圆锥曲线之动点轨迹方程

合集下载

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

怎样求动点的轨迹方程

怎样求动点的轨迹方程

思路探寻在解题时,我们经常会遇到求动点的轨迹方程问题.此类问题主要考查圆锥曲线的定义、图形以及几何性质,对同学们的想象与计算能力都有较高的要求.在解答此类问题时,需根据题目中所给的条件建立起各个变量之间的联系,得到关于动点的关系式,进而求得动点的轨迹方程.本文主要谈一谈动点的轨迹方程的几种求法.一、直接法直接法是求动点的轨迹方程的基本方法.通常要先设出动点的坐标;然后根据题目中所给的条件,利用相关的公式、定义、性质列出有关动点坐标的关系式;再通过化简、消元、变形,得到动点的轨迹方程;最后验证所得的结果是否满足题目的条件.例1.已知两定点A (-2,0),B (2,0),动点P 满足 PA ∙PB =0.由点P 向x 轴作垂线PQ ,垂足为Q ,若 PM = MQ ,求点M 的轨迹方程.解:设M (x ,y ),P (x 1,y 1),则Q (x 1,0),因为 PA ∙PB =0,所以x 12+y 12=4.因为PM ⊥x 轴, PM = MQ ,所以x 1=x ,y 1=2y ,所以点P 的坐标为(x ,2y ).又因为点P在圆x 12+y 12=4上,所以x 2+4y 2=4,所以点M 的轨迹方程为x 24+y 2=1.本题较为简单,可采用直接法求解.题目的条件中已明确给出了动点的几何关系,只要设出动点的坐标,根据已知条件建立关于点M 的坐标的关系式,即可得到点M 的轨迹方程.二、相关点法若一动点P 随着另一动点Q 的变化而变化,且已知另一动点Q 的运动轨迹,就可以利用相关点法,根据另一动点Q 的轨迹来求得动点P 的轨迹方程.在解题时,需先建立两个动点坐标之间的联系,求得另一动点Q 的轨迹方程;然后用动点P 的坐标表示相关点Q 的坐标,将其代入相关点Q 的轨迹方程,即可求得动点P 的轨迹方程.例2.从圆x 2+y 2=1上的任意一点P 向y 轴作垂线,求该垂线段中点M 的轨迹方程.解:设点P 为(x 0,y 0),点M 为(x ,y ),由题意知:ìíîïïx =x 02,y =y 0,即{x 0=2x ,y 0=y .因为点P 在圆上,所以x 02+y 02=1,可得4x 2+y 2=1,所以点M 的轨迹为椭圆,其轨迹方程为4x 2+y 2=1.分析题意可知,点M 随着点P 的变化而变化,需采用相关点法解答.先设出点M 和P 的坐标,并根据二者之间的联系建立关系式;然后用点M 的坐标表示P 点,通过P 点的轨迹方程间接求得M 点的轨迹方程.三、交轨法如果动点是两条曲线的交点,就可以采用交轨法来求动点的轨迹方程.先选出一个适当的参数表示动点;再根据题目中的条件建立关于参数的式子;然后通过恒等变换,逐步消去参数,得到所求点的轨迹方程.例3.已知动点P 在直线l :x -y -2=0上运动,过P 点作抛物线C :y =x 2的两条切线PA ,PB ,与抛物线C分别相切于A ,B 两点,求△APB 的重心G 的轨迹方程.解:设切点A ,B 的坐标分别为(x 1,x 12)和(x 2,x 22),则切线PA ,PB 的方程分别为:2x 1x -y -x 12=0,2x 2x -y -x 22=0,可得x p =x 1+x 22,y p =x 1x 2.设G 的坐标为(x ,y ),根据三角形重心的坐标公式可得:x =x 1+x 2+xp 3=x p ①,y =y 1+y 2+y p 3=4x p 2-y p3②.又因为点P 在直线l :x -y -2=0上运动,所以x p -y p -2=0③,由①②③可得△APB 的重心G 的轨迹方程是:y =43x 2-13x +23.解答本题,首先要根据题目中所给的条件设出切点的坐标,通过对抛物线的方程求导,得到切线的方程,并求出点P 的坐标;然后设出重心G 的坐标,根据中点的坐标公式和重心的坐标公式建立关系式,即可利用交轨法求得重心G 的轨迹方程.求动点的轨迹方程问题的难度往往不大,但解题时的计算量较大,同学们在解题时要谨慎计算,注意检验,避免出错.(作者单位:江苏省南通市海门四甲中学)史玉蕾48Copyright ©博看网. All Rights Reserved.。

