成人高考数学—导数精品PPT课件
合集下载
导数及其应用PPT课件
解:(1)
4.已知a>0,n为正整数。 (1)设y=(x-a)n, 证明y’=n(x-a)n-1; (2)设fn(x)=xn-(x-a)n , 对任意n≥a,证明:
小
求函数单调区间的步骤:
求函数极值的步骤:
结
(1)求导函数f ’(xቤተ መጻሕፍቲ ባይዱ; (2)求方程f ’(x)=0的根;(3)检查f ’(x)在 方程根左右的符号,如果左正右负,那么f(x)在这个根处 取得最大值,如果左负右正,那么f(x)在这个根处取得最 小值。 求闭区间上函数的最值的方法:
y
极大值
极大值
x0
极小值
0
x
极小值
显然在极值处函数的导数为0.
【知识在线】:
1.函数y=2x3+4x2+1的导数是_____________. 2.函数y=f(x)的导数y/>0是函数f(x)单调递增的 (B )
A.充要条件
C.必要不充分条件
B.充分不必要条件
D.既不充分也不必要条件
(0,2) 单调递增区 3.函数y=x2 (x-3),则f(x)的单调递减区间是_____, (-∞,0) , (2,+∞) 。 间为______________
x
f(x)
极大值 极小值
由此可得,函数在x=- ,处取得极大值2+ 2
在x= ,处取得极小值2- 2 .草图如图
y
∵a>0,显然极大值必为正,
故只要看极小值的正负即可。
-
0
x
y
方程x3-3ax+2=0有惟一的实根;
-
0 y
x
方程x3-3ax+2=0有二个不同的实根 (其中有一个为二重根);
高等数学导数的概念教学ppt课件.ppt
h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
《高数导数公式》课件
振动与波动
导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
导数的课件ppt
导数的课件
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。
《高等数学导数》课件
答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。
高等数学导数的概念ppt课件.ppt
x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时
在
都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且
求
解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束
专升本高数第二章导数-PPT课件
f( x )f( x ) 0 导数的一个等价定义: f ( x )lim 0 x x 0 x x 0
左、右导数
设函数 y f (x )在点 x 如果 0的某个邻域内有定义
f (x x ) f (x y 0 0) 左极限 lim lim 存在,那 x 0 x 0 x x 称此极限值为函数 y f (x )在点 x 0 处的左导数。
2 x e b( 1 b ) f ( 0 ) l i m 2 x 0 x
f ( 0 ) f ( 0 ) , a 2
(二) 曲线的切线方程及法线方程
设 曲 线 的 方 程 为 y f() x , 若 f() x在 x 处 可 导 , 0 则 曲 线 在 点 M ( x ,y ) 处 的 切 线 方 程 为 0 0 y y f ( x ) ( x x ) 0 0 0
仍是 x 的函数,称为 f (x)的导函数。
1. 基本导数表
x x
1 c 0 , ( x ) x
x x
( aa ) l n a , ( e ) e
1 1 ( l o g x ) , ( l n x ) a x l n a x
( s i n x ) c o s( x , c o s x )s i n x 2 2 ( t a n x ) s e c x , ( c o t x ) c s c x ( s e c x ) s e c x t a n x , ( c s c x ) c s c x c o t x
第二章 一元函数微分学
§2.1. 导数与微分
(一) 导数的概念
我们再用极限来研究变量变化 的快慢程度,这即是微分学中 的重要概念—导数。
左、右导数
设函数 y f (x )在点 x 如果 0的某个邻域内有定义
f (x x ) f (x y 0 0) 左极限 lim lim 存在,那 x 0 x 0 x x 称此极限值为函数 y f (x )在点 x 0 处的左导数。
2 x e b( 1 b ) f ( 0 ) l i m 2 x 0 x
f ( 0 ) f ( 0 ) , a 2
(二) 曲线的切线方程及法线方程
