相似三角形_射影定理、圆
几何学中的射影定理和相似三角形——几何知识要点
几何学中的射影定理和相似三角形——几何知识要点几何学是研究空间和形状的学科,其中射影定理和相似三角形是其中重要的概念和定理。
本文将介绍这两个知识点,并探讨它们在几何学中的应用。
一、射影定理射影定理是几何学中的重要定理之一,它描述了两条平行线与一条横截线所形成的射影关系。
射影定理可以用于求解平行线之间的距离、角度和比例等问题。
射影定理的几何表述如下:当一条横截线与两条平行线相交时,它们所形成的对应的线段长度相等。
换句话说,射影定理说明了平行线与横截线之间的相似关系。
射影定理的应用非常广泛。
在建筑设计中,我们常常需要确定建筑物的高度、宽度等尺寸,射影定理可以帮助我们通过测量建筑物的阴影长度来确定其实际尺寸。
在地理测量中,射影定理也可以用于确定高山的高度、河流的宽度等。
二、相似三角形相似三角形是指具有相同形状但大小不同的三角形。
相似三角形之间存在一种特殊的比例关系,即对应边的比例相等。
相似三角形的判定条件有两种:AAA判定和AA判定。
AAA判定是指两个三角形的对应角度相等,而AA判定是指两个三角形的两个对应角度相等且对应边成比例。
相似三角形的性质有很多。
首先,相似三角形的对应角度相等,对应边成比例。
其次,相似三角形的周长和面积之间也存在一定的比例关系。
另外,相似三角形的高度、中线、角平分线等也成比例。
相似三角形在几何学中的应用非常广泛。
例如,在地图上测量两座建筑物之间的距离时,我们可以利用相似三角形的性质来计算。
此外,在工程设计中,相似三角形也可以用于计算物体的尺寸、角度等。
总结:几何学中的射影定理和相似三角形是非常重要的知识点。
射影定理描述了平行线与横截线之间的射影关系,可以用于求解距离、角度和比例等问题。
相似三角形是具有相同形状但大小不同的三角形,其对应边成比例。
相似三角形的性质有很多,可以用于计算距离、尺寸和角度等。
这些知识点在实际应用中具有广泛的用途,对于几何学的学习和应用都具有重要意义。
通过学习射影定理和相似三角形,我们可以更好地理解和应用几何学知识,提高解决实际问题的能力。
高中数学第一章相似三角形定理与圆幂定理1.1.4锐角三角函数与射影定理课件新人教B版选修4_
分析先由射影定理得 AC
=
=CD·BC,即
2
=
,最后利用 EF=AE 进行代换,即可得证.
,再由 EF∥AD 得
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODALI
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
【做一做2-1】 如图所示,在Rt△ABC中,AC⊥CB,CD⊥AB于点D,
且CD=4,则AD·DB等于(
)
C.2 D.不确定
解析:∵AC⊥CB,CD⊥AB,
∴AD·DB=CD2.
,即
4
9
16
= 16.∴ = 9 .
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
1
2
3
4
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
5
3.已知PA是☉O的切线,切点为A,PA=2 cm,AC是☉O的直径,PC交
HONGNAN JVJIAO
题型二
证明 ∵∠BAC=90°,AD⊥BC,
由射影定理,知 AC2=CD·BC,即 = .
∵BE 平分∠ABC,EA⊥AB,EF⊥BC,
∴AE=EF.
∵EF⊥BC,AD⊥BC,
∴EF∥AD.∴ = .