圆锥曲线中动点的轨迹方程的求法

圆锥曲线中动点的轨迹方程的求法

知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。

圆锥曲线——轨迹方程

圆锥曲线——轨迹方程

圆锥曲线技巧——轨迹方程一、直接翻译法题型:动点M 满足。

条件,可由M 坐标直接翻译为等式关系。

即设M (x ,y ),f(x,y)=01、已知点A(-2,0),B(2,0),动点M 满足直接AM 与 直线BM 的斜率之积为-21,记M 的轨迹为曲线C ,求C 的轨迹方程。

(*:斜率要注意存在问题;本题答案:x 2/4+y 2/2=1(x ≠±2))2、已知点A (0,-1),点B 在直线y=-3上,动点M 满足MB ∥OA 且AB MA •=BA MB •,求动点M 轨迹方程。

(本题答案:0842=--y x )3、已知圆O :0222=-+y x ,圆O ':010822=+-+x y x ,由点P 向两圆引切线长相等,求点P 的轨迹方程。

二、四大定义法如果吻合曲线四大定义,则直接写出曲线方程即可。

例题1:已知点)0,2(),0,2(21F F -,动点P 满足421=+PF PF ,则P 点的轨迹为() 答案:线段例题2:已知点)0,2(),0,2(21F F -,动点P 满足221=-PF PF ,则P 点的轨迹为() 答案:双曲线的一支例题3:已知动点M 到点)1,2(F 的距离和到直线01043:=-+y x l 的距离相等,则M 点的轨迹为()答案:直线1、已知动圆P 过定点A (-3,0),且与圆64)3(:22=+-y x B 相切,求动圆圆心P 的轨迹方程。

2、已知圆25)1(:22=++y x C ,Q 为圆C 上任意一点,点A (1,0),线段AQ 的垂直平分线与CQ 的连接线相交于点M ,求点M 的轨迹方程。

(提示:垂直平分线的性质定理,即垂直平分线上的点到线段两边的距离相等)3、已知动圆P 与圆1)3(:221=++y x O 外切,与圆1)3(:222=+-y x O 内切,求动圆圆心P 的轨迹方程。

4、已知动圆P 与定圆1)2(:22=++y x C 外切,又与定直线1:=x l 相切,求动圆圆心P 的轨迹方程。

圆锥曲线的动弦中点轨迹方程

圆锥曲线的动弦中点轨迹方程

圆锥曲线的动弦中点轨迹方程圆锥曲线的动弦中点轨迹方程圆锥曲线的动弦中点轨迹方程问题主要有以下三种类型:一、过定点的动弦中点的轨迹方程例1:已知椭圆x22+y2=1,过点P(2,0)引椭圆的割线,求割线被椭圆截得的弦的中点的轨迹方程。

⎧y=k(x-2)⎧解法一:设过点P(2,0)的直线方程为y=k(x-2),联立方程⎧x2,消去y,整理得2+y=1⎧⎧2⎧12⎧222+k⎧x-4kx+4k-1=0,设弦的两个端点为A(x1,y1)、B(x2,y2),中点M(x,y),⎧2⎧则x=2x1+x222=4k221+2k2,kx2=x4-2x2,代入y=k(x-2)12x(x-2),即(x-1)+2y22得y=k(x-2)=4-2x(x-2)=-2=1又过点P(2,0)的直线与椭圆相交,所以∆=(-4k2)-4 2⎧12⎧2+k⎧4k-1>0 ⎧2⎧()解得0≤k≤12,即0≤x4-2x≤12,解得0≤x当k不存在时,不满足题设要求,舍去。

