念:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根. 算术平方根的概念:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根. ②表示方法不同平方根:正数a 的平方根用符号±a 表示.算术平方根:正数a 的算术平方根用符号a 表示,正数a 的负的平方根-a 可以看成是正数a 的算术平方根的相反数.③读法不同a 读作“根号a ”;±a 读作“正、负根号a ”.④结果和个数不同一个正数的算术平方根只有一个且一定为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包含了算术平方根,就是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个就是它的算术平方根,这样要求一个正数a 的平方根,只要先求出这个正数的算术平方根a ,就可以直接写出这个正数的平方根±a 了.②在平方根±a 和算术平方根a 中,被开方数都是非负数,即a ≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.【例5-1】(1)求(-3)2的平方根;(2)计算144;(3)求(π-3.142)2的算术平方根;(4)求16的平方根.【例5-2】求下列各式的值: (1)±81;(2)-16;(3)925;(4)(-4)2. 解:6.巧用算术平方根的两个“非负性”众所周知,算术平方根a 具有双重非负性: (1)被开方数具有非负性,即a ≥0.(2)a 本身具有非负性,即a ≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.由于初中阶段学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:【例6-1】若-x 2+y =6,则x =__________,y =__________.【例6-2】若|m -1|+n -5=0,则m =__________,n =__________.【例6-3】如果y =x 2-4+4-x 2x +2+2013成立,求x 2+y -3的值. 解:练习1:1.判断题(1)-0.01是0.1的平方根( )(2)-52的平方根为-5.( )(3)0和负数没有平方根.( )(4)因为161的平方根是±41,所以161=±41.( )(5)正数的平方根有两个,它们是互为相反数.( )2.选择题(1)下列各数中没有平方根的数是( )A.-(-2)3B.3-3C.a 0D.-(a 2+1) (2)2a 等于( )A.aB.-aC.±aD.以上答案都不对 (3)如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m 2C.a =±mD.±a =±m(4)若正方形的边长是a ,面积为S ,那么( )A.S 的平方根是aB.a 是S 的算术平方根C.a =±SD.S =a3.填空题(1)若9x 2-49=0,则x =________.(2)若12+x 有意义,则x 范围是________.(3)已知|x -4|+y x +2=0,那么x =________,y =________.(4)如果a <0,那么2a =________,(a -)2=________.4.已知一个正方形ABCD 的面积是4a 2cm 2,点E 、F 、G 、H 分别为正方形ABCD 各边的中点,依次连结E 、F 、G 、H 得一个正方形.(1)求这个正方形的边长.(2)求当a =2cm 时,正方形EFGH 的边长大约是多少厘米?(精确到0.1cm )图1平方根练习题2:一、填空题1.如果x 的平方等于a ,那么x 就是a 的_______,所以a 的平方根是_________;2.非负数a 的平方根表示为________;3.因为没有什么数的平方会等于_______,所以负数没有平方根,因此被开方数一定是_______或者___;4__________;5.非负的平方根叫_________平方根二、选择题6. 9的算术平方根是( )A .-3B .3C .±3D .817.下列计算不正确的是( )A .01.00001.0±=±B ±=1001104=-8.下列说法中不正确的是( )A .9的算术平方根是3B 2C.平方根是本身的数是0和1D.-00=9.64的平方根是( )A .±8B .±4C .±2D 10.4的平方的倒数的算术平方根是( )A .4B .18C .-14 D .14三计算题11.计算:(1)(2(3(412.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.0913_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是()A .x+1 B.x 2+1 C15.若2m-4与3m-1是同一个数的平方根,则m 的值是 () A .-3 B .1 C .-3或1 D .-116.已知x ,y (y-3)2=0,则xy 的值是()A .4B .-4C .94 D .-94五、综合训练17.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;平方根练习题3一、火眼金睛细心选1.下列说法中错误的是( ) A.21是0.25的一个平方根 B.正数a 的两个平方根的和为0 C.169的平方根是43D.当X ≠0时,-X 2没有平方根.2.下列各式中正确的是( ) A.25 =±5 B.)3(-2=-3 C.±36=±6 D.100-=103.当x=-43时,2x 的值为( ) A. 43 B.- 43C.±43D 、以上都不对4.下列说法正确的是( ) A.4的平方根是±2 B.-a 2一定没有平方根C.0.9的平方根是±0.3D.a 2+1一定有平方根5.已知正方形的边长为a ,面积S ,则( ) A.S=a B.S 的平方根是aC.a 是S 的算术平方根D.a=±s6.下列计算正确的是( ) A. 222=- B. 552±= C. 4)4(2=-- D. 7)7(2±=-±7.5=,则x 为( )A 、5B 、-5C 、±5D 、以上都不对8.当0x ≤的值为( )A.0 B.x - C.x D.x ±9.16的算术平方根和25平方根的和是( )A 、9B 、-1C 、9或-1D 、-9或1 10.要使等式032=-⋅+x x 成立的x 的值为( )A 、-2B 、3C 、-2或3D 、以上都不对二、沉着冷静耐心填11.一个正数的平方根有 ,它们的和为 。

相关文档
最新文档