设 曲 线 的 方 程 为 y f() x , 若 f() x在 x 处 可 导 , 0 则 曲 线 在 点 M ( x ,y ) 处 的 切 线 方 程 为 0 0 y y f ( x ) ( x x ) 0 0 0
仍是 x 的函数,称为 f (x)的导函数。
1. 基本导数表
x x
1 c 0 , ( x ) x
x x
( aa ) l n a , ( e ) e
1 1 ( l o g x ) , ( l n x ) a x l n a x
( s i n x ) c o s( x , c o s x )s i n x 2 2 ( t a n x ) s e c x , ( c o t x ) c s c x ( s e c x ) s e c x t a n x , ( c s c x ) c s c x c o t x
第二章 一元函数微分学
§2.1. 导数与微分
(一) 导数的概念
我们再用极限来研究变量变化 的快慢程度,这即是微分学中 的重要概念—导数。
成人高考数学—导数PPT课件
f (2) 13, f (1) 4, f (0) 5, f (2) 13, f (1) 4
比较得知, y x4 2x2 5在[2,2]上的最大值为13,最小值为4
24
例:设函数f (x) 4x3 ax 2, y f (x)在点P(0,2)处的切线方程的 斜率为12。(1)求a的值; (2)求函数f (x)在区间[3,2]的最大值和最小值。10年考题第25题13分
第五章 导数
一、导数定义 二、幂函数求导公式和法则(重要) 三、导数的几何意义(考点) 四、函数的单调性与极值(考点) 五、函数的最大值和最小值(考点)
1
一、导数: 幂函数求导公式和法则
(1)如果f (x) C,则f (x) 0,即常数的导数是零; (2)如果f (x) xn,则f (x) nxn1; (3)如果f (x) Cxn,则f (x) C nxn1.
应用四:求函数的最大值与最小值:
(1)观察题目是否给出定义域 [a,b]
(2)求出定义域区间内f(x)的驻点. (3)把驻点值和区间端点值f(a),f(b)进行比较.
(4)最大的就是f(x)在定义域[a ,b ] 上的最大值
,最小的就是最小值.
21
已知f (x) x4 2x2 5,求f (x)在区间[2,2]上的最大值与最小值。
创建表格
(,3) 3 (3,1) 1 (1,)
f (x)
0
0
f (x)
增
28 减 - 4 增
由上表可得:区间(,3),(1,)为增区间 区间(3,1)为减区间,极大值为28,极小值为- 4 18
练习:求函数 f (x) 2x3 9x2 24 x 7的极值; 解:原函数定义域为( ,)
f (x) 6x2 18 x 24 6(x 1)( x 4) 0
比较得知, y x4 2x2 5在[2,2]上的最大值为13,最小值为4
24
例:设函数f (x) 4x3 ax 2, y f (x)在点P(0,2)处的切线方程的 斜率为12。(1)求a的值; (2)求函数f (x)在区间[3,2]的最大值和最小值。10年考题第25题13分
第五章 导数
一、导数定义 二、幂函数求导公式和法则(重要) 三、导数的几何意义(考点) 四、函数的单调性与极值(考点) 五、函数的最大值和最小值(考点)
1
一、导数: 幂函数求导公式和法则
(1)如果f (x) C,则f (x) 0,即常数的导数是零; (2)如果f (x) xn,则f (x) nxn1; (3)如果f (x) Cxn,则f (x) C nxn1.
应用四:求函数的最大值与最小值:
(1)观察题目是否给出定义域 [a,b]
(2)求出定义域区间内f(x)的驻点. (3)把驻点值和区间端点值f(a),f(b)进行比较.
(4)最大的就是f(x)在定义域[a ,b ] 上的最大值
,最小的就是最小值.
21
已知f (x) x4 2x2 5,求f (x)在区间[2,2]上的最大值与最小值。
创建表格
(,3) 3 (3,1) 1 (1,)
f (x)
0
0
f (x)
增
28 减 - 4 增
由上表可得:区间(,3),(1,)为增区间 区间(3,1)为减区间,极大值为28,极小值为- 4 18
练习:求函数 f (x) 2x3 9x2 24 x 7的极值; 解:原函数定义域为( ,)
f (x) 6x2 18 x 24 6(x 1)( x 4) 0
成人高考高数复合函数求导PPT课件
例子:求椭圆
在点
处的切线方程.
解:对椭圆方程的两边分别求导(在此把y看成是关于x 的函数)得:
于是所求切线方程为:
14
利用上述方法可得圆锥曲线的切线方程如下:
(1)过圆(x-a)2+(y-b)2=r2上一点P0(x0,y0)的切线方程 是: (22))(过过x0椭椭-a圆圆)(x-a)+(y上0上-一b一)点(点yP-Pb0(0)x(=x0,r0y2,0y.)0的)的切切线线方方程程是是: :
又圆面积S=πR2,所以 =40π(cm)2/s. 故圆面积增加的速度为40π(cm)2/s.