所以割线被椭圆截得的弦的中点的轨迹方程是(x-1)2+2y2=1(0≤x2+y1=1⎧⎧2解法二:设弦的两个端点为A(x1,y1)、B(x2,y2),中点M(x,y),则⎧2 x2⎧2+y2=1⎧⎧2两式相减得x1-x2222+y1-y2=0,整理得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,22由题意知x1≠x2,所以y1-y2x1-x2=x1+x2-2(y1+y2)=x-2y=kAB,又kAB=yx-2,所以yx-2=x-2y,22整理得(x-1)+2y=1。

又过点P(2,0)的直线与椭圆相交,与解法一同理可得0≤x22所以割线被椭圆截得的弦的中点的轨迹方程是(x-1)+2y=1(0≤x注意:⑴当定点在圆锥曲线外的时候一定要验证直线与圆锥曲线相交的条件∆>0,并求出x(或y)的取值范围;⑵验证斜率不存在的情况是否符合题意。

二、斜率为定值的平行弦的中点轨迹方程例2:斜率为2的直线与双曲线x2-y2=12相交于两点P1、P2,求动弦P1P2中点轨迹方程。

圆锥曲线中轨迹方程问题的求法

圆锥曲线中轨迹方程问题的求法

第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。

求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。

二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

圆锥曲线的统一定义

圆锥曲线的统一定义

左焦点的距离为14,求P点到右准线的距离.
x2 y2 上一点P到 1 64 36
(2)椭圆
x2 y 2 1 25 9
的左右焦点分别为F1、F2
90° , 求ΔF1PF2的面积. 60 P为椭圆上一点,且∠F1PF2=90°
轨迹方程的思考:
例2.已知点P到定点F(1,0)的距离与它到定直线
l1
y
l2 M2 P
M1
P
O
d2
M2 x F1
d2
F1
.
.
F2
.
M1
O
.
F2 P′
x
d1
a 准线: x c
2
PF1 PF2 e 定义式: d1 d2
标准方程
x2 y2 2 1 2 a b ( a b 0)
图形
焦点坐标
准线方程
a2 x c a2 y c a2 x c
平面内到定点F的距离和到定直线的距离相等的点的 轨迹 表达式|PF|=d (d为动点到定直线距离)
平面内动点P到一个定点F的距离PF和到一条定 直线l (F不在l上)的距离d相等时,动点P的轨迹为抛 物线,此时PF/d=1.
探究与思考:
若PF/d≠1呢?
在推导椭圆的标准方程时,我们曾得到这样 一个式子:
2、左焦点与左准线对应,右焦点与右准线对应,不能混淆, 否则得到的方程不是标准方程。
3、离心率的几何意义:曲线上一点到焦点的距离与到相应 准线的距离的比。
x y 2 1(a b 0) 2 a b
l1 d1 y l2
2
2
x2 y2 2 1(a 0, b 0) 2 a b
l : x 5的距离的比是常数

圆锥曲线大题题型分类归纳大全

圆锥曲线大题题型分类归纳大全

圆锥曲线大题题型归纳梳理圆锥曲线中的求轨迹方程问题解题技巧求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。

【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。

【例2.】已知点P 在椭圆1422=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 31=求动点M 的轨迹方程。

