1.2.1勾股定理逆定理

合集下载

数学湘教版八年级下册第1章直角三角形 教案

数学湘教版八年级下册第1章直角三角形 教案

1.1.1 直角三角形的性质教学目标知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理。

2.能运用直角三角形的判定与性质,解决有关的问题。

过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。

情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。

教学重点:直角三角形斜边上的中线性质定理的推导与运用。

教学难点:“操作—探究—讨论—交流—讲评”得出直角三角形斜边上的中线性质定理。

教学过程一、教学引入1、三角形的内角和是多少度。

学生回答。

2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。

3、 等腰三角形有哪些性质? 二、探究新知1、探究直角三角形的判定定理:⑴ 观察小黑板上的三角形,由∠A +∠B 的度数,能说明什么? ——两个锐角互余的三角形是直角三角形。

⑵ 讨论:直角三角形的性质和判定定理是什么关系? 2、探究直角三角形的性质:⑴ 学生画出直角三角形ABC 斜边的中线CD 。

⑵ 测量并讨论斜边上的中线的长度与斜边长度之间的关系。

⑶ 学生猜想:在直角三角形中斜边上的中线等于斜边的一半。

3、 共同探究:例 已知:在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线。

求证:CD =12AB 。

[教师引导:数学方法——倒推法、辅助线]三、应用迁移 巩固提高练习:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。

即已知CD 是△ABC 的AB 边上的中线,且CD =12AB 。

求证:△ABC 是直角三角形。

提示:倒推法,要证明△ABC 是直角三角形,只有通过定义和判定定理,定义与判定定理都与角有关系。

现在我们只有边的关系,我们学过的边与角能联系起来的就是等腰三角形。

还要找到与90°有关的角,但是我们只知道三角形的内角和为180°。

勾股定理及其逆定理的内容

勾股定理及其逆定理的内容

勾股定理及其逆定理的内容勾股定理和逆定理都是数学中非常经典的内容,不过听起来可能会有点儿陌生。

其实,它们非常实用,而且还很有趣。

让我们一起来聊聊吧。

1. 勾股定理的基本概念1.1 什么是勾股定理首先,咱们得知道勾股定理到底是什么。

它是关于直角三角形的一个定理。

简单来说,直角三角形的两条直角边(我们叫它们“勾”和“股”)的平方和等于斜边(我们叫它“弦”)的平方。

这就是勾股定理的核心内容。

听起来有点复杂,但举个例子就明白了。

假设你有一个直角三角形,直角边长分别是3和4,那么这两个边的平方和就是3²+4²=9+16=25。

斜边的平方也得等于25,所以斜边的长度就是5。

1.2 生活中的应用这个定理在我们的生活中非常有用。

比如说,如果你要测量房间的对角线长,只需要知道长和宽就能算出来。

又或者你在设计一些东西时,勾股定理能帮你确保每个角都是直角。

它就像是生活中的一个小工具,随时随地帮你解决问题。

2. 勾股定理的证明2.1 几何证明说到证明,勾股定理有几种不同的方法,其中几何证明是最直观的。

简单来说,就是我们可以用几何图形来证明这个定理。

想象一下,你在一个直角三角形的每一边上画出一个正方形,这些正方形的面积就像是拼图一样,可以用来证明勾股定理。

看起来可能会有点复杂,但其实就是一种图形化的方法,让定理更容易理解。

2.2 代数证明除了几何证明,还有一种代数证明的方法。

我们可以用代数公式来证明勾股定理的正确性。

这种方法比较适合那些喜欢公式和计算的人。

它用的是代数的语言,通过一些方程式来展示定理的正确性。

3. 勾股定理的逆定理3.1 什么是逆定理勾股定理的逆定理其实也很有趣。

它告诉我们,如果一个三角形的三边满足勾股定理的条件,那么这个三角形就是直角三角形。

也就是说,如果你知道一个三角形的三条边分别是a、b和c,并且它们满足a²+b²=c²的关系,那么这个三角形肯定是直角三角形。

直角三角形(1)八年级数学下册同步备课系列(北师大版)

直角三角形(1)八年级数学下册同步备课系列(北师大版)

=
c2+4
1 2
ab

c
b a2+2ab+b2 = c2+2ab,
a
∴a2+b2=c2.
讲授新课
2.赵爽弦图
大正方形的面积可以表示为 c2 ;
也可以表示为
4
1 2
ab
+(b-a.)2
c a
b
b
b
b
c
c
∵ c2= 4 1 ab +(b-a)2,
2
c2 =2ab+b2-2ab+a2, c2 =a2+b2, ∴ a2+b2=c2.
观察上面两个定理,它们的条件与结论之间有怎样的关系?
讲授新课
再观察下面三组命题: 如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎; 三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论之间也有类似 的关系吗?与同伴进行交流.
解:原式可化为: a2-10a+25+b2-24b+144+c2-26c+169=0 (a-5)2+(b-12)2+(c-13)2=0 a=5,b=12,c=13. a2+b2=c2 ∴△ABC是直角三角形
当堂检测
16.指出下列命题的条件和结论,并说出它们的逆命题.
(1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
4. 下列长度的三条线段能组成直角三角形的是 ( A )
A.3,4,5
B.2,3,4
C.4,6,7

专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)

专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)