例4:在曲线
上求一点,使通过该点的切线平行于
x轴,并求此切线的方程.
解:设所求点为P(x0,y0).则由导数的几何意义知:
切线斜率
把x0=0代入曲线方程得:y0=1. 所以点P的坐标为(0,1),切线方程为y-1=0.
ቤተ መጻሕፍቲ ባይዱ
10
我们曾经利用导数的定义证明过这样的一个结论:
“可导的偶函数的导函数为奇函数;可导的奇函数的导 函数为偶函数”.现在我们利用复合函数的导数重新加 以证明:
证:当f(x)为可导的偶函数时,则f(-x)=f(x).两边同时对x
求导得:
,故
为
奇函数.
同理可证另一个命题.
我们还可以证明类似的一个结论:可导的周期函数
量 的求导.
3.复合函数的求导法则: 复合函数对自变量的导数,等于已知函数对中间
变量的导数,乘以中间变量对自变量的导数.
法则可以推广到两个以上的中间变量. 求复合函数的导数,关键在于分清函数的复合关 系,合理选定中间变量,明确求导过程中每次是哪个变 量对哪个变量求导,一般地,如果所设中间变量可直接 求导,就不必再选中间变量.
导数PPT课件
7.(2009· 福建)若曲线 f(x)=ax5+ln x 存在垂直于 y 轴的切 线,则实数 a 的取值范围是(-∞,0).
1 解析 ∵f′(x)=5ax + ,x∈(0,+∞), x 1 4 ∴由题知 5ax + =0 在(0,+∞)上有解. x 1 即 a=- 5在(0,+∞)上有解. 5x 1 ∵x∈(0,+∞),∴- 5∈(-∞,0). 5x ∴a∈(-∞,0).
②求单调区间时,首先要确定定义域,然后再根据 f′(x)>0(或 f′(x)<0)解出在定义域内相应的 x 的范围; ③在证明不等式时,首先要构造函数和确定定义域,其 次运用求导的方法来证明. (3)求可导函数的极值与最值 ①求可导函数极值的步骤 求导数 f′(x)→求方程 f′(x)=0 的根→检验 f′(x)在方 程根左右值的符号,求出极值(若左正右负,则 f(x)在这 个根处取极大值;若左负右正,则 f(x)在这个根处取极 小值). ②求可导函数在[a,b]上的最值的步骤 求 f (x)在(a,b)内的极值→求 f(a)、f(b)的值→比较 f(a)、 f(b)的值和极值的大小.
第7讲
导
数
高考要点回扣
1.导数的概念及运算 (1)定义 f(x+Δx)-f(x) Δy f ′(x)= lim = lim . Δx Δx→0 Δx Δx→0 (2)几何意义 曲线 y=f(x)在 P(x0,f(x0))处的切线的斜率为 k= f′(x0)(其中 f′(x0)为 y=f(x)在 x0 处的导数).
解析 由条件知 g′(1)=2, 又∵f′(x)=[g(x)+x2]′=g′(x)+2x, ∴f′(1)=g′(1)+2=2+2=4.
3.已知函数 f(x)的导数 f′(x)=(x+1)2(x-1)(x-2), 则函 数 f(x)的极值点的个数为 A.1 个 C.3 个 B.2 个 D.4 个 ( B )
成人高考-专升本课件-导数的应用PPT课件
在讨论函数的单调性时,一般先求出函 数一阶导数等于零和一阶导数不存在的点 , 然后按这些点将所讨论的区间分成小区间 , 在每个小区间内函数只有一种单调性 , 利用 导数符号判断函数是单调增加还是单调减少.
24
例1 解
讨论 y 2x 8 的单调性. x
定义域: (, 0) (0, )
y
2
8 x2
0
x1 x ln x x 1 0
lim ln x 1 1
x1 ln x 11 2
16
例11
求
lim
x
2
arctan x
1
ln x.
00
解 运用取对数法 .
lim
x
2
arctan x
1 ln x
lim exp{ 1 } ln( arctan x) 0
x
ln x 2
{ } ln( arctan x)
f (x) f (x0) x Uˆ (x0) ,
则称 f (x0) 为 f (x) 的极小值 , x0为函数的极小点.