【例3.】已知圆),,(,)(:0236222B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。

【例4.】过点),(10的直线l 与椭圆1422=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。

巩固提升1. 在平面直角坐标系xOy 中,点()(),,,,4010B A 若直线02++-m y x 上存在点P ,使得,PB PA 21=则实数m 的取值范围为_________________.2. 已知()Q P ,,24-为圆422=+y x O :上任意一点,线段PQ 的中点为,M 则OM 的取值范围为________________.3. 抛物线x y C 42:的焦点为,F 点A 在抛物线上运动,点P 满足,FA AP 2-=则动点P 的轨迹方程为_____________________.4. 已知定圆,)(:100422=++y x M 定点),,(40F 动圆P 过定点F 且与定圆M 内切,则动圆圆心P 的轨迹方程为____________________.5. 已知定直线,:2-=x l 定圆,)(:4422=+-y x A 动圆H 与直线l 相切,与定圆A 外切,则动圆圆心H 的轨迹方程为____________________6. 直线033=+-+t y tx l :与抛物线x y 42=的斜率为1的平行弦的中点轨迹有公共点,则实数t 的取值范围为_________________.7. 抛物线y x 42=的焦点为,F 过点),(10-M 作直线l 交抛物线于B A ,两点,以BF AF ,为邻边作平行四边形,FARB 求顶点R 的轨迹方程。

圆锥曲线轨迹方程大全

圆锥曲线轨迹方程大全

轨迹问题类型一:定义法类型二:直接法类型三:相关点法类型四:参数法类型一:定义法方法讲解:运用有关曲线的定义求轨迹方程.圆锥曲线的基本定义解题 注意:求轨迹方程时要注意轨迹的纯粹性与完备性.【范例1-1】【12年九江一中入学考试】1(1,0)F -,2(1,0)F ,12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程( )A .221169x y +=B .2211612x y += C .22143x y += D .22134x y+=【变式1-1】【10莲塘一中期末】点M 到点F (2,0)的距离比它到直线3x =-的距离小1,求点M 满足的方程。

【范例1-2】【10莲塘一中期末】已知一个动圆P 与定圆C :032422=-++y y x 内切且过定圆内的一个定点A(0,2),则动圆圆心P 的轨迹方程是 。

【变式1-2】【11年湖南师大附中期中考】已知定圆221:(2)49C x y ++=,定圆222:(2)1C x y -+=,动圆M 与圆1C 内切且和圆2C 外切,则动圆圆心M 的轨迹方程为 。

【范例1-3】如图,已知圆O 的方程为x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上的任意一点,AM 的垂直平分线交OM 于点P,则点P 的轨迹方程( )A.x 225 +y 216 =1错误!未指定书签。

B. x 225 -y 216 =1 C.(x+3)225 + y 216=1D. (x+3)225 - y 216=1【变式1-3】在ABC △中,24BC AC AB ,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.类型二:直接法方法讲解:直接根据等量关系式建立方程【范例2-1】【10年吉安一中第三次月考】已知A(-1,0).B(1,0),动点P(x,y)满足.4AP BP k k =,则动点的轨迹方程为 。

【变式2-1】【2006湖北卷4】设过点(,)P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = 且1OQ AB =,则点P 的轨迹方程是( )A .22331(0,0)2x y x y +=>>B .22331(0,0)2x y x y -=>> C .22331(0,0)2x y x y -=>> D .22331(0,0)2x y x y +=>>【范例2-2】设F (1,0),M 点在x 轴上,P 点在y 轴上,且.PF PM ,M P 2M N ———————→→→→--⊥=当点P 在y 轴上运动时,求N 点的轨迹C 的方程.【变式2-2】【山东省济宁市2011年3月高三第一次模拟理科】已知点(,0)(0)F a a >,动点M .P 分别在x .y 轴上运动,满足0PM PF ⋅=,N 为动点,并且满足0PN PM +=.(1)求点N 的轨迹C 的方程;【范例2-3】【2009山东卷文】设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥ ,动点(,)M x y 的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;【变式2-3】【江西省新余市2011年高三第二次模拟理科】已知直线l 与抛物线24x y =相切于点P (2,1),且与x 轴交于点A ,定点B 的坐标为(2,0). (1)若动点M 满足20AB BM AM ⋅+= ,求点M 的轨迹C 的方程;类型三:相关点法方法讲解:动点随已知曲线上点的变化而变化的轨迹问题【范例3-1】【11年衡阳八中期中】若点P 在曲线022=-y x 上移动,则点A (0,1-)与点P 连线中点M 的轨迹方程是( )A. 22x y =; B. 28x y =; C. 1822-=x y ; D. 1822+=x y ;【变式3-1】【10年湖南衡阳八中期末】已知圆C 的方程为:922=+y x ,过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+ ,则动点Q的轨迹方程是 。