专题1.2 勾股定理的逆定理【八大题型】【北师大版】【题型1 判断三边能否构成直角三角形】 (1)【题型2 图形上与已知两点构成直角三角形的点】 (3)【题型3 在网格中判断直角三角形】 (6)【题型4 勾股数的探究】 (9)【题型5 利用勾股定理的逆定理证明】 (13)【题型6 利用勾股定理的逆定理求解】 (16)【题型7 勾股逆定理的应用】 (19)【题型8 勾股定理及其逆定理的综合】 (23)【知识点 勾股定理的逆定理】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.【题型1 判断三边能否构成直角三角形】【例1】(2023春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)由线段a 、b 、c 组成的三角形是直角三角形的是( )A .a =5,b =3,c =3B .a =13,b =15,c =14C .a =6,b =4,c =5D .a =7,b =24,c =25【答案】D【分析】根据勾股定理的逆定理,进行计算即可解答.【详解】解:A 、32+32=18≠52,故不能组成直角三角形,故不合题意;B +=41400≠,故不能组成直角三角形,故不合题意;C 、42+52=41≠62,故不能组成直角三角形,故不合题意;D 、72+242=625=252,故不能组成直角三角形,故不合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.【变式1-1】(2023春·湖北孝感·八年级统考期中)一个三角形的三边长分别为a ,b ,c ,且满足(a +b )(a−b )=c2,则这个三角形是()A.等腰三角形B.直角三角形C.锐角三角形D.不确定【答案】B【分析】将原式整理为a2=b2+c2,即可判断.【详解】解:∵(a+b)(a−b)=c2,∴a2−b2=c2,∴a2=b2+c2,∴这个三角形是直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理和平方差公式,熟练掌握勾股定理逆定理、得出a2=b2+c2是解题的关键.【变式1-2】(2023春·八年级单元测试)如图,以△ABC的两边BC、AC分别向外作正方形,它们的面积分别是S1,S2,若S1=2,S2=3,AB2=5,则△ABC的形状是________三角形.【答案】直角【分析】根据正方形的面积公式结合勾股定理的逆定理即可得出答案.【详解】解:∵S1=2,S2=3,∴BC2=2,AC2=3,∵AB2=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,故答案为:直角.【点睛】本题考查了勾股定理的逆定理和正方形面积的应用,理解勾股定理的逆定理的内容是解题的关键.【变式1-3】(2023春·广东惠州·八年级校考期中)有四种说法:①三个内角之比为5:6:1;②三边形长分③三边之长为9、40、41;④三边之比为1.5∶2∶3.其中是直角三角形的有___________(填序号).【答案】①②③【分析】根据三角形内角和定理和勾股定理进行求解即可.【详解】解:∵三角形三个内角之比为5:6:1,=90°,∴三角形最大的内角为180°×6561∴该三角形为直角三角形,故①正确;∵2+=2,∴该三角形为直角三角形,故②正确;∵92+402=412,∴该三角形为直角三角形,故③正确;∵1.52+22≠32,∴该三角形不是直角三角形,故④错误;故答案为:①②③.【点睛】本题主要考查了三角形内角和定理,勾股定理得逆定理,熟知三角形内角和为180度和勾股定理的逆定理是解题的关键.【题型2图形上与已知两点构成直角三角形的点】【例2】(2023春·全国·八年级专题练习)同一平面内有A,B,C三点,A,B两点之间的距离为5cm,点C 到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有______个.【答案】8【分析】该题存在两种情况;(1)AB为斜边,则∠C=90°;(2)AB为直角边,AC=2cm或BC=2cm;【详解】(1)当AB为斜边时,点C到直线AB的距离为2cm,即AB边上的高为2cm,符合要求的C点有4个,如图:(2)当AB为直角边时,AC=2cm或BC=2cm,符合条件的点有4个,如图;符合要求的C点有8个;故答案是8.【点睛】本题主要考查了勾股定理的应用,准确分析判断是解题的关键.【变式2-1】(2023春·八年级单元测试)在如图所示的5×5的方格图中,点A和点B均为图中格点.点C 也在格点上,满足△ABC为以AB为斜边的直角三角形.这样的点C有()A.1个B.2个C.3个D.4个【答案】D【分析】结合网格的性质和直角三角形的判定找到对应点即可.【详解】解:如图,满足条件的点C共有4个,故选D.【点睛】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键.【变式2-2】(2023春·全国·八年级专题练习)点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是()A.4B.2C.1D.0【答案】B【分析】分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A在x轴上,进而可得出m=0;当∠OBA=90°时,点B在x轴上,进而可得出m=5;当∠AOB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值.综上,对照四个选项即可得出结论.【详解】解:分三种情况考虑(如图所示):当∠OAB=90°时,m=0;当∠OBA=90°时,m−5=0,解得:m=5;当∠AOB=90°时,AB2=OA2+OB2,即25=4+m2+4+m2−10m+25,解得:m1=1,m2=4.综上所述:m的值可以为0,5,1,4.故选B.【点睛】本题考查了坐标与图形性质以及勾股定理,分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况求出m的值是解题的关键.【变式2-3】(2023春·全国·八年级专题练习)如图,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上,在图中画ΔABC(点C在小正方形的顶点上),使ΔABC为直角三角形,并说明理由.(要求画出两个,且两个三角形不全等)【答案】ΔABC为直角三角形,理由详见解析.【分析】根据勾股定理逆定理和勾股定理进行判断即可.【详解】解:如图所示.图1图2如图1,在ΔABC中,AC=5,BC=3,AB2=32+52=34因为AC2+BC2=52+32=34=AB2,所以∠ACB=90°,即ΔABC为直角三角形.如图2,在RtΔACD中,AC2=CD2+AD2=12+12=2.在RtΔBCE中,CB2=CE2+BE2=42+42=32.在RtΔABF中,AB2=AF2+BF2=32+52=34.所以AC2+CB2=AB2,所以∠ACB=90°,即ΔABC为直角三角形.【点睛】考核知识点:根据勾股定理逆定理画直角三角形.掌握勾股定理逆定理并会运用是关键.【题型3在网格中判断直角三角形】【例3】(2023春·北京西城·八年级校考期中)如图,在正方形网格中,每个小正方形的边长为1,△ABC 的三个顶点A,B,C都在格点上,AD是BC边上的中线,那么AD的长为()A.2.5B.3C.D【答案】A【分析】由勾股定理可得AC2=5,BC2=25,AB2=20,则AC2+AB2=BC2,即△ABC是直角三角形,然后由直角三角形斜边上的中线等于斜边的一半即可解答.【详解】解:由勾股定理可得AC2=5,BC2=25,AB2=20,∴AC2+AB2=BC2,即△ABC是直角三角形,∵AD是BC边上的中线,BC=2.5.∴AD=12故选:A.【点睛】本题主要考查了勾股定理、直角三角形斜边上中线的性质等知识点,根据勾股定理逆定理判定△ABC是直角三角形是基础,掌握斜边上的中线的性质是解题的关键.【变式3-1】(2023春·广东湛江·八年级校考阶段练习)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为_________.【答案】45°【分析】根据勾股定理得到AB,BC,AC的长度,再判断△ABC是等腰直角三角形,进而得出结论.【详解】解:如图,连接AC,由题意,AC=,BC=AB∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=∠CAB=45°.故答案为:45°.【点睛】本题主要考查了勾股定理及其逆定理,等腰直角三角形的判定与性质,判断出△ABC是等腰直角三角形是解决本题的关键.【变式3-2】(2023春·广东惠州·八年级校考阶段练习)如图,每个小正方形的边长为1.(1)求四边形ABCD的面积与周长;(2)求证:∠BCD=90°.【答案】(1)周长为:32(2)见解析【分析】(1)借助正方形的小格,根据勾股定理分别计算四边形的各边的长,从而求得四边形的周长;(2)在△ABC中,根据勾股定理的逆定理进行判定.【详解】(1)解:根据勾股定理可知AB=3BC=CD=AD=5∴四边形ABCD的周长为+面积为:8×8−12×3×3−12×5×5−12×5×3−12×3×5=32.(2)证明:连接BD,∵BC=CD=DB=∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90°.【点睛】本题主要考查了勾股定理的运用以及勾股定理逆定理的运用,掌握勾股定理是解题的关键.【变式3-3】(2023春·八年级单元测试)如图所示的是2×5的正方形网格,点A,B,P都在网格点上,则∠APB=________.【答案】135°【分析】根据勾股定理和勾股定理的逆定理可得△PCB是等腰直角三角形,可得∠BPC=45°,即可求解.【详解】解:延长AP至C,连接BC,CP=CB=BP∵2+2=2,即CP2+CB2=BP2,∴△PCB是等腰直角三角形,∴∠BPC=45°,∴∠APB=180°−45°=135°,故答案为:135°.【点睛】本题考查了勾股定理和勾股定理的逆定理,关键是得到△PCB是等腰直角三角形.【题型4勾股数的探究】【例4】(2023春·安徽阜阳·八年级统考期末)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(___________),(___________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2−1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.【答案】(1)5,12,13;7,24,25(2)证明见解析【分析】(1)根据x2+y2=z2,即可得出5,12,13、7,24,25是勾股数;(2)根据勾股定理的逆定理,可得答案.【详解】(1)∵52+122=169,132=169,∴52+122=132,∴5,12,13是勾股数;∵72+242=625,252=625,∴72+242=252,∴7,24,25是勾股数;故答案为:5,12,13;7,24,25;(2)证明:∵x=2n,y=n2−1,∴x2+y2=(2n)2+(n2−1)2=4n2+n4−2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.∴以x,y,z为三边的三角形为直角三角形.【点睛】此题考查勾股逆定理的证明,勾股数的规律探究,掌握勾股逆定理的证明,根据勾股定理得出勾股数是解题的关键.【变式4-1】(2023春·四川达州·八年级校考期中)以下列各组数据中的三个数,其中是勾股数的是()A.B.6,8,10C.D.2,3,4【答案】B【分析】根据勾股数的定义进行分析,从而得到答案.【详解】解:A+=7=5,7≠5,故此选项错误;B、62+82=100,102=100,且100=100,故此选项正确;C、12+=3=3,3=3D、22+32=13,42=16,13≠16,故此选项错误.故答案为:B.【点睛】此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,满足a2+b2=c2.【变式4-2】(2023春·全国·八年级专题练习)一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,这三个整数叫做一组“勾股数”老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22−1232−1232−2242−1242−22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a=______,b=______,c=______.(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.【答案】(1)m2+n2,2mn,m2−n2(2)以a,b,c为边长的三角形一定为直角三角形,理由见解析【分析】(1)根据给出的数据总结即可;(2)分别计算出a2、b2、c2,根据勾股定理逆定理进行判断.【详解】(1)解:观察可得a=m2+n2,b=2mn,c=m2−n2,故答案为:m2+n2,2mn,m2−n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4−2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.【点睛】本题考查了勾股数,勾股定理的逆定理,熟练掌握:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.【变式4-3】(2023春·重庆北碚·八年级西南大学附中校考期中)勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2a和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.【答案】(1)见解析;(2)a=9730b,a=31,b=4;(3)见解析7【分析】(1)根据勾股定理:利用(m2+n2)2﹣(m2﹣n2)2,解得另一条直角边长为2mn,因为m,n为正整数,所以2mn也为正整数,即可得证;(2)首先根据勾股定理求出a关于b的代数式,再根据被开方数需大于等于0,即可求得a、b的范围,且a、b 均为正整数,将b的可能值:1,2,3,4分别代入,即可求得符合条件的正整数a、b;(3)观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,而252=152+202,故存在.【详解】(1)证明:∵(m2+n2)2﹣(m2﹣n2)2=(m2+n2+m2﹣n2)•(m2+n2﹣m2+n2)=2m2•2n2=(2mn)2,∴(2mn)2+(m2﹣n2)2=(m2+n2)2,∵m,n为正整数,且m>n,∴2mn,m2﹣n2,m2+n2均为正整数,∴该直角三角形一定为“整数直角三角形”;(2)由勾股定理得:7a﹣7+(150﹣30b)=16×15,∴a=9730b7,由题意可知:7a﹣7>0,150﹣30b>0,∴a>1,0<b<5,∵a和b均为正整数,∴b的可能值为:1,2,3,4,当b=1时,a=97307=1277,不是正整数,故b=1不符合题意;当b=2时,a=1577,不是正整数,故b=2不符合题意;当b=3时,a=97907=1877,不是正整数,故b=3不符合题意;当b=4时,a=971207=2177=31==∵2+2=240,4=240,∴2+2=4,∴b=4符合题意,∴a=9730b7,a=31,b=4;(3)证明:观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,152+202=225+400=625,252=625,∴152+202=252.∴存在一个整数直角三角形,其斜边长为c1•c2.【点睛】本题目考查勾股定理,难度一般,也是中考的常考知识点,熟练掌握勾股定理的应用以及二次根式的相关性质是顺利解答此题的关键.【题型5利用勾股定理的逆定理证明】【例5】(2023·江苏·八年级假期作业)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.【答案】见解析【分析】根据勾股定理得出BC2,AC2,进而利用勾股定理的逆定理解答即可.【详解】证明:∵CD⊥AB,垂足为D,BD=1,CD=2,AD=4,∴BC2=BD2+CD2=12+22=5,AC2=AD2+CD2=42+22=20,∵AB=AD+BD=4+1=5,∴AB2=25=AC2+BC2=20+5,∴△ABC是直角三角形,∴∠ACB=90°.【点睛】此题考查勾股定理及其逆定理,掌握勾股定理与其逆定理的区别是解题的关键.