专题十三--相似三角形定理与圆幂定理
专题十三相似三角形定理与圆幂定理本专题主要复习相似三角形的进一步认识、圆的进一步的认识.通过本专题的复习,了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论.掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.【知识要点】1.相似三角形概念相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.相似比:相似三角形对应边的比.2.相似三角形的判定如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为:两角对应相等两三角形相似).如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似).如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似).3.直角三角形相似的判定定理直角三角形被斜边上的高分成两个直角三角形和原三角形相似.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.4.相似三角形的性质相似三角形对应角相等,对应边成比例.相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.相似三角形周长的比等于相似比.相似三角形的面积比等于相似比的平方.5.相关结论平行于三角形一边的直线截其他两边,截得的三角形与原三角形的对应边成比例.三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.经过梯形一腰中点而平行于底边的直线平分另一腰.梯形的中位线平行于两底,并且等于两底和的一半.若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边平行.6.弦切角定理弦切角定义:切线与弦所夹的角.弦切角的度数等于它所夹的弧的圆心角的度数的一半.7.圆内接四边形的性质圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.8.圆幂定理相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D则有PA·PB=PC·PD.【复习要求】1.了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理.2.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论.3.掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.【例题分析】例1 如图,在△ABC 中,∠BAC =90°,E 为AC 中点,AD ⊥BC 于D ,DE 交BA 的延长线于F .求证:BF ∶DF =AB ∶AC .【分析】欲证AFDF AC AB =,虽然四条线段可分配于△ABC 和△DFB 中,由于△ABC 和△FBD 一个是直角三角形,一个是钝角三角形,不可能由这一对三角形相似直接找到对应边而得结论,故需借助中间比牵线搭桥,易证Rt △BAC ∽Rt △BDA ,得出=AC AB AD BD ,于是只需证出ADBD AF DF =,进而须证△DFB ∽△AFD 即可. 证明:∵AB ⊥AC ,AD ⊥BC ,∴Rt △ABD ∽Rt △CAD ,∠DAC =∠B ,∴ADBD AC AB =……① 又∵AD ⊥BC ,E 为AC 中点,∴DE =AE ,∠DAE =∠ADE ,∴∠B =∠ADE ,又∵∠F =∠F ,∴△FAD ∽△FDB ,∴DF BF AD BD =………②, 由①②得⋅=DFBF AC AB 【说明】由于△ABC 和△FBD 这两个三角形一个是直角三角形,一个是钝角三角形,明显不相似,不可能由这一对三角形相似直接找到对应边而得结论,且图中又没有相等的线段来代换,势必要找“过渡”的线段或线段比,这种寻找“中间”搭桥的线段或线段比是重要的解题技巧.此题用到直角三角形中斜边上的高这个“双垂直”的基本图形,这里有三对相似三角形,这个图形在证相似三角形中非常重要.例2 △ABC 中,∠A =60°,BD ,CE 是两条高,求证:BC DE 21= 【分析】欲证BC DE 21=,只须证21=BC DE . 由已知易得21=AB AD ,于是只须证明,ABAD BC DE = 进而想到证明△ADE ∽△ABC ,这可以由21==AC AE AB AD 证得. 证明:∵∠A =60°,BD ,CE 是两条高,∴∠ABD =∠ACE =30° ∵AB AD 21=,AC AE 21=,∴21==AC AE AB AD ,又∠A =∠A ∴△ADE ∽△ABC ,∴BC DE AB AD BC DE 2121=∴==. 【说明】在判定相似三角形时,应特别注意应用“两边对应成比例且夹角相等,则两三角形相似”这条判定定理.例3 已知:如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 、EC 交于F ,求证BDFD AD CD =【分析】CD 、FD 在△FDC 中,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.