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题

高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。

其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。

此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。

接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。

该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。

最后,文章介绍了另一种解轨迹问题的方法:定义法。

该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。

I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。

将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。

求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。

有关圆锥曲线轨迹方程的求法

有关圆锥曲线轨迹方程的求法

轨迹方程.
解 直线l过点M(0,1),当l的斜率存在时,设其斜率为k,则l的 方程为y=kx+1……………………………………….1′ 设 A x , y 、 B x , y ,由题设可得点A、B的坐标 x1 , y1 、 x2 , y2 2 2 1 1 y kx 1 是方程组 , ① 2 2 y 1 的解. ② x 4 将①代入②并化简,得 (4 k 2 ) x2 2kx 3 , 4′ …………… 0 则 x x 2k 1 2
1 点P满足 OP 2 OA OB当l绕点M旋转时,求动点P的


轨迹方程.
分析 设出直线l的方程,和A、B两点的坐标,并将 直线l方程与椭圆方程联立,求出 x1 x2 , y1 y2 ,
1 由 OP OA OB 可表示出点P坐标,再用消参法求 2
曲线与方程
学习如几何曲线 幸福似小数循环.
椭圆: 平面内与两定点F1 , F2的 距离之和 ________ 等于 _________ 常数2a
的点的轨迹.
PF1 PF2 2a (2a F1 F2 )
常数2a 的点的轨迹. 等于 __________
F1F2 2a
__________ ________ 双曲线 : 平面内与两定点F1 , F2的距离的差的绝对值
PF1 PF2 2a (2a F1 F2 )
F1F2 2a
相等 ______ 抛物线 :平面内与一定点F和一条定直线的距离
的点的轨迹.
PF d p
典例分析
题型一 直接法求曲线方程 【例1】已知点F(1,0),直线l:x=-1,P为坐标平面上 的动点,过P作直线l的垂线,垂足为点Q,且 QP QF FP FQ 求动点P的轨迹方程C.

圆锥曲线解题技巧

圆锥曲线解题技巧

圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。

若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。

2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。

方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。

圆锥曲线公式大全

圆锥曲线公式大全

(一)圆锥曲线公式大全1、椭圆的定义、椭圆的方程、椭圆的性质F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )(a, 0 ), ( 0, b )(0, a ), ( b, 0 )2、判断椭圆是 x 型还是y 型只要看2x 对应的分母大还是2y 对应的分母大,若2x 对应的分母大则x 型,若2y 对应的分母大则y 型.3、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为12222=+b y a x ,若为y型则可设为12222=+bx a y ,若不知什么型且椭圆过两点,则设为稀里糊涂型:221mx ny +=4、双曲线的定义、双曲线的方程、椭圆的性质双曲线定义若M 为双曲线上任意一点,则有12MF MF 2a -=(2a<2c)若12MF MF 2a -==2c,则点M 的轨迹为两条射线 若12MF MF 2a -=>2c, 则点M 无轨迹焦点位置x 轴y 轴图形方程 12222=-by a x 12222=-bx a y 焦点坐标 F1(c, 0 ), F2( c, 0 )F1(0,c, ), F2( 0, c )焦距 |F1F2| = 2c顶点坐标 (a, 0 )(0, a )a, b, c 的关系式椭圆形状长的像a,所以a 是老大,a2 = b2 + c2; 双曲线形状长的像c,所以c 是老大,c2 = a2 + b2 实轴、虚轴 实轴长=2a, 虚轴长=2b ,实半轴长=a, 虚半轴长=b 无论双曲线是x 型还是y 型,双曲线的焦点总是落在实轴上对称轴 关于x 轴、y 轴和原点对称离心率 ace =( e>1) 范围 ,a x a y R ≤≤-∈或x a y a ≤≤-或y ,x R ∈渐近线b y x a=±a y x b=±2、判断双曲线是 x 型还是y 型只要看2x 前的符号是正还是2y 前的符号是正,若2x 前的符号为正则x 型,若2y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为2a3、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为12222=-by a x ,若为y 型则可设为12222=-b x a y ,若不知什么型且双曲线过两点,则设为稀里糊涂型:221(0)mx ny mn -=<6、若已知双曲线一点坐标和渐近线方程y mx =,则可设双曲线方程为222(0)y m x λλ-=≠,而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线:l y kx b =+的弦长公式:AB ==8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l(F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不,立即化为方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为2y ax =(0)a ≠,a>o,开口朝右;a<0,开口朝左; 如果只知y 型,则设它为2(0)x ay a =≠,a>o,开口朝上;a<0,开口朝下。