29
三、函 数 的 极 值
函数的极值是个局部性的概念. 在 U(x0 )内比较 f (x) 与 f (x0 ) 的大小.
我们已经知道的与函数极值有关的定理和公式: 费马定理 — 可微函数取极值的必要条件 函数的单调性判别定理和方法
其中 , 0 表示无穷小量; 表示无穷大量; 1表示以1为极限的变量 .
2
0
取 对 数 法 1 00 0
倒数法
0
0
只需讨论 这两种极限
3
罗必达法则
设在某一极限过程中
(1) lim f (x) 0 , lim g(x) 0 ,
0
24
例1 解
讨论 y 2x 8 的单调性. x
定义域: (, 0) (0, )
y
2
8 x2
0
x1 x ln x x 1 0
lim ln x 1 1
x1 ln x 11 2
16
例11
求
lim
x
2
arctan x
1
ln x.
00
解 运用取对数法 .
lim
x
2
arctan x
1 ln x
lim exp{ 1 } ln( arctan x) 0
x
ln x 2
{ } ln( arctan x)
f (x) f (x0) x Uˆ (x0) ,
则称 f (x0) 为 f (x) 的极小值 , x0为函数的极小点.
29
三、函 数 的 极 值
函数的极值是个局部性的概念. 在 U(x0 )内比较 f (x) 与 f (x0 ) 的大小.
我们已经知道的与函数极值有关的定理和公式: 费马定理 — 可微函数取极值的必要条件 函数的单调性判别定理和方法
其中 , 0 表示无穷小量; 表示无穷大量; 1表示以1为极限的变量 .
2
0
取 对 数 法 1 00 0
倒数法
0
0
只需讨论 这两种极限
3
罗必达法则
设在某一极限过程中
(1) lim f (x) 0 , lim g(x) 0 ,
0
导数概念课件
02
导数的性质
函数单调性与导数的关系
总结词
函数单调性与导数正负有关
详细描述
如果函数在某区间的导数大于0,则函数在此区间单调递增;如果导数小于0, 则函数在此区间单调递减。
极值与导数的关系
总结词
极值点导数为0或不存在
详细描述
函数在极值点处的导数为0或不存在,即一阶导数为0或不可导点。
曲线的切线与导数的关系
导数概念ppt课件
• 导数的基本概念 • 导数的性质 • 导数的计算 • 导数的应用 • 导数的历史与发展
01
导数的基本概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要工具 斜率,它描述了函数在该点附近的局 部变化趋势。通过求导,可以找到函 数值随自变量变化的速率和方向。
导数的几何意义
总结词
导数的几何意义是切线斜率,它 反映了函数图像在该点的切线状 态。
详细描述
在几何上,导数表示函数图像在 某一点的切线斜率。这个切线与x 轴的夹角即为该点的导数值,表 示函数在该点附近的变化趋势。
导数的物理意义
总结词
导数的物理意义在于描述物理量随时间或空间的变化率。
详细描述
在物理学中,许多物理量都可以表示为函数形式,如速度、加速度、密度等。导 数可以帮助我们理解这些物理量如何随时间或空间变化,从而揭示物理现象的本 质。例如,速度是位移函数的导数,加速度是速度函数的导数等。
对于两个函数的乘积,其导数 为第一个函数的导数乘以第二 个函数加上第一个函数乘以第 二个函数的导数。即,若 $u(x)$ 和 $v(x)$ 可导,则 $(uv)' = u'v + uv'$。
对于两个函数的商,其导数为 被除函数的导数除以除函数的 导数。即,若 $u(x)$ 和 $v(x)$ 可导且 $v(x) neq 0$, 则 $frac{u'}{v'} = frac{u'v}{uv'}$。
3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt
(2)若极限 点 处的右导数,记作
,即:
存在,则称其为函数 在
定理1 函数
在点 处可导的充分必要条件是
在点 处的左导数和右导数都存在且相等,即
.
例1 讨论函数
在 处的连续性和可导性.
解:因为
又
,所以函数
在 处的连续.
由于
,所以函数
在 处不可导.
例2 讨论函数
解:因为 连续.
又因为 处不可导.
在 处的连续性和可导性.
在点
分析:设函数
在点 处可导,则
故函数
在点 处一定连续.
