勾股定理(一)(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章勾股定理

18.1 勾股定理(一)

一、教学目标

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点

1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、例题的意图分析

例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。

四、课堂引入

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,

如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122

和132的关系,即32+42=52,52+122=132

,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质

吗?

五、例习题分析

例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

A B

让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4×2

1ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边

S=4×2

1

ab +c 2

右边S=(a+b )2 左边和右边面积相等,即 4×2

1ab +c 2=(a+b )2 化简可证。 六、课堂练习 1.

是:

b

b

b

b

a

a

2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)

系: ;

⑵若D 为斜边中点,则斜边中线 ; ⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: 。

3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,

则 =90°; 若满足b 2>c 2+a 2,则∠B 是

角; 若满足b 2<c 2+a 2,则∠B 是 角。 4.根据如图所示,利用面积法证明勾股定理。

七、课后练习

1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则

⑴c= 。(已知a 、b ,求c ) ⑵a= 。(已知b 、c ,求a ) ⑶b= 。(已知a 、c ,求b )

2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,

A

B

b E

B

试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来。

3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点

P

从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直。

4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上。 求证:⑴AD 2-AB 2=BD ·CD

⑵若D 在CB 上,结论如何,

试证明你的结论。

课后反思:

D

C

B

八、参考答案

课堂练习 1.略;

2.⑴∠A+∠B=90°;⑵CD=2

1AB ;⑶AC=

2

1AB ;⑷

AC 2+BC 2=AB 2。

3.∠B ,钝角,锐角;

4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯

形ACDG

=2

1

(a+b )2,

S △BCE = S △EDA =2

1 ab ,S △ABE =2

1c 2, 21(a+b )2=2×2

1 ab +2

1c 2。

课后练习

1.⑴c=22a b -;⑵a=22c b -;⑶b=22a c +

2.⎩⎨⎧+==+1

2

22b c c b a

;则

b=212-a ,c=2

12+a ;当

a=19时,b=180,

c=181。

3.5秒或10秒。

4.提示:过A 作AE ⊥BC 于E 。

相关文档
最新文档