《圆锥曲线―轨迹方程》

《圆锥曲线―轨迹方程》

《圆锥曲线―轨迹方程》2010届高考数学复习强化双基系列课件《圆锥曲线-轨迹方程》基本知识概要:一、求轨迹的一般方法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q 的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。

可以说是参数法的一种变种。

6.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。

7.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 .8.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为A( x1 , y1 ), B( x2 , y 2 ) 并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。

二、注意事项:1.直接法是基本方法;定义法要充分联想定义、灵活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程再直接消参;几何法要挖掘几何属性、找到等量关系。

圆锥曲线复习提纲(全)

圆锥曲线复习提纲(全)

圆锥曲线复习提纲椭圆双曲线平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线. 即当2﹤2时,轨迹是双曲线 当2=2时,轨迹是两条射线 当2﹥2时,轨迹不存在1.椭圆的性质:椭圆方程(1)范围:,椭圆落在组成的矩形中。

(2)对称性:图象关于y 轴对称,图象关于x 轴对称,图象关于原点对称。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点:,。

叫椭圆的长轴,长为2a ,叫椭圆的短轴,长为2b 。

(4)离心率:椭圆焦距与长轴长之比。

()O 可以刻画椭圆的扁平程度,e 越大,椭圆越扁,e 越小,椭圆越圆.(5)点P 是椭圆上任一点,F 是椭圆的一个焦点,则max PF a c =+,min PF a c =-.,F F 21,F F 21F F a c a c a c )0(122>>=+b a by a x b y b a,x a ≤≤-≤≤-b y ±=±=a ,x )0,a (A ),0,a (A 21-)b ,0(B ),b ,0(B 21-21A A 21B B ace =⇒2)(1a b e -=10<<e(6)点P 是椭圆上任一点,当点P 在短轴端点位置时,∠F 1PF 2取最大值.S △F 1PF 2=b 2tan θ2(θ=∠F 1PF 2). (7)椭圆的第二定义:当平面内点M 到一个定点F(c,0)(c >0)的距离和它到一条定直线l :x =a 2c的距离的比是常数e =ca (0<e <1) 时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 2、点与椭圆位置关系 点P(x 0,y 0)与椭圆x 2a2+y 2b 2=1(a >b >0)位置关系:(1)点P(x 0,y 0)在椭圆内⇔x 02a 2+y 02b 2<1 (2)点P(x 0,y 0)在椭圆上⇔x 02a 2+y 02b 2=1 (3)点P(x 0,y 0)在椭圆外⇔x 02a 2+y 02b 2>13、直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法(2)弦长公式:设直线y =kx +b 交椭圆于P 111222则|P 1P 2|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2 或|P 1P 2|=√1+1k 2|y 1−y 2|=√1+1k 2√(y 1+y 2)2−4y 1y 2(k ≠0).✧ 焦点弦:AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M(x o ,y o ),则有:弦长|AB |=2a ±e (x 1+x 2)=2a ±2ex o ,|AB |min =2b 2a(此时AB 垂直于x 轴,为通径).(3)弦AB 中点相关:若椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB 的斜率存在且为k, A (x 1,y 1),B (x 2,y 2),弦中点M(x o ,y o ),则有:➢ k ∙k OM =−b 2a 2=e 2−1, k OM =y ox o .➢ 直线AB 的方程:y − y o =−b 2a 2x oy o(x −x o ).➢ 线段AB 的垂直平分线方程:y − y o =a 2b 2yo x o(x −x o ).4、双曲线的几何性质:(1)顶点顶点:,特殊点:实轴:长为2a ,a 叫做实半轴长。