随堂练习
1、设 解:
,判断 在点 函数
处的连续性与可导性. 在 处连续.
函数 在 处不可导.
2、若函数
处处可导,求 的值.
解: 函数 在 处可导,则在
处处可导.由于函数
可导必连续.得
再根据函数在 处可导,
则左右导数存在且相等.
故
时,
函数 在点
或 ,即
函数
在点 处的导数就是导函数 在点 处的函数值
,即
注:若函数
在区间
在区间 上不可导.
内有一点处不可导,则称函数
由导数的定义可知,求函数
个步骤:
(1)求增量
;
(2)算比值
;
(3)取极限
例1 求函数
的导数.
解:
常量函数的导数为
的导数可分为以下三 .
例6 求函数 解:
的导数.
例7 求函数 解:
,所以函数
在 处的
,所以函数
在
从图形上看,曲线 线.这也说明函数 原点外,处处可导.因 连续.
在原点O处具有垂直于 轴的切
《高等数学导数》课件
凸函数与凹函数
通过导函数的符号变化及导数的 递增、递减趋势判断函数的凸凹 性质。
高阶导数
1
高阶导数的概念及计算
通过迭代导数公式及高阶导数定义,计算出函数的高阶导数。
2
函数的泰勒公式
通过多次求导得到函数的各阶导数,并结合泰勒公式,用多项式逼近函数的过程。
补充知识点
反函数与隐函数求导
通过反函数的定义以及隐函数求导公式,可以求 得反函数与隐函数的导数。
同一函数的导函数之间 的关系
同一函数的导函数,是在不 同点的导数值所组成的函数。 一般情况下,它是原函数的 一阶导数、二阶导数、三阶 导数……
导数的计算
1
基本初等函数的导数
可以通过求导数的定义式来计算,得到$x^n$,$\sin{x}$,$\cos{x}$,$e^x$,通过链式法则,即先对内函数求导,再外函数求导,可以得到复合函数的导数。
3
导数的四则运算
对两个函数进行加、减、乘、除的运算,可以通过导数加减法、乘法、除法公式 求得。
导数的应用
极值与最值
通过导函数的零点及导数符号的 变化,判断函数的极值及最值。
函数的单调性
通过导数的符号变化来判断函数 的单调性。
高等数学导数PPT课件
本课件以教材内容为基础,通过丰富的图表及实例,讲解导数的基本概念、 计算方法、应用及高阶导数等内容,帮助您掌握导数的知识。
基本概念
导数的定义
导数是用来描述函数在某一 点的变化速率的数值。它是 函数曲线上一点处的斜率, 或者说是切线的斜率。
函数的切线与导数
切线是函数曲线在某一点处 的切线,导数就是该点处切 线的斜率。
微分的概念
微分是函数在某一点上的变化量,在数学中被广 泛应用于近似计算、误差分析等方面。
数学分析--导数 ppt课件
数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0
。
ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y 2x
y x2 1的切线y 2x就与y x2 1只有一个公共点,
y
y x
2x
y
2x2
y y
x2 1
2x2
x
1,k
y
2
应用二:判断函数的单调性
1、定理:设函数f (x)在区间(a,b)内可导, 如果在(a,b)内f (x) 0,那么f (x)在(a,b)内是增函数; 如果在(a,b)内f (x) 0,那么f (x)在(a,b)内是减函数; 如果在(a,b)内恒有f (x) 0,那么f (x)在(a,b)内是常数。
当x (1,)时,y 2(x 1) 0 区间(1,)是y x2 2x 3的单调递增区间.
例:已知函数f (x) x4 2x2 3。
09年考题第23题12分
(1)求曲线f (x) x4 2x2 3在点(2,11)处的切线方程;
(2)求函数f (x)的单调区间。
(2)函数f (x) x4 2x2 3的定义域是(,)
f (x) 4x3 4x 4x(x 1)(x 1)
令f (x) 4x(x 1)(x 1) 0,得函数的三个驻点 1、0、1;
1、0、1把区间(,)分成四个区间(,1)、(1,0)(0,1)、(1,);
当x (,1)时,f (x) 0 区间(,1)是f (x)的单调递减区间.
当x (1,0)时,f (x) 0 区间(1,0)是f (x)的单调递增区间. 当x (0,1)时,f (x) 0 区间(,0,1)是f (x)的单调递减区间. 当x (1, )时,f (x) 0 区间(,1)是f (x)的单调递增区间.