【变式5-1】(2023·江苏·八年级假期作业)在△ABC的三边分别是a、b、c,且a=n2−1,b=2n,c=n2+1,判断△ABC的形状,证明你的结论.【答案】直角三角形,理由见解析【分析】根据勾股定理的逆定理判断即可.【详解】解:∵a=n2−1,b=2n,c=n2+1∴a2=(n2−1)2=n4−2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,故△ABC是直角三角形.【点睛】本题考查了勾股定理的逆定理、完全平方公式,会利用勾股定理的逆定理判定三角形是否为直角三角形是解答的关键.【变式5-2】(2023春·八年级课时练习)如图,以△ABC的每一条边为边作三个正方形.已知这三个正方形构成的图形中,绿色部分的面积与蓝色部分的面积相等,则△ABC是直角三角形吗?请证明你的判断.【答案】△ABC是直角三角形,证明见解析【分析】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,【详解】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,然后根据绿色部分的面积与蓝色部分的面积相等列式得到(a+d)+(b+e)=c+d+e,然后由a+d=AC2,b+e=BC2求解即可..∵绿色部分的面积与蓝色部分的面积相等∴a+b=c∴a+b+d+e=c+d+e∴(a+d)+(b+e)=c+d+e∵a+d=AC2,b+e=BC2∴c+d+e=AB2∴AC2+BC2=AB2∴△ABC是直角三角形.【点睛】此题考查了勾股定理的逆定理的运用,解题的关键是熟练掌握勾股定理的逆定理.【变式5-3】(2023春·江苏盐城·八年级统考期中)如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD=ED=12.(1)求证:△CDE≌△BDA;(2)证明:CE⊥AE;(3)求△ABC的面积.【答案】(1)见解析(2)见解析(3)84【分析】(1)根据SAS证明△CDE≌△BDA即可;(2)结论:△ACE是直角三角形;首先根据△CDE≌△BDA,推出CE=AB=7,最后根据勾股定理的逆定理即可证明;(3)由全等三角形的性质得出S △ABC =S △ACE ,所以计算△ACE 的面积,即可得出△ABC 的面积.【详解】(1)证明:∵AD 是边BC 上的中线,∴BD =CD ,在△BDA 和△CDE 中,AD =BD ∠ADB =∠EDC BD =CD,∴△CDE≌△BDA (SAS ),(2)结论:△ACE 是直角三角形;理由:由(1)知:△CDE≌△BDA ,∴CE =AB =7,∵AD =ED =12,∴AE =24,∵AE 2+CE 2=242+72=625,AC 2=252=625,∴AE 2+CE 2=AC 2,∴∠E =90°,∴△ACE 是直角三角形;(3)∵△CDE≌△BDA ,∴S △CDE +S △ADC =S △ADC +S △BDA ,∴S △ABC =S △ACE ,∵S △ACE =12AE·CE =12×24×7=84,∴S △ABC =84.【点睛】此题是三角形的综合题,考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.【题型6 利用勾股定理的逆定理求解】【例6】(2023春·山西吕梁·八年级统考期末)如图,在△ABC 中,AB =5,BC =4,AC =3,将三角形纸片沿AD 折叠,使点C 落在AB 边上的点E 处,则△BDE 的周长为( )A.3B.4C.5D.6【答案】D【分析】利用勾股定理的逆定理判断出∠C=90°,利用翻折不变性可得AE=AC=3,推出BE=2,即可解决问题.【详解】解:在△ABC中,∵AB=5,BC=4,AC=3,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠C=90°,由翻折的性质可知:AE=AC=3,CD=DE,∴BE=2,∴△BDE的周长=DE+BD+BE=CD+BD+BE=BC+BE=4+2=6,故选:D.【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2023春·湖北襄阳·八年级统考期中)如图,在△ABC中,点D在AB上,AB=AC,BC=5,BD=3,CD=4.求AC的长.【答案】AC=256【分析】由勾股定理的逆定理判定∠BDC=90°,再在Rt△ADC中利用勾股定理列方程即可解答.【详解】解:∵BC=5,BD=3,CD=4,∴BD2+CD2=32+42=25=BC2.∴∠BDC=90°.∴∠ADC=180°−∠BDC=90°.∴AD2+CD2=AC2.设AC=x.∵AB=AC,BD=3,∴AD=x−3.∴(x−3)2+42=x2.解得x=256.∴AC=256.【点睛】本题主要考查了勾股定理及其逆定理的应用,解题的关键在于熟练掌握定理,灵活运用.【变式6-2】(2023春·河南开封·八年级统考期末)已知△ABC的三边分别为a、b、c,且满足(a+2b−11)2+|2a−b−2|=10c−25−c2,请你判断△ABC的形状,并求出其周长与面积.【答案】△ABC是直角三角形,它的周长是12,面积是6【分析】首先把原等式变形为(a+2b−11)2+|2a−b−2|+(c−5)2=0,利用非负数的性质,建立三元一次方程组,求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状,进一步求得周长和面积即可.【详解】解:由题意得(a+2b−11)2+|2a−b−2|+c2−10c+25=0,∴(a+2b−11)2+|2a−b−2|+(c−5)2=0,∴a+2b−11=02a−b−2=0c−5=0,∴a=3,b=4,c=5,∵a2+b2=c2,∴△ABC是直角三角形,它的周长是3+4+5=12,面积是12×3×4=6.【点睛】此题考查了完全平方公式,非负数的性质,解三元一次方程组,勾股定理逆定理以及三角形的周长和面积的计算方法;注意解题的思路与方法的灵活性.【变式6-3】(2023春·陕西榆林·八年级校考期末)已知在△ACB中,AC=12,BC=5,AB=13,点E为边AC 上的动点,点F为边AB上的动点,则FE+EB的最小值是_________.【答案】12013【分析】先根据勾股定理的逆定理可得∠ACB =90°,再作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,然后根据两点之间线段最短、垂线段最短可得当B ′F ⊥AB 时,线段FE +EB 的值最小,最小值为B ′F ,最后利用三角形的面积公式即可得.【详解】解:∵在△ACB 中,AC =12,BC =5,AB =13,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,如图,作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,∴B ′C =BC =5,BB ′=2BC =10,B ′E =BE ,∴FE +EB =FE +B ′E ,由两点之间线段最短可知,当点B ′,E,F 共线时,FE +B ′E 最小,最小值为B ′F ,由垂线段最短可知,当B ′F ⊥AB 时,B ′F 的值最小,又∵S △ABB ′=12AB ⋅B ′F =12AC ⋅BB ′,∴12×13B ′F =12×12×10,解得B ′F =12013,即FE +EB 的最小值为12013,故答案为:12013.【点睛】本题考查了勾股定理的逆定理、两点之间线段最短、垂线段最短、轴对称的性质等知识点,熟练掌握轴对称的性质和勾股定理的逆定理是解题关键.【题型7 勾股逆定理的应用】【例7】(2023春·广东广州·八年级统考期中)如图,在笔直的公路AB 旁有一座山,从山另一边的C 处到公路上的停靠站A 的距离为AC =15km ,与公路上另一停靠站B 的距离为BC =20km ,停靠站A 、B 之间的距离为AB =25km ,为方便运输货物现要从公路AB 上的D 处开凿隧道修通一条公路到C 处,且CD ⊥AB .(1)请判断△ABC 的形状?(2)求修建的公路CD 的长.【答案】(1)直角三角形(2)12km【分析】(1)根据勾股定理的逆定理,由AC 2+BC 2=AB 2得到△ABC 是直角三角形.(2)利用△ABC 的面积公式可得,CD ⋅AB =AC ⋅BC ,从而求出CD 的长.【详解】(1)解:△ABC 是直角三角形.理由:∵AC =15km ,BC =20km ,AB =25km ,∴ 152+202=252,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴△ABC 是直角三角形.(2)解:∵CD ⊥AB ,∴S △ABC =12AB ⋅CD =12AC ⋅BC ,∴CD =AC⋅BC AB =15×2025=12(km).答:修建的公路CD 的长是12km .【点睛】本题考查了勾股定理,勾股定理逆定理的应用,以及三角形的面积公式等知识,熟练掌握勾股定理及其逆定理是解题的关键.【变式7-1】(2023春·广西南宁·八年级南宁市天桃实验学校校考阶段练习)森林火灾是一种常见的自然灾害,危害很大.随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,△ABC 区域内是一片森林,有一台救火飞机沿东西方向AB ,由点A 飞向点B ,已知点C 为其中一个着火点,且点C 与点A ,B 的距离分别为600m 和800m ,又AB =1000m ,飞机中心周围500m 以内可以受到洒水影响.(1)求△ABC 的面积.(2)着火点C 能否受到洒水影响?为什么?【答案】(1)240000m 2(2)受影响【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,再利用面积公式计算即可;(2)过点C 作CD ⊥AB 于D ,利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.【详解】(1)解:∵AC =600m ,BC =800m ,AB =1000m ,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∴S △ABC =12×AC ×BC =240000m 2;(2)如图,过点C 作CD ⊥AB 于D ,∴S △ΔABC =12AC ⋅BC =12CD ⋅AB ,∴600×800=1000CD ,∴CD =480,∵飞机中心周围500m 以内可以受到洒水影响,∴着火点C 受洒水影响.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.【变式7-2】(2023春·广西桂林·八年级统考期中)一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?【答案】电线杆和地面垂直,理由见解析【分析】由勾股定理的逆定理判断△ABD是直角三角形,△ABC是直角三角形,即可解答.【详解】解:电线杆和地面垂直,理由如下:连接BD在△ABD中,∵BD2+AB2=52+122=169=132=AD2,∴△ABD是直角三角形,且∠ABD=90°,∴AB⊥BD,在△ABC中,∵BC2+AB2=92+122=225=152=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴AB⊥BC,∴电线杆和地面垂直.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.【变式7-3】(2023春·八年级课时练习)海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是______.【答案】北偏东40°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【详解】由题意得,OA=12×5=60(海里),OB=16×5=80(海里),又∵AB=100海里,∵602+802=1002,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则B舰艇的航行方向是北偏东40°,故答案为:北偏东40°.【点睛】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB是直角三角形是解决问题的关键.【题型8勾股定理及其逆定理的综合】【例8】(2023春·全国·八年级期末)如图,在△ABC中,D是△ABC内一点,连接AD、BD,且AD⊥BD.已知AD=4,BD=3,AC=13,BC=12.则图中阴影部分的面积为________.【答案】24【分析】先根据勾股定理求出AB,然后根据勾股定理的逆定理,得△ABC是直角三角形,根据阴影部分的面积S等于S△ABC−S△ABD,即可.【详解】∵AD⊥BD,∴AB2=AD2+BD2,∵AD=4,BD=3,∴AB=5,∵AC=13,BC=12,∴AC2=169,BC2=144,AB2=25,∴AC2=BC2+AB2,∴△ABC是直角三角形,设阴影部分的面积S,∴S=S△ABC−S△ABD=12×AB×BC−12×AD×BD,∴S=24,∴设阴影部分的面积为:24.故答案为:24.【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用和勾股定理的逆定理.【变式8-1】(2023春·江西赣州·八年级期中)如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=14AB,求证:∠FEC=90°.【答案】见解析【分析】由正方形的性质和已知求得AF=1,FD=3,由中点的性质得AE=EB=2,利用勾股定理求得EF,EC,FC,再根据勾股定理的逆定理,即可得出结论.AB,【详解】证明:∵正方形ABCD的边长为4,且AF=14∴AF=1,FD=3,DC=BC=4,∵E为AB的中点,∴AE=EB=2,在Rt△AEF中,EF=在Rt△DFC中,FC===5,在Rt△EBC中,EC==∴EC2+EF2=FC2,∴△EFC是以EC、EF为直角边的直角三角形,∴∠FEC=90°.【点睛】本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是证明此题的关键.【变式8-2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考阶段练习)为迎接六十周年校庆,重庆外国语学校准备将一块三角形空地ABC进行新的规划,如图,点D是BC边上的一点,过点D作垂直于AC的小路DE,点E在AC边上.经测量,AB=26米,AD=24米,BD=10米,AC比DC长12米.(1)求△ABD的面积;(2)求小路DE的长.【答案】(1)120平方米(2)14.4米【分析】(1)根据勾股定理逆定理得出△ABD是直角三角形,再根据三角形面积公式求解即可;(2)设DC =x 米,利用勾股定理求解出DC =18米,AC =30米,再利用等积法求解即可.【详解】(1)∵BD 2=102=100,AD 2=242=576,AB 2=262=676,∴BD 2+AD 2=AB 2,∴△ABD 是直角三角形,∠ADB =90°,∴S △ABD =12BD ⋅AD =12×10×24=120(平方米);(2)设DC =x 米,则AC =(x +12)米,由(1)知∠ADB =90°,由勾股定理得x 2+242=(x +12)2,解得x =18,∴DC =18米,AC =30米,∵DE ⊥AC ,∴S △ACD =12AC ⋅DE =12DC ⋅AD ,∴30DE =18×24,∴DE =14.4(米).【点睛】本题考查了勾股定理和勾股定理逆定理,熟练运用勾股定理逆定理证明是解题的关键.【变式8-3】(2023春·江苏宿迁·八年级校考期末)如图,已知正方形OABC 的边长为8,边OA 在x 轴上,边OC 在y 轴上,点D 是x 轴上一点,坐标为(2,0),点E 为OC 的中点,连接BD 、BE 、ED .(1)求点B 的坐标;(2)判断△BED 的形状,并证明你的结论.【答案】(1)(8,8)(2)△BED 是直角三角形【分析】(1)根据正方形的性质可得OA=OC=8,进而求出点B的坐标;(2)求出BD、BE、ED的平方,根据勾股定理逆定理判断即可.【详解】(1)解:正方形OABC的边长为8,边OA在x轴上,边OC在y轴上,所以OA=OC=8,因此,点B的坐标为(8,8).(2)解:△BED是直角三角形;点D是x轴上一点,坐标为(2,0),点E为OC的中点,∴OD=2,OE=CE=4,DA=6,∴ED2=OD2+OE2=20,EB2=BC2+CE2=80,DB2=BA2+AD2=100,∴ED2+EB2=DB2,∴△BED是直角三角形.【点睛】本题考查了正方形的性质和勾股定理及逆定理,解题关键是根据正方形性质写出点的坐标,利用坐标求出线段的平方.。