圆锥曲线的轨迹方程的求法

圆锥曲线的轨迹方程的求法

圆锥曲线轨迹方程的求法知识归纳求轨迹方程的常用方法:⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(Xo 、Yo ),然后代入点P 的坐标(Xo 、Yo )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。

(用未知表示已知,带入已知求未知)⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

类型一 直接法求轨迹方程【例1】已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|MN ⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0 ,则动点P(x ,y)的轨迹方程为 。

【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。

【变式训练】1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ⃑⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0,则动点P 的轨迹方程为3.在平面直角坐标系xOy 中,点P(a ,b)为动点,F 1,F 2分别为椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.类型二 定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C,求C的方程.【点评】定义法求轨迹方程1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.【变式训练】1. 在△ABC中,BC=4,△ABC的内切圆切BC于D点,且BD-CD=22,则顶点A的轨迹方程为______________.2.设定点F(1,0),动圆D过点F且与直线x=−1相切.则动圆圆心D的轨迹方程为3.如图所示:在圆C:(x+1)2+y2=16内有一点A(1,0),点Q为圆C上一动点,线段AQ的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24+y 23=1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.类型三 相关点法求轨迹方程【例3】 如图所示,抛物线E :y 2=2px(p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P(x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M. (1)求p 的值;(2)求动点M 的轨迹方程.【点评】相关点法的基本步骤(1)设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【变式训练】1.如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.2.已知三角形ABC 的顶点A (−3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______类型四 参数法求轨迹方程【例4】在平面直角坐标系xOy 中,已知两点M(1,-3),N(5,1),若点C 的坐标满足OC →=tOM →+(1-t)ON →(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P(m,0)(m≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.【变式训练】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右侧部分的交点为Q,点P在该直线上,且OP2-1,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.OQ=t t类型五 交轨法法求轨迹方程例5 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.【变式训练】抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。

圆锥曲线(求轨迹方程)

圆锥曲线(求轨迹方程)

专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0).④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程.【答案】 C图8-8- 2 图8-8- 1考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.图8-8-5(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0. (1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN →=0可知N ,P ,M 三点共线且PM ⊥QN . 过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y 29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎪⎨⎪⎧ y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,① 解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9, ∴E ⎝ ⎛⎭⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )图8-8-4 A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆.2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧ x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧ λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎨⎧ x =2(x A -x ),y -y B =-2y ,即⎩⎪⎨⎪⎧ x A =32x ,y B=3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1, 则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎨⎧x ′=2x ,y ′=2y +1, 代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。

圆锥曲线轨迹方程的求法

圆锥曲线轨迹方程的求法

圆锥曲线轨迹方程的求法
一、直接法求轨迹方程
利用动点运动的条件得到等量关系,表示为x和y的等式。

例如,已知点A(-2,0)和B(3,0),动点P(x,y)满足PA·PB=x²,
那么点P的轨迹是抛物线。

二、有定义法求轨迹方程
根据圆锥曲线的基本定义解题。

例如,已知圆O的方程
为x²+y²=100,点A的坐标为(-6,0),M为圆O上的任意一点,AM的垂直平分线交OM于点P,那么点P的轨迹方程为
25/16=(x+3)²/y²,即椭圆。

三、用相关点法求轨迹方程
当动点M随着已知方程的曲线上另一动点C(x,y)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x,y),再将
x和y代入已知曲线方程,即可得到点M的轨迹方程。