整理成标准形式,得6x y 3 0
练习 : 求下列函数的导数及在点(0,1)处的切线方程:
(1)f(x ) 2x 3 2x 2 x
解:(1) f (x) 6x2 4x 1 f (0) 1
代入切线方程公式,得y 1 1(x 0)
整理得x y 1 0
解:(2) f (x) x3 x2 x x2 x 1 x3 1
f (x) 3x2
f (0) 0
代入切线方程公式,得y 1 0(x 0) 整理得y 1 0
例:已知函数f (x) x4 2x2 3。
09年考题第23题12分
(1)求曲线f (x) x4 2x2 3在点(2,11)处的切线方程;
(2)求函数f (x)的单调区间。
解:(1) f (x) 4x3 4x 4x(x 1)(x 1)
第五章 导数
一、导数定义 二、幂函数求导公式和法则(重要) 三、导数的几何意义(考点) 四、函数的单调性与极值(考点) 五、函数的最大值和最小值(考点)
一、导数: 幂函数求导公式和法则
(1)如果f (x) C,则f (x) 0,即常数的导数是零; (2)如果f (x) xn,则f (x) nxn1; (3)如果f (x) Cxn,则f (x) C nxn1.
解:函数y x2 2x 3的定义域是(,) y 2x 2 2(x 1)
令y 2(x 1) 0,得函数y x2 2x 3的一个驻点x 1; x 1把区间(,)分成两个区间(,1)和(1,);
当x (,1)时,y 2(x 1) 0 区间(,1)是y x2 2x 3的单调递减区间.
f (2) 4 23 4 2 24
曲线f (x) x4 2x2 3在点(2,11)处的切线方程 : y 11 24(x 2) 即24x y 37 0
曲线 y x2 1与直线 y kx只有一个公共点,则k=
(A)2或2 (B)0或4 (C)1或1 (D)3或7
y
y 2x
2
2,1把区间(,)分成三个区间(,2)、(2,1)、(1,);
例(2)判断函数f (x) 2x3 3x2 12x 100的单调性;
解:函数f (x) 2x3 3x2 12x 100的定义域是(,) f (x) 6x2 6x 12 6(x 2)(x 1)
令f (x) 6(x 2)(x 1) 0,得函数f (x)的两个驻点x1 2, x2 1;
例:曲线f (x) 2x2 3在点(1,5)处切线的斜率为__________;
解: y 4x y |x1 4 (1) 4
例:曲线f (x) 2x3 1在点(1,3)处的切线方程为__________;
10年考题第19小题4分
解: y 6x2 y |x1 6 12 6 代入切线方程公式,得y 3 6(x 1)
(2)然后再代入点坐标,求出具体的导数值
❖ 对应的切线方程:
解:首先求导,得:y 2x 1
代入切线方程公式,得y 2 3(x 1) 整理成标准形式,得3x y 1 0
1)求曲线y x2在点(2,5)处的切线的斜率; 2)求曲线y x2 x在点(0,1)处的切线方程;
11年考题第20小题4分
2、判断函数单调性的步骤:
(1)求出函数f (x)的定义域;
(2)求出函数f (x)的导数f (x);
(3)令f (x) 0,并求出使f (x) 0得点x,这样的点叫做 函数f (x)的驻点; (4)驻点把函数f (x)的定义域分成若干个区间;
(5)在上述每一个区间内考查f (x)的符号,并根据定理 判断函数f (x)在各区间内的单调性;
注意: f (x)是x的函数,f (x0 )是一个函数值
幂函数求导举例(降幂)
求下列函数的导数及f (1): (1)f(x ) x 3;(2)f(x ) 6x 5; (3)f(x ) x;(4)f(x ) 5
(2) f ' (x) 5 6x4 30x4 f ' (1) 30 (1)4 30
多项式幂函数求导举例 解:f '(x) 3x2 2 2x 3 3x2 4x 3
f (x) 2 4x3 53x2 2x 8x3 15x2 2x f (1) 8 15 2 25
应பைடு நூலகம்一:求切线
导数的几何意义:
❖ 导数是曲线 y f (x) 在点
处的切线的斜率
(1) 切线的斜率方法就是先对曲线方程所对应函数求 导