2021北师大版(2019)高中数学必修一教案::1.2.1 必要条件与充分条件含解析

2021北师大版(2019)高中数学必修一教案::1.2.1 必要条件与充分条件含解析

第一章预备知识第二节常用逻辑用语2.1必要条件和充分条件常用逻辑用语是逻辑思维的基本语言,是数学语言的重要组成部分,是数学表达和交流的工具.本节的内容包括必要条件、充分条件、充要条件,通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.一.教学目标:1、理解必要条件,充分条件,充要条件的概念,2、能够判断命题之间的充分必要关系二. 核心素养1.数学抽象:必要条件,充分条件,充要条件概念抽象概括2.逻辑推理:本节内容依初中所学的定理,研究条件和结论的关系,引出本节知识点,从而体现数学知识的连贯性和逻辑性3. 数学运算:判断命题之间的充分必要关系;利用充分必要关系求参数4.直观想象:讲解本节知识,利用初中所学过的定理,分析它们条件与结论的关系,从而引出抽象概述了充分,必要的概念,这种教学方式让学生更能直接的理解一个命题中,条件与结论的关系5. 数学建模:常用逻辑用语是逻辑思维的基本语言,是数学语言的重要组成部分,是数学表达和交流的工具.,培养学生分析、判断和归纳的逻辑思维能力.重点:充分条件、必要条件的概念.难点:判断命题的充分条件、必要条件。

PPT一:必要条件与性质定理(1)知识引入定理1菱形的对角线互相垂直,即如果四边形为菱形,那么这个四边形的对角线互相垂直.定理1是菱形的性质定理,即对角线互相垂直是菱形必有的性质.也就是说,如果能确定四边形为菱形,那么一定可以得出这个四边形的对角线互相垂直,而一旦某个四边形的对角线不互相垂直,那么这个四边形一定不是菱形.思考交流:试用上面的方法分析定理2,定理3定理2如果两个角是对顶角,那么这两个角相等.定理3如果两个三角形是全等三角形,那么这两个三角形的对应角相等.(2)必要条件的概述:一般地,当命题“若p,则q”是真命题时,称q是p的必要条件.也就是说,一旦q 不成立,p一定也不成立,即q对于p的成立是必要的.例如,在定理1中,“四边形的对角线互相垂直”是“四边形为菱形”的必要条件.例1:将下面的性质定理写成“若p则q”的形式,并用必要条件的语言表述:(1) 平面四边形的外角和是360°;(2) 在平面直角坐标系中,关于(轴对称的两个点的横坐标相同.解(1) “平面四边形的外角和是360°”可表述为“若平面多边形为四边形,则它的外角和为360°”,所以“外角和为360°”是“平面多边形为四边形”的必要条件;(2)“在平面直角坐标系中,关于(轴对称的两个点的横坐标相同”可表述为“若平面直角坐标系中的两个点关于(轴对称,则这两个点的横坐标相同”,所以“两个点的横坐标相同”是“在平面直角坐标系中,两个点关于(轴对称”的必要条件.二.充分条件与性质判断(1)知识引入定理 4 若a>0, b>0,则ab>0.定理4是说:如果满足了条件a>0, b>0”,一定有结论ab>0. ,但要注意,使得ab>0的条件不唯一,例如,由a<0,b<0,也可以判定ab>0.实际上,定理4告诉我们:只要有了a>0,b>0"这个条件,就可以判定a b>0”.思考交流:试用上面的方法分析定理5,定理6定理5对角线互相平分的四边形是平行四边形.定理6平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似.(2)充分条件概述一般地,当命题“若p则q”是真命题时,称p是q的充分条件.综上,对于真命题“若p,则q”,即p q时,称q是p的必要条件,也称p是q的充分条件例2:用充分条件的语言表述下面的命题:(1) 若a=-b,则|a|=|b|(2) 若点C是线段AB的中点,则|AC|=|BC|(3) 当ac<0时,一元二次方程ax2十bx十c = 0有两个不相等的实数根.解( 1) “a = —b"是"|a|=|b|"的充分条件;(2)“点C是线段AB的中点”是“ | AC | =| BC|的充分条件;(3)“a c<0”是“一元二次方程ax2十bx十c = 0有两个不相等的实数根”的充分条件.三. 充要条件(1)知识引入勾股定理如果一个三角形为直角三角形,那么它的两直角边的平方和等于斜边的平方.勾股定理的逆定理如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

北师大版数学八年级下册1.2.1《勾股定理及其逆定理》说课稿

北师大版数学八年级下册1.2.1《勾股定理及其逆定理》说课稿

北师大版数学八年级下册1.2.1《勾股定理及其逆定理》说课稿一. 教材分析北师大版数学八年级下册1.2.1《勾股定理及其逆定理》这一节的内容,是在学生已经掌握了三角形的基本概念、三角形的边角关系等知识的基础上进行讲授的。

本节课的主要内容是引导学生探究直角三角形中,两条直角边的平方和等于斜边的平方这一重要性质,即勾股定理。

同时,引导学生了解勾股定理的应用以及逆定理的内容。

二. 学情分析学生在学习本节内容之前,已经具备了一定的几何知识基础,对三角形的基本概念、三角形的边角关系等有了一定的了解。

但是,对于勾股定理的证明和应用,以及逆定理的理解,还需要教师的引导和启发。

此外,学生对于证明题目的解法,可能还存在着一定的困难,需要教师在教学中给予关注和指导。

三. 说教学目标1.知识与技能目标:使学生理解和掌握勾股定理的内容及其证明方法,能够运用勾股定理解决一些实际问题;使学生了解勾股定理的逆定理,并能运用逆定理判断三角形是否为直角三角形。

2.过程与方法目标:通过探究活动,培养学生的观察能力、动手操作能力和推理能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极参与数学探究活动的积极性和主动性。

四. 说教学重难点1.教学重点:勾股定理的内容及其证明方法,勾股定理逆定理的应用。

2.教学难点:勾股定理的证明,勾股定理逆定理的应用。

五. 说教学方法与手段1.教学方法:采用问题探究法、合作交流法、讲解法等。

2.教学手段:多媒体课件、黑板、粉笔、直角三角形模型等。

六. 说教学过程1.导入新课:通过展示古代数学家赵爽的《周髀算经》中的插图,引导学生观察并提出问题:为什么直角三角形的斜边最长?从而引出本节课的主要内容——勾股定理。

2.探究新知:(1)引导学生通过观察、操作、推理,探索并证明勾股定理。

教师出示两个直角三角形模型,引导学生观察并发现其中的规律。

学生通过动手操作,尝试证明勾股定理。

教师在学生证明过程中给予引导和指导,帮助学生完成证明。

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用) Chapter 3: Pythagorean Theorem1.Key Points:1.1 Pythagorean TheoremThe Pythagorean Theorem states that in a right triangle。

the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides。

In other words。

if the two legs of a right triangle are a and b。

and the hypotenuse is c。

then a^2 + b^2 = c^2.The formula can also be rearranged to solve for a or b: a^2 = c^2 - b^2 or b^2 = c^2 - a^2.Note: This theorem only applies to right triangles。

where one angle is 90 degrees.1.2 Proof of Pythagorean TheoremThere are many ways to prove the Pythagorean Theorem。

but one common method is to use the concept of area。

By showing that two different shapes have the same area。

we can derive the formula for the theorem。

Another method is to use a puzzle-like diagram to rearrange the squares of the sides.Two common methods are shown below:Method 1: 4 SquaresIn the diagram。