例如,从双曲线x²-y²=1上一点Q引直线x+y=2的垂线,垂足为N,
求线段QN的中点P的轨迹方程。

设动点P的坐标为(x,y),点
Q的坐标为(x₁,y₁),则N点的坐标为(2x-x₁,2y-y₁)。

因为N
点在直线x+y=2上,所以2x-x₁+2y-y₁=2.又因为PQ垂直于直线x+y=2,所以x-y+y₁-x₁=0.将两个方程联立,得到
x₁=2x+2y-1和y₁=2x+2y-1.因为点Q在双曲线上,所以x₁²-y₁²=1.将x₁和y₁代入公式中,得到动点P的轨迹方程式为2x²-2y²-2x+2y-1=0.
四、用参数法求轨迹方程
选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程。

圆锥曲线中的轨迹方程问题-(解析版)

圆锥曲线中的轨迹方程问题-(解析版)

专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。

首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。

直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。

经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线之动点轨迹方程
高考数学复习--日期:
圆锥曲线之动点轨迹方程:
(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;
(2)求轨迹方程的常用方法:
①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;
已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。

②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。

线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。

③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;
(1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。

(2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。

(3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。

④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;
动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→
−PA 所成的比为2,则M 的轨迹方程为 。

⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。

(1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。

(2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是 。

(3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是 。

高考数学复习--日期: (4)已知j i ρρ,是x,y 轴正方向的单位向量,设a ρ=j y i x ρρ+-)3(, b ρ=j y i x ρρ++)3(,且满足b ρ•i ρ=|a ρ|.求点P(x,y)的轨迹。

(5)已知A,B 为抛物线
x 2=2py (p >0)上异于原点的两点,0OA OB ⋅=u u u r u u u r ,点C 坐标为(0,2p ), ① 求证:A,B,C 三点共线; ② 若=BM λ(R ∈λ)且0OM AB ⋅=u u u u r u u u r 试求点M 的轨迹方程。

1、已知点P 是圆x 2+y 2=4上一个动点,定点Q 的坐标为(4,0),求线段PQ 的中点轨迹方程。

2、以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点轨迹方程。

3、在面积为1的PMN ∆中,2
1tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程。

4、已知动圆过定点()1,0,且与直线1x =-相切, 求动圆的圆心轨迹C 的方程。

5、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。

6、设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点,(1)求△APB 重心G 的轨迹方程;
7、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 的轨迹方程。

8、已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1,
(1)求动点P 的轨迹C 的方程;
9、已知圆C 方程为:224x y +=,
(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程;
10、已知椭圆C :22
22b
y a x +=1(a >b >0)的离心率为35,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;
11、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162=的焦点P 为其一个焦点,以双曲线19
162
2=-y x 的焦点Q 为顶点。

(1)求椭圆的标准方程;
12、已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214
y x =的
焦点,离心率为
5.(1)求椭圆C 的标准方程;
13、已知椭圆的一个顶点为()0,1A -,焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.求椭圆的标准方程;
14、已知椭圆:C 22221(0)x y a b a b +=>>
(1)求椭圆C 的方程;
15、已知椭圆E :()222210x y a b a b +=>>的一个焦点为()
1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;
16、已知椭圆C :12222=+b
y a x (0>>b a )的离心率21=e ,且经过点)3 , 2(A . (1)求椭圆C 的方程;
17、已知双曲线22
1:(0)C x y m m -=>与椭圆22
222:1x y C a b +=有公共焦点12,F F ,点N 是它们的一个公共点.(1)求12,C C 的方程;
18、已知椭圆1C :()2221024x y b b
+=<<的离心率等于2,抛物线2C :()220x py p =>的焦点在椭圆的顶点上。

(1)求抛物线2C 的方程;
19、已知椭圆1C :22
221x y a b
+= (0a b >>),直线:2L y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆相切.(1)求椭圆1C 的方程;。

相关文档
最新文档