北师大版八年级数学上勾股定理

北师大版八年级数学上勾股定理

初中数学试卷勾股定理一 探索勾股定理(一) 勾股定理知识链接(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a 2+b 2=c 2 的变形有:a 2=c 2-b 2,b 2=c 2-a 2及c 2=a 2+b 2.(4)由于a 2+b 2=c 2>a 2,所以c >a ,同理c >b ,即直角三角形的斜边大于该直角三角形中的每一条直角边. 同步练习1.如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离是( )A .3B .4C .5D .62.(2014•乐山)如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为( )A .532B .543C .554D .5533.(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.7 C.5 D.5或74.(2013•六合区一模)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3 B.4 C.5 D.75.(2014•增城市一模)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.6.(2014•金华模拟)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠B=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.7.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm8.(2014•徐汇区二模)如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=5,BO=4,则AO 的长为.9.(2014•香坊区三模)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC 的面积为()A.16 B.18 C.24 D.3210.(2014•南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A ′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.11.(2014•房山区一模)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为5、10、13,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为______;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).2、29的格点△DEF;①利用构图法在答题卡的图2中画出三边长分别为13、5②计算△DEF的面积为______.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=22,PR=13,QR=17,则六边形AQRDEF的面积为______.(二)勾股定理证明知识链接(1)勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.(2)证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.同步练习1.用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2 C.c2=a2-2ab+b2 D.c2=(a+b)2.2.下列选项中,不能用来证明勾股定理的是()A. B. C. D.3.(2014•满洲里市模拟)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.14.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.1215、(2011•温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是______.6.由8个相同的直角三角形(图中带阴影的三角形)与中间的小正方形拼成的一个大正方形.如果最大的正方形的面积是25,最小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么222a3-333b3=______.7.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为____ __,该定理的结论其数学表达式是 ____ __.8.如图,网格中的图案是美国总统Garfield于1876年给出的一种验证某个著名结论的方法:(1)请你画出直角梯形EDBC绕EC中点O顺时针方向旋转180°的图案,你会得到一个美丽的图案.(阴影部分不要涂错).(2)若网格中每个小正方形边长为单位1,旋转后A、B、D的对应点为A′、B′、D′,求四边形ACA′E 的面积?(3)根据旋转前后形成的这个美丽图案,你能说出这个著名的结论吗?若能,请你写出这个结论.9.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.10..如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.(三)等腰直角三角形知识链接(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,两腰相等,斜边上中线、角平分线、斜边上的高,三线合一;(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r :R=1:2+1. 同步练习1.如图,在Rt △ABC 中,AB=AC ,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足为点E .若CD=25,则AD 的长是( )A .225B .22C .25 D .52.在△ABC 中,BC :AC :AB=1:1:2,则△ABC 是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形3.如图,等腰直角三角形ABC 中,AC=BC >3,点M 在AC 上,点N 在CB 的延长线上,MN 交AB 于点O ,且AM=BN=3,则S △AMO 与S △BNO 的差是( )A .9B .4.5C .0D .因为AC 、BC 的长度未知,所以无法确定4.(2011•万州区模拟)如图,△ACD 和△AEB 都是等腰直角三角形,∠EAB=∠CAD=90°,下列五个结论:①EC=BD ;②EC ⊥BD ;③S 四边形EBCD = 21EC •BD ;④S △ADE =S △ABC ;⑤△EBF ∽△DCF ;其中正确的有( )A .①②④⑤B .①②③④C .①②③⑤D .①②③④⑤5.如图,已知△ABC 是腰长为1的等腰直角三形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2015个等腰直角三角形的斜边长是____ __.6.如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .有下列结论:①∠DEO=45°;②△AOD ≌△COE ;③S 四边形CDOE = 21S △ABC ;④OD 2=OP •OC . 其中正确的结论序号为____ __.(把你认为正确的都写上)7.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,若∠1=20°,则∠2的度数为____ __.8.(2014•徐州模拟)如图,在△ABC 中,∠A=90°,∠C=45°,AB=6cm ,∠ABC 的平分线交AC 于点D ,DE ⊥BC ,垂足为E ,则DC+DE= ____ _cm .9.(2014•温州五校一模)如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,点E在BC边上,且CE=CD,连结AE、BD、DE.①求证:△ACE≌△BCD;②若∠CAE=25°,求∠BDE的度数.二能得到直角三角形吗(一)勾股定理的逆定理知识链接(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.同步练习1.(2012•广西)已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.② B.①② C.①③ D.②③2.(2012•连云港一模)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数()A.6 B.7 C.8 D.93.(2014•江西模拟)下列各三角形中,面积为无理数的是()A. B. C. D.4.下列能构成直角三角形三边长的是()A.1,1,2 B.5,8,10 C.5,12,13 D.6,7,85.(2012•松北区二模)如图△ABC中,AB=5,AC=3,中线AD=2,则BC长为____ _.6.在直角三角形中,满足条件的三边长可以是____ _(写出一组即可).7.三角形的三边a ,b ,c 满足(a+b )2=c 2+2ab ,则这个三角形是____ _三角形.8.(2014•萧山区模拟)如图,在四边形ABCD 中,∠B=90°,∠BCD=135°,且AB=3cm ,BC=7cm ,CD=25cm ,点M 从点A 出发沿折线A-B-C-D 运动到点D ,且在AB 上运动的速度为21cm/s ,在BC 上运动的速度为1cm/s ,在CD 上运动的速度为2cm/s ,连接AM 、DM ,当点M 运动时间为____ _(s )时,△ADM 是直角三角形.9.(2014•高安市模拟)如图,方格纸中的每个正方形的边长均为1,点A 、B 在小正方形的顶点上,在图中画△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形(要求画两个且不全等)10.(2014•顺义区一模)在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边.当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,可以判断△ABC 的形状(按角分类).(1)请你通过画图探究并判断:当△ABC 三边长分别为6,8,9时,△ABC 为______三角形;当△ABC 三边长分别为6,8,11时,△ABC 为______三角形.(2)小明同学根据上述探究,有下面的猜想:“当a 2+b 2>c 2时,△ABC 为锐角三角形;当a 2+b 2<c 2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,△ABC 是直角三角形、锐角三角形、钝角三角形?(二)勾股数三勾股定理应用(一)勾股定理的应用知识链接(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.同步练习1.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A.100 B.180 C.220 D.2602.如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为()米.4A.25 B.12 C.13 D.33.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.5米 B.3米 C.(5+1)米 D.3米4.(2014•和平区一模)如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点,当它靠在另一侧墙时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离DE=32m,则点B到地面的垂直距离BC为___ .5.(2013•池州一模)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为___ .6.(2014•西湖区一模)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,开始时B到墙C的距离为0.7米,若梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离相等,则下滑的距离是___米.7.(2014•三门县一模)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm、4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口的大小),则设计的吸管总长度L的范围是__ _.8.(2014•西宁)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).9.(2014•广东一模)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.10.(2013•本溪)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:2=1.41,3=1.73)(二)平面展开----最短路径问题 知识链接(1)平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.同步练习1.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=32BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+)cm B .5cm C .35cm D .7cm2.如图,若圆柱的底面周长是30cm ,高是40cm ,从圆柱底部A 处沿侧面缠绕一圈丝线到顶部B 处做装饰,则这条丝线的最小长度是( )A .80cmB .70cmC .60cmD .50cm3.如图,为了庆祝“五•一”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m ,高为3m .如果要求彩带从柱子底端的A 处均匀地绕柱子4圈后到达柱子顶端的B 处(线段AB 与地面垂直),那么应购买彩带的长度为( )A . 45m B .3m C .4m D .5m4.如图,圆柱底面半径为2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为( ) A .12cm B . 97cm C .15cm D . 21cm5.(2014•博山区模拟)如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )A.3 B.2+2 C.10D.46.(2013•荆州模拟)如图所示,有一圆柱形油罐,现要以油罐底部的一点A环绕油罐建梯子(图中虚线),并且要正好建到A点正上方的油罐顶部的B点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为___ 米.7.(2013•盐城模拟)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___ cm.8.(2014•西湖区一模)如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A、B两点均在容器顶部,现有一只小甲虫在容器外A点正下方距离顶部5cm处,要爬到容器内B点正下方距离底部5cm 处,则这只小甲虫最短爬行的距离是___ cm.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------9.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则L12=______.设路线2的长度为L2,则L22=______.所以选择路线______(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=______.路线2:L22=______.所以选择路线______(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.信达。

苏科版八年级上册第三章勾股定理饮马模型、最值问题(需要画出展开图)

苏科版八年级上册第三章勾股定理饮马模型、最值问题(需要画出展开图)

勾:直角三角形较短的直角边;股:直角三角形较长的直角边;弦:斜边。

1、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2。

2、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。

3、勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数。

若是勾股数组,则na 、nb 、nc 也是勾股数组。

4、简单运用:⑴勾股定理——常用于求边长、周长、面积;理解:①已知直角三角形的两边求第三边,并能求出周长、面积。

②用于证明线段平方关系的问题。

③利用勾股定理,作出长为√n 的线段⑵勾股定理的逆定理——常用于判断三角形的形状;理解:①确定最大边(不妨设为c );②若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边);若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)考点:最短距离及相关问题例1. (2017立达期中)如图,一个高16m ,底面周长8m 的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?例2.(2017吴中区期中)如图,一圆柱高8 cm ,底面半径为2 cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是(▲)A .20 cmB .10 cmC .14 cmD .无法确定,,a bc例3.(2017常熟期中)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值_________.例4(2018青云中学)如图,A村到公路L的距离AB为6 km,C村到公路L的距离CD为2km,且BD的长为6 km.现要在公路上取一点P,使AC+CP的值最小,则这个最小值为 .例5:如图,A、B两个小集镇在河流CD的同侧,到河的距离分别为AC=10千米、BD=30千米,且CD=30千米,现要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD边上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用.例6:“数学建模”(1)模型——小马喝水问题:直线MN表示一条河流的岸,在河流同侧有A、B两地,小马从A地出发到B地,中间要在河边饮水一次,请在图①中用直尺和圆规作出使小马行走最短路程的饮水点P的位置.(作在答题纸上,保留作图痕迹,并用黑水笔将痕迹描深)(2)运用——和最小问题:如图②,E是边长为8的正方形ABCD边BC上一点,CE=2,P是对角线BD上的一个动点,求PC+PE的最小值.例7如图,长方体的长为15,宽为10,高为20,点B到点C的距离为5,如果一只蚂蚁要沿着长方体的表面从点A爬到点B,那么它需要爬行的最短距离是( ) A.5 B.25C.15 D.35例8如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B 是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米。

【PPT课程】初中金榜学案数学(八年级下 湘教版)1.2.1

【PPT课程】初中金榜学案数学(八年级下 湘教版)1.2.1

【母题变式】 如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B
处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向 上,AD⊥BC于点D,求AD的长.
解:由题意知,∠ABD=30°,∠ACD=60°. ∴∠CAB=∠ABD, ∴BC=AC=100海里. 在Rt△ACD中,设CD=x海里, 则AC=2x海里, ∵AC=100海里, ∴CD=x=50海里. ∴AD= AC2 CD2 1002 502 50 3 (海里).
B.9 3 13
D.7 13 13
2.如图,公园里有一块草坪,已知AB=3 m,BC=4 m,CD=12 m,DA=13 m,且AB⊥BC, 这块草坪的面积是( B )
A.24 m2 C.48 m2
B.36 m2 D.72 m2
3.(2020·北部湾中考)《九章算术》是古代东方数学代表作,书中记载:今有开
2
2
2
∴(a+b)(a+b)=2ab+c2,
∴a2+2ab+b2=2ab+c2,
∴a2+b2=c2.
【学霸提醒】 证明勾股定理的三个步骤
1.读图:观察整个图形是由哪些图形拼接而成,图中包括几个直角三角形,几个正 方形,它们的边长各是多少. 2.列式:根据整个图形的面积等于各部分图形的面积和,列出关于直角三角形三边 长的等式. 3.化简:根据整式的运算化简等式,得出勾股定理.
★★4.(2020·黄冈中考)我国古代数学著作《九章算术》中有这样一个问 题:“今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几 何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一 个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1 尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池 里水的深度是___1_2___尺.

1.2.1直角三角形的性质与判定-勾股定理 课件

1.2.1直角三角形的性质与判定-勾股定理 课件

勾股定理的各种表达式:
归纳(在RT△中已知两边求第三边)
在Rt△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
c22=a22+b22
c= a2 b2
a2=c2-b2 b2=c2-a2
a= c2 b2 b= c2 a2
知识应用 归纳(在RT△中已知两边求第三边)
看到这个结果,如果你是数学家会想到什么?
探究:你会求出图形的 面积吗?
B A
C
C
图2
A
B
图3
A的 面积( 单位 长度)
B的 面积( 单位 长度)
C的 面积( 单位 长度)
图2
4 9 13
图3
9 25 34
A、B、
C面积 sA+sB=sC
关系
直角三 角形三 边关系
两直角边的平方和 等于斜边的平方.
以如
例1:求出下列直角三角形中未知边的长度。
A
x 9
A
x
B
7
C 40
B
C
25
解:(1)在Rt△ABC中,由勾 (2)在Rt△ABC中,由
股定理得:AB2=AC2+BC2 勾股定理:AB2+AC2=BC2
∵ AB=x,AC=9,BC=40
x2+72=252
x2=92+402 x2=81+1600 x2=1681 ∵x>0 ∴ x=41
∴a2+b2=c2
方法五 推理验证
青朱出入图
青出
青方
青 出
朱朱入入
青 入
朱朱
朱方 出出
华罗庚
青入
无字证明

八年级数学下册 1.2.1 勾股定理教学课件 (新版)湘教版

八年级数学下册 1.2.1 勾股定理教学课件 (新版)湘教版
归纳(在RT△中已知两边求第三边)
在Rt△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
c22=a22+b22 a2=c2-b2 b2=c2-a2
c= a2 b2
a= c2 b2 b= c2 a2
17
知识应用 归纳(在RT△中已知两边求第三边)
例1:求出下列直角三角形中未知边的长度。
AC为100米,BC为80米.求A、B两点间的距离是多少?
B
C 解:如图,根据题意 得
Rt △ABC中,∠B=90°
AC=100米, BC=80米, 由勾股定理 得
A
∵AB2+BC2 =AC2
∴AB2 =AC2-BC2 =1002 - 802=602
∴AB=60(米)
答:A、B两点间的距离是60米. 34
你能又快又准确吗?
1:求下列直角三角形中未知边的长
∴ x=5
x 3
x
26 ∴ x=10
4
24
2:求下图中未知数x、y的值
∴ x=10
36 x
64
25 y
169 ∴ y=12
19
A
bc
3①、若在aR=t△5,AbB=C1中2,,则∠c=C_=_9_0_1°_3_,_____;C a B ②若a=15,c=25,则b=___2_0_______;
2. ABC的a=6,b=8,则c=10 ( 错 )
(3)解答题
b=25
B 1.在Rt∆ABC中∠B=90°, a=15,c=20,求b ;
2. ΔABC中,∠C=90º,若 a:b=3:4,c=15cm,
求a和b的长度 a=9, b=12
26

勾股定理复习

勾股定理复习
一个正方形物体沿斜坡向下滑动,其截面如图所示,正方形DEFH的边长为2,
【基础和能力训练】
一、选择题:
1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
25.观察下列一组数:
列举:3、4、5,猜想:32=4+5;
列举:5、12、13,猜想:52=12+13;
列举:7、24、25,猜想:72=24+25;…
根据以上规律解答下列问题:
(1)列举:13、b、c,猜想:132=b+c;
请你分析上述数据的规律,结合相关知识求得b=,c=(2)列举:2n+1,b,c,且n是正整数,,猜想:
20.如图,OABC是一张放在平面直角坐标系中的矩形纸
片,O为原点,点A在x轴的正半轴上,点C在y轴的正
半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD
翻折,使点O落在BC边上的点E处,则点D的坐标()、
点E的坐标()
三、解答题:
21.已知 中
于D,求CD的长。
22.已知,如图,沿折痕AE折叠长方形ABCD的一边,使点D落在BC边上点F处,若 ,且 面积为24,求EC的长。
③ ;
其中正确的是
20.在Rt△ABC中,AC=BC,∠C=90°,P、Q在AB上,且∠PCQ=45°试猜想分别以线段AP、BQ、PQ为边能组成一个三角形吗?若能试判断这个三角形的形状.
21.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:

【初二】第三章勾股定理讲义

【初二】第三章勾股定理讲义

勾股定理1.1 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。

1.2勾股定理的证明:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。

1.4勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为( )CABcb aDCGFE Hcb a cba ED CBA【例3】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例4】 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定【例5】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5 C【例6】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例7】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c =_______; (2)如果68a b ==,,则c =_______; (3)如果512a b ==,,则c =________; (4)如果1520a b ==,,则c =________.(5)若c =41,a =40,则b =______; (6)若∠A =30°,a =1,则c =______;(7)若∠A =45°,a =1,则b =______.【例8】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<【例9】 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 【例10】已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,EC 的长为 . 【例11】一个矩形的抽屉长为24cm ,宽为7cm,在里面放一根铁条,那么铁条最长可以是 . 【例12】如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?CBA“路”4m3m【例13】 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为( ) 【例14】如图,以一个直角三角形的三边为边长分别向外作三个正方形,如果两个较大正方形的面积分别是576和676,那么最小的正方形的面积为( ) 【例15】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ; (4)若a 、b 、c 为连续整数,求a +b +c .2 勾股定理的逆定理【例1】 分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有____________.(填序号)【例2】 下列线段不能组成直角三角形的是( ).A .a =6,b =8,c =10B .3,2,1===c b aC .43,1,45===c b a D .6,3,2===c b a【例3】 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定【例4】 在ABC △中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.【例5】 若ABC △中,()()2b a b a c -+=,则B ∠=____________; 【例6】 如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC△是______三角形.【例7】 下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶169【例8】 已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).A .一定是等边三角B .一定是等腰三角形C .一定是直角三角D .形状无法确定【例9】 若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以22a a a -+、、为边的三角形的面积为______.【例10】 ABC △的两边a b ,分别为512,,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.【例11】 如图,ABC △中,90C ∠=︒,330AC B =∠=︒,,点P 是BC 边上的动点,则AP 长不可能是( )A .B .C .D .7【例12】 如图,在△ABC 中,已知AB =AC =2a ,∠ABC =15°,CD 是腰AB 上的高,求CD 的长.DCBA【例13】 如图所示,已知∠1=∠2,AD =BD =4,CE ⊥AD ,2CE =AC ,那么CD 的长是( )【例14】 如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.【例15】 如图,在ABC △中,CD AB ⊥于D ,9435AC BC DB ===,,.(1)求CD AD ,的值;(2)判断ABC △的形状,并说明理由.【例16】 已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【例17】 如图所示,在四边形ABCD 中,已知:AB :BC :CD :DA =2:2:3:1,且∠B =90°,求∠DAB 的度数.【例18】 如图,已知CA ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD .(1)试猜想线段CE 与DE 的大小与位置关系,并说明你的结论; (2)若AC =5,BD =12,求CE 的长.【例19】 阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且PBCA21EBDCADCBAABDCD CBACDBE AA12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为5,这边上的中线长为,另两边之和为7,求这个三角形的面积.【例20】 已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【例21】 已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,求证:AB +AD =AC ;(2)在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;BCDN AM MAND CB【例22】 在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?. 1.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.2.如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆CB A底部B 的距离为6米,则折断点C 到旗杆底部B 的距离为3.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于 .4. Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( ).5.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,则CD 的长为 .6.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 7.如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )A .10B .12C .14D .168.如图,在Rt ABC △中,已知,90ACB ∠=︒,15B ∠=︒,AB 边的垂直平分线交AB 于E ,交BC 于D ,且13BD =,则AC 的长是 .9. 如图所示,在ABC △中,::3:4:5AB BC CA =,且周长为36,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,则过3秒时,BPQ △的面积为( )2cm .10. 如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.DCBAFECBDAE DBC AQCA。

八下教学案(第一章勾股定理)

八下教学案(第一章勾股定理)

§1.1勾股定理(1)【教学目标】1.会用面积法探索勾股定理,并掌握勾股定理的内容;2.会用勾股定理进行简单计算.【重点】:勾股定理的内容及证明.【课堂学习】一.导1.20XX年8月2日世界数学年会在北京召开,下图是本届年会的会徽,这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.你知道勾股定理吗?2.相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.你知道这个数量关系吗?二.学1.下图中A、B、C的面积各是多少?它们之间有什么关系?图(1)中,S A= ,S B= ,S C= .图(2)中,S A= ,S B= ,S C= .通过(1)、(2)发现:S A+S B=S C,也就是说:在等腰直角三角形中,以三边为边长向外作正方形,直角边外的两个正方形的面积和等于斜边上正方形的面积.2.在任意的三角三角形中,具有这样的数量关系吗?图(3)中,S A = ,S B = ,S C = . 图(4)中,S A = ,S B = ,S C = .由上可知,在任意的直角三角形中,以三边为边长向外作正方形,直角边外的两个正方形的面积和等于斜边上正方形的面积.3.你能用三角形的边长表示正方形的A 、B 、C 面积吗?S A = ,S B = ,S C = .因为S A +S B =S C ,所以 . 4.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222c b a =+. 三.议 例1.判断题:(1).如果三角形的三边长分别为a ,b ,c ,则222c b a =+ ( ) (2).如果直角三角形的三边长分别为a ,b ,c ,则222c b a =+ ( ) (3).如果直角三角形的三边长分别为a ,b ,c ,且c 为斜边,则222c b a =+ ( ) 例2.求出下列直角三角形中未知边的长度.四.练1.求下列图中字母所表示的正方形的面积:S A= ,S B= .2.⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .五.悟:本节课你有什么收获?【课后练习】:1.已知在Rt△ABC中,∠B=90°,a,b,c是△ABC的三边,则⑴c= .(已知a,b,求c)⑵a= .(已知b,c求a)⑶b= .(已知a,c,求b)2.在Rt△ABC,∠C=90°,⑴如果a=7,c=25,则b= . ⑵如果∠A=30°,a=4,则b= .a =2,则b= .⑶如果∠A=45°,a=3,则c= . ⑷如果c=10,b⑸如果a,b,c是连续整数,则a+b+c= .⑹如果b=8,a:c=3:5,则c= .3.如图,欲测量嘉陵江的宽度,沿江岸取B.C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为 .BC§1.1勾股定理(2)【教学目标】:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题. 【重点】:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.【课堂学习】:一.导(1)勾股定理的内容是;(2)直角三角形两边长为3和4,则第三边长;(3).图中x的值是 .二.学1.拼图验证. 用准备的四个全等的直角三角形(直角边分别为a、b,斜边为c)拼出正方形.①如图1,用两种方法表示大正方形的面积是 =②如图2,用两种方法表示大正方形的面积是 =③化简上面的式子,你可以验证勾股定理吗?2.请利用图3验证勾股定理:三.议:例1.如图,一个3m长的梯子AB,斜靠在一竖直的墙AO,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?OABCDx1517例2.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长.C F四.练——课堂练习 1.若△ABC 中,∠C=90°(1)若a =5,b =12,则c = ; (2)若a =6,c =10,则b = ; (3)若a ∶b =3∶4,c =10,则a = ,b = .2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木板的长为 .3.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 .4.等腰三角形的腰长为13cm ,底边长为10cm ,则面积为( ).A.302cmB.1302cmC.1202cmD.602cm五.悟:本节课你收获了什么?【课后练习】1.轮船从海中岛A 出发,先向北航行9km ,又往西航行9km ,由于遇到冰山,只好又向南航行4km ,再向西航行6km ,再折向北航行2km ,最后又向西航行9km ,到达目的地B ,求AB 两地间的距离.2.一棵9m 高的树被风折断,树顶落在离树根3m 之处,若要查看断痕,要从树底开始爬多高?§1.1.2 勾股定理(3)【教学目标】1.能利用勾股定理,根据已知直角三角形的两边长求第三条边长;2.会在数轴上表示无理数.【重点】:利用勾股定理在数轴上表示无理数.【课堂学习】一. 导在Rt△ABC中,∠C=90°(1)若a=1,b=1,则c= ;(2)若a=1,b=2,则c= ;(3)若a=1,b=3,则c= ;(4)若a=1,b=4,则c= ;…………依次类推:若a=1,b=n,则c= .二.学:阅读教材1.根据上面的规律,你能画出长度为1、2、3……n的线段吗?2.我们知道数轴上的点与实数是一一对应的.你能在数轴上画出表示1、2、3……n的点吗?三.议:例1.如何在数轴上画出表示13的点?【分析】:除了上面的方法外,利用勾股定理,可以发现,长为13的线段是直角边为正整数_____, _____的直角三角形的斜边.【作法】:在数轴上找到点A,使OA=_____,作直线l垂直于OA,在l上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示13的点.例2.已知:如图,等边△ABC 的边长是6cm .⑴求等边△ABC 的高. ⑵求S △ABC.四.练 1.填空题⑴在Rt △ABC ,∠C=90°,a =8,b =15,则c = .⑵在Rt △ABC ,∠B=90°,a =3,b =4,则c = . 2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积. 3.在数轴上画出表示17的点?(尺规作图)五.悟:本节课你收获了什么? 【课后练习】1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A. 4cm B. 34cm C. 6cm D. 36cm2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A.42 B.32 C.42 或 32 D.37 或 333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A. 9分米B. 15分米C. 5分米D. 8分米 4. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.“路”4m3m5.在△ABC中,∠C=90°(1)已知a=2.4,b=3.2,则c=;(2)已知c=17,b=15,则△ABC面积等于;(3)已知∠A=45°,c=18,则a= .6.一个矩形的抽斗长为24cm,宽为7cm,在里面放一根铁条,那么铁条最长可以是 .cm,则AB=.7. 在Rt△ABC中,∠C=90°,BC=12cm,S△ABC=3028.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为 .9.一天,小明买了一张底面是边长为260cm的正方形,厚30cm的床垫回家.到了家门口,才发现门口只有242cm高,宽100cm.你认为小明能拿进屋吗? .10.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树m/的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大梢上发出友好的叫声,它立刻以4s树和伙伴在一起?§1.2.1勾股定理的逆定理(1)【教学目标】1.理解勾股定理逆定理的证明方法;掌握勾股定理的逆定理;2.能运用勾股定理的逆定理判定一个三角形是不是直角三角形,体会数形结合的思想方法;3.能运用勾股定理的逆定理解决相关问题. 【重、难点】1.重点:理解和运用勾股定理的逆定理.2.难点:勾股定理的逆定理的证明. 【学习过程】 一.导1.勾股定理的内容的是: .2.把勾股定理的题设和结论交换你会得到一个命题: .3.勾股定理的逆命题成立吗?如何证明? 二.学1.画一个边长为3cm ,4cm ,5cm 的三角形,并观察猜测个三角形的形状?2. 三边长度为3cm ,4cm ,5cm 的三角形与以3cm ,4cm 为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由?3.△ABC 三边长为a ,b ,c 且满足222c b a =+,那么△ABC 与以a ,b 为直角三角形之间有何关系?试说明理由?BCC14.勾股定理的逆定理:如果三角形的三边a ,b ,c ,且满足222c b a =+,那么这个三角形是直角三角形.5.在一对命题中,第一个命题的题设为第二个命题的结论,而第一个命题的结论恰为第二个命题的题设,像这样的两个命题叫做互逆命题.若如果把其中一个叫做原命题,则另一个叫做它的逆命题.6.若一个定理的逆命题成立,我们就把这个逆命题叫做这个定理的逆定理.任意一个命题都有逆命题,但定理不一定有逆定理. 三.议例1.说出下列命题的逆命题,并判断它们是否正确.1.猫有四只脚.2.线段垂直平分线上的点,到这条线段两端距离相等.3.对顶角相等.4.角平分线上的点,到这个角的两边距离相等. 例2. 判断由线段a ,b ,c 组成的三角形是不是直角三角形: (1)a =15,b =8,c =17 (2)a =13,b =14,c =15【说明】像8,15,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数(或勾股弦数).你还能说出一些勾股数吗?例3.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD 的形状,并说明理由.四.练1.判断由线段a ,b ,c 组成的三角形是不是直角三角形.(1)a =15 b =8 c =17 ( ) (2)a =13 b =14 c =15 ( ) 2.判断正误:(1)△ABC 的三边分别为a 、b 、c 且满足222b c a -=那么△ABC 不是直角三角形.( ) (2)△ABC 中a =5,b =13,c =12,因为222c b a ≠+所以△ABC 不是直角三角形.( ) (3)在△ABC 中三边长分别为a =10 , b =6, c =8, 因为222a c b =+,所以∠C=900( )(4)任何一个命题都有逆命题,任何一个定理都有逆定理.( ) 五.悟:本节课你收获了什么? 【课后练习】1.下列线段不能组成直角三角形的是( )A.a =8,b =15,c =17B.a =9,b =12,c =15C.a :b :c =2:3:4D.a =5k ,b =12k ,c =13k (k >0)2.如图,已知∠B=90°,AB=4米,BC=3米,CD=13米,DA=12米,求四边形ABCD 的面积.3.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若n 表示大于1的整数且12-=n a ,n b 2=,12+=n c .那么a 、b 、c 是一组勾股数吗b ?如果加以证明,若不是说明理由.§1.2.2勾股定理逆定理(2)【教学目标】:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围.2.培养学生的发展逻辑推理能力,体会“形”与“数”的结合. 【难点】:勾股定理的逆定理的应用 【课堂学习】 一.导1.如果线段a 、b 、c 满足222b c a -=,这三条线段组成的三角形是不是直角三角形?为什么? 2.以下各组数为边长,能组成直角三角形的是( ).A.5,6,7B.10,8,4C.7,25,24D.9,17,15 3.以下各组正数为边长,能组成直角三角形的是( ). A.a -1,a 2,1+a B.1-a ,2 ,1+a C.1-a ,a 2,1+a D.1-a ,a ,1+a4.若△ABC 的三边a .b .c 满足182-+b a +2)18(-b +30-c =0则△ABC 是 三角形. 二.学例 1.“远航”号.“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?三.议例3.已知正方形ABCD 中E 为AD 的中点,CF=3DF.求证∠BEF 为直角.CA四.练1.以下列各组数为边长,能组成直角三角形的是( )A.3,4,5B.2,3,4C.5,10,15D.4,5,62. 下列条件①∠A=∠B=∠C ; ②∠A+∠B=∠C ; ③∠A=∠B=300;④∠A+∠B=450;⑤∠A=∠B=450;能判断△ABC 是直角三角形的条件有( )A.2个B.3个C.4个D.所有的条件都不能判断3.等腰三角形的周长为36厘米,底边上的高为12厘米,则该三角形的面积为 .4. 一个直角三角形的三边长为连续的整数,则它的三边长分别为 ;一个直角三角形的三边长为连续的三个偶数,则它的周长为 .五.悟:本节课你收获了什么?【课后练习】1.请完成以下未完成的勾股数:(1)8、15、_______;(2)10、26、_____.2.△ABC 中,222c b a =+,722=-b a ,又c =5,则最大边上的高是_______. 3.以下各组数为三边的三角形中,不是直角三角形的是( ).A.3+1,3-1,22B.7,24,25C.4,7.5,8.5D.3.5,4.5,5.54.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是( ). A.12.5 B.12 C.152 D.95.已知:如图,AB=4,BC=12,CD=13,DA=3,AB ⊥AD.求证:BC ⊥BD.6.一艘轮船以20千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港口以15千米/时的速度向东南方向航行,它们离开港口2小时后相距多少千米?§1《勾股定理》单元复习【知识要点】1.如图,在△ABC 中,设BC=a ,AC=b ,AB=c①.若∠C=90°,则a 、b 、c 之间的关系为 . ②.当a 、b 、c 之间的关系满足 时,∠C=90°. 2.勾股定理的应用:(1)已知直角三角形的两边,求第三边.(直接代入公式)(2)已知直角三角形的一边及另两边的关系,求另两边.(利用勾股定理列方程) 3.勾股定理逆定理的应用:用作直角三角形的判定. 【典型例题】【例1】.填空题:在Rt △ABC ,∠C=90°,⑴如果a =7,c =25,则b = . ⑵如果∠A=30°,a =4,则b= . ⑶如果∠A=45°,a =3,则c = . ⑷如果c =10,b a -=2,则b = . ⑸如果a 、b 、c 是连续整数,则c b a ++ .⑹如果b=8,a :c =3:5,则c = .【例2】.如图,矩形ABCD 中,AB=6cm ,BC=10cm ,折叠矩形的AD 边,使D 点落在BC 边的F 处,求CE 的长.FD ABC【例3】.如图,在正方形ABCD 中,F 是CD 边的中点,E 是BC 上一点,且CE=BC 41. 求证:∠AFE=90°BDabCA【课后练习】, 一、填空题1.如图,有一块边长为12米的正方形草地,有人常走捷径AB ,为此,小明在A 地立了一个标牌“少走 米,踏之何忍”.5米12米ABF BADC2.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .3.已知等腰三角形的一条腰长是5,底边长是 6,则它底边上的高为 .4.如图,矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD.BC 于E.F ,连接CE ,则CE的长为5.若a 、b 、c 是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:① 以2a ,2b ,2c 的长为边的三条线段能组成一个三角形;② 以a ,b ,c 的长为边的三条线段能组成一个三角形;③ 以b a +,h c +,h 的长为边的三条线段能组成直角三角形;④ 以a1,b 1,c1的长为边的三条线段能组成直角三角形.其中所有正确结论的序号为 . 二.选择题:1.以OA 为斜边作等腰直角三角形OAB ,再以OB 为斜边在△OAB 外侧作等腰直角三角形OBC ,如此继续,得到8个等腰直角三角形(如图),则图中△OAB 与△OHJ 的面积比值是( ) A.32B.64C.128D.256cba2.如图,直线上有三个正方形a ,b ,c ,若a ,c 的面积是5和11,则b 的面积是( ) A.4B.6C.16D.553.以下不能构成三角形三边长的数组是( )A.(1,3,2)B.(3,4,5)C.(3,4,5)D.(32,42,52)4.左图是一个边长为)(n m +的正方形,小明将图左中的阴影部分拼成右图形状,由左图和右图能验证的式子是( )A.mn n m n m 4)(22=--+)(B.mn n m n m 2)()(222=+-+C.2222)(n m mn n m +=+-D.22))((n m n m n m -=-+nn mmnm三.解答题:1.如图,在一棵树的10米高的B 处两只猴子,其中一只猴子爬到树下,走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到池塘A 处(假设它经过的路线是直线),如果两只猴子所经过的路程相等,求这棵树的高度.2.如图,八年级五班几名同学准备测量校园人工湖的深度,他们把一根竹杆插到离湖1米远的水底,只见竹杆高出水面0.2米,把竹杆的顶端拉向湖边(底端没动),杆顶和湖边的水面刚好平齐,求湖水的深度.BCD3.阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足442222b ac b c a -=-,试判断△ABC 的形状. 解:∵ 442222b ac b c a -=- ————————① ∴ ))(()(2222222b a b a b a c -+=- ————————② ∴222b ac += ————————③ ∴ △ABC 为直角三角形.问:(1)上述解题过程,有错吗? (填“有”或“无”) (2)如果有错,从哪一步开始出现错误?请写出该步的代号 ; (3)错误的原因是 ; (4)本题正确的结论是 .。

勾股定理期末复习讲义

勾股定理期末复习讲义

勾股定理期末复习讲义提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的这里还涉及到了解决几何问题的方法之一:面积法。

割补(……陌生的名词么,但是我们用过)的思想也要值得我们去注意.【知识结构】1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3.勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数.你记得几组勾股数?显然,若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数.4.利用尺规画出长度是无理数的线段.了,知道画吧5.勾股定理及其逆定理的应用.蚂蚁怎样走最近【注意】1.勾股定理的证明,是利用图形的割补变化,通过有关面积的数量关系进行证明的方法.2.在应用勾股定理时,要注意在直角三角形的前提条件,分清直角三角形的直角边和斜边.3. 在应用勾股定理逆定理时,先要确定最长边,再计算两条较短边的平方和是否等于最长边的平方,最后确定三角形是不是直角三角形.4. 本章关联的知识点:实数的运算,三角形,四边形,图形变换,解方程等【基础训练A】1.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.若线段a、b、c能构成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:73.下面四组数中是勾股数的有()(1)1.5,2.5,2 (2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组4. △ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.5. 在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B C A D B C A D7. 如图,已知CD=3m ,AD=4m , ∠ADC=90°, AB=13m ,BC=12m ,(1)求AC 边的长。

1.2.1_直角三角形的性质与判定(2)

1.2.1_直角三角形的性质与判定(2)

练习 在Rt△ABC中, ∠C= 90°. (1) 已知a = 25, b = 15, 求c;
c = a2 + b2 = 252 +152 = 625 225 = 5 34.
(2) 已知a = 5, c = 9, 求b;
(3) 已知b = 5, c = 15, 求a.
b = c2 - a2 = 92 - 52 = 14 4 = 2 14.
同学们,我们也来观察下面图中的地面, 看看你能发现什么?是否也和大哲学家有同样 的发现呢?
探究
A B
图1-1
(1)观察图1-1
C
正方形A中含有 16 个 小方格,即A的面积 是 16 个单位面积。
正方形B的面积是 9 个 单位面积。
25 个 正方形C的面积是 单位面积。
(图中每个小方格代表一个单位面积)
勾股世界


在中国古代,人们把弯曲成直角的手臂的上半部 分称为"勾",下半部分称为"股"。我国古代学者 把直角三角形较短的直角边称为“勾”,较长的 直角边称为“股”,斜边称为“弦”.
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年希 年希腊曾经发行了一枚纪念票。 腊曾经发行了一枚纪念邮票。
4、在Rt △ABC中,a、b、c分别为三边长, 则下列关系中正确的是( )D
A、 a2+b2=c2 B、 a2+c2=b2

2022年八年级数学:勾股定理逆定理与勾股数

2022年八年级数学:勾股定理逆定理与勾股数

勾股定理逆定理与勾股数【学习目标】1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.【基础知识】一.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.三.勾股数勾股数:满足a 2+b 2=c 2 的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是够勾股数. ②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…【考点剖析】c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c一.勾股定理的逆定理(共5小题)1.(2022春•汉阴县月考)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证AC⊥CD.2.(2022春•蚌山区校级期中)龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?3.(2021秋•漳州期末)已知:如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.求证:△ACD是直角三角形.4.(2021春•商河县校级期末)如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD =6,DE=4,AE=,求证:∠ACE=90°.5.(2020秋•太平区期末)如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.二.勾股数(共4小题)6.(2022春•铜梁区校级期中)下列四组数中,是勾股数的是()A.6,8,10B.0.3,0.4,0.5C.,,D.32,42,527.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c 为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.8.观察下列勾股数3、4、5;5、12、13;7、24、25;9、40、41;…;a、b、c.根据你发现的规律,回答下列问题:(1)a=17时,求b、c的值;(2)a=2n+1时,求b、c的值.9.已知m>0,若3m+2,4m+8,5m+8是一组勾股数,求m的值.【过关检测】一.选择题(共4小题)1.(2021秋•平昌县期末)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组2.(2022春•仓山区期中)下列各组数,是勾股数的一组是()A.13,14,15B.15,8,17C.3,4,D.1,,3.(2021秋•徐汇区期末)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5B.三边长的平方之比为1:2:3C.三边长之比为7:24:25D.三内角之比为1:2:34.(2021秋•榆林期末)以下列各组线段为边作三角形,不能作出直角三角形的是()A.1,2,B.6,8,10C.3,7,8D.0.3,0.4,0.5二.填空题(共9小题)5.(2022春•长沙月考)如图,D为△ABC边BC上的一点,AB=20,AC=13,AD=12,DC=5,则S△ABC =.6.(2021秋•普陀区期末)已知两条线段的长为3cm和4cm,当第三条线段的长为cm时,这三条线段能组成一个直角三角形.7.(2021秋•淮安区期末)已知三角形三边长分别是6,8,10,则此三角形的面积为.8.(2021秋•牡丹区校级月考)勾股数为一组连续自然数的是.9.(2021春•潼南区期末)若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.10.(2022春•泗水县期中)观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为.11.(2021秋•太原期末)已知△ABC中,AB=6cm,BC=8cm,AC=10cm,则△ABC的面积是cm2.12.(2022春•孝南区月考)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.13.(2021春•绥滨县期末)已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.三.解答题(共7小题)14.(2021春•罗湖区校级期末)如图,在△ABC中,AB=5,AC=3,D是BC的中点,AD=2,求△ABC 的面积.15.(2021春•睢县期中)已知△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12,(1)求证:CD⊥AB;(2)求三角形ABC的周长.16.(2021春•芜湖期中)如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.17.(2019秋•玄武区期末)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE =1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.18.(2021春•天心区期中)如图是由边长均为1的小正方形组成的网格,点A,B,C都在格点上,∠BAC 是直角吗?请说明理由.19.(2020春•东莞市期末)如图,已知点C是线段BD上的一点,∠B=∠D=90°,若AB=3,BC=2,CD=6,DE=4,AE=.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.(2019秋•红河州期末)如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:连接AC,
设 AB 2k, BC 2k,CD 3k, DA k .
∵AB 2k, BC 2k ,∠ABC=90°, ∴ AC 2 AB2 BC 2 (2k)2 (2k)2 8k 2,∠BAC=45°. ∵ CD 3k, DA k , ∴ AC2 DA2 8k 2 k 2 9k 2 CD2 , ∴∠DAC=90°, ∴∠DAB=45°+90°=135°.
6 8 10
角三角形的有 ①②③ .
3、在正方形ABCD中,E为BC的中点,F是CD上一
点,且 FC 1 DC . 试说明:AE⊥EF.
4
提示:连接AF.
【检测拓展】
1、如图,在正方形ABCD中,AB=4,AE=2,DF=1,
图中有几个直角三角形,你是如何判断的? 解:4个
2、给出下面的三角形: ①在△ABC中,∠C=∠A-∠B; ②在△ABC中,∠A:∠B:∠C=1:2:3; ③在△ABC中,a:b:c=5:12:13; ④在△ABC中,三边长分别为 1 ,1 ,1 .其中,是直
【学习活动】
反过来,如果一个三角形中有两边的平方和等于第 三边的平方,那么这个三角形是直角三角形吗?
c a
b
a2+足这个条件的三角形试一试?
【探究活动一】勾股定理的逆定理
下面的每组数分别是一个三角形的三边长a,b,c,而 且都满足a2+b2=c2 :
3,4,5;5,12,13;8,15,17;7,24,25 分别以每组数为边长画出三角形,它们都是直角三 角形吗?你是怎么判断的?
经测量,它们都是直角三角形.
勾股定理:
满足a2+b2=c2的三个
a
c
b
,称为
.
例题解析:
例1 三角形三边长为 9,40,41,则面积为 180.
即学即练 将这个三角形绕一条直角边旋转180°,
得到圆锥,求这个圆锥的体积 1080π或4800π .
例2 一个零件的形状如图1所示,按规定这个零件 中∠A和∠DBC都应为直角.工人师傅量得这个零 件各边的尺寸如图2所示,这个零件符合要求吗?
§1.2 一定是直角三角形吗
第1课时 勾股定理逆定理
【学习目标】
1、经历勾股定理逆定理的探索过程,进一步发展推 理能力. 2、理解勾股定理逆定理,并能进行简单应用. 3、掌握勾股数的概念,探索常用勾股数的规律.
知识回顾: 1、勾股定理:直角三角形两直角边的 平方和 等于 斜边的 平方 . 2、如果a、b和c分别表示直角三角形两直角边和斜 边,则有 a2+b2=c2 .
你能说说为什么吗? 解: a2 b2 c2 ,
(ka)2 (kb)2 k 2a2 k 2b2 k 2 (a2 b2 )
k 2c2
(kc)2.
∴当k是正整数时,ka,kb,kc仍是勾股数; 当k是分数时,ka,kb,kc仍符合关系式.
拓展
2、构造勾股数的重要方法: (1)n是大于1的奇数,则n,n2 1,n2 1是勾股数;
C
C
D
D
A
B
图1
A
B
图2
即学即练 如图,在四边形ABCD中,∠B=90°, AB=3,BC=4,CD=13,DA=12,则四边形
ABCD的面积等于 36 .
例3 已知|x-12|+|z-13|+y2-10y+25=0,则以x,y,z为
三边的三角形是 直角三角形 .
即学即练 若△ABC的三边a,b,c满足(a-b)2+
|a2+b2-c2|=0,则△ABC是 等腰直角三角形 .
【探究活动二】勾股数
例4 下列各组数是勾股数的是( C )
A.3,4,7
B.1 ,1 ,1
345
C.5,12,13
D. 1 ,1 ,1
345
即学即练4 若15,36,x三个数能构成勾股数, 则x为 39 .
拓展
1、勾股数的正整数倍仍是勾股数,分数倍仍符合 关系.
22
(2)n是大于2的偶数,则n,n2 1,n2 1 是勾股数.
44
【融合创新】
1、如图,在△ABC中,AB=13,AC=5,BC=12. 点O为∠ABC与∠CAB的平分线的交点,点O到 边AB的距离OP为 2 .
2、如图,在四边形ABCD中,AB:BC:CD:DA=2: 2:3:1,且∠ABC=90°,则∠DAB的度数是 135°.
相关文档
最新文档