证明:∵AD ⊥BC 于D ,CE ⊥AB 于E ,∴∠ADC =∠ADB =90°,∵∠BAD +∠B =90°,∠BCE +∠B =90°,∴∠BAD =∠BCE ,∴△FDC ∽△BDA , ∴⋅=BDFD AD CD 【说明】为什么找到△FDC 与△BDA 相似呢?从求证的比例式出发,“竖看”,线段CD 、AD 在△ADC 中,但线段FD 、BD 却不在一个三角形中;那么“横瞧”,CD 、FD 在△FDC ,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.小结为“横瞧竖看分配相似三角形”.例4 如图,平行四边形ABCD ,DE ⊥AB 于E ,DF ⊥BC 于F ,求证:AB ·DE =BC ·DF【分析】化求证的等积式为比例式:DE DF BC AB =,又因为CD =AB ,AD =BC ,即证明比例式DEDF AD CD = 证明:∵平行四边形ABCD ,∴∠C =∠A ,∵DE ⊥AB 于E ,DF ⊥BC 于F ,∴∠AED =∠DFC =90°,∴△CFD ∽△AED ,∴DE DF AD CD = ∵CD =AB ,AD =BC ,∴DE DF BC AB =即AB ·DE =BC ·DF . 【说明】DEDF BC AB =,“横瞧竖看”都不能分配在两个三角形中,但题中有相等的线段:CD =AB ,AD =BC 所以可横瞧竖看用相等线段代换过来的比例式:DEDF AD CD =,这个比例式中的四条线段可分配在两个相似三角形中.例5 AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =60°,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作CD ⊥OC 交PQ 于点D .(1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP ∶PO 的值.【分析】证明△CDQ 是等腰三角形,只需证明∠DCQ =∠Q ,利用题目中已有的相似三角形和等腰三角形把这两个角的关系建立起来.并可以得到各边的比例关系,不妨把圆的半径设为1,简化计算.(1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°.∵CD ⊥OC ,∴∠DCQ =∠BCO =30°,∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形.(2)解:设⊙O 的半径为1,则AB =2,OC =1,.3,121===BC AB AC ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3.∵31+=+=CQ AC AQ ,,23121+==AQ AP ∴=-=AP AB BP 2332312-=+- 231+=-=AO AP PO 2131-=-, ∴3:=PO BP .【说明】利用好相似三角形对应角相等的条件,进行角的转化是解题中常用的技巧. 例6 △ABC 内接于圆O ,∠BAC 的平分线交⊙O 于D 点,交⊙O 的切线BE 于F ,连结BD ,CD .求证:(1)BD 平分∠CBE ;(2)AB ·BF =AF ·DC .【分析】可根据同弧所对的圆周角及弦切角的关系推出.由条件及(1)的结论,可知BD =CD ,因此欲求AB ·BF =AF ·DC ,可求BFBD AF AB =,因此只须求△ABF ∽△BDF 即可. 证明:(1)∵∠CAD =∠BAD =∠FBD ,∠CAD =∠CBD ,∴∠CBD =∠FBD ,∴BD 平分∠CBE .(2)在△DBF 与△BAF 中,∵∠FBD =∠FAB ,∠F =∠F ,∴△ABF ∽△BDF ,BFBD AF AB =,∴AB ·BF =BD ·AF . 又∵BD =CD ,∴AB ·BF =CD ·AF .例7 ⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰AC 于E ,交BC 于D.求证:BC=2DE【分析】由等腰三角形的性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆的一个内角等于对角的外角)∴∠C=∠DEC∴DE=DC∴BC=2DE例8⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG.【分析】由于FG切圆O于G,则有FG2=FB·FC,因此,只要证明FE2=FB·FC成立即可.证明:∵在△BFE与△EFC中有∠BEF =∠A =∠C ,又 ∠BFE =∠EFC ,∴△BFE ∽△EFC ,FEFC FB FE ,∴FE 2=FB ·FC . 又∵FG 2=FB ·FC ,∴FE 2=FG 2,∴ FE =FG .习题13一、选择题1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( )A .4aB .3aC .2aD .43a 2.如图,AD 是△ABC 高线,DE ⊥AB 于E ,DF ⊥AC 于F ,则(1)AD 2=BD ·CD (2)AD 2=AE ·AB (3)AD 2=AF ·AC (4)AD 2=AC 2-AC ·CF 中正确的有( )A .1个B .2个C .3个D .4个3.如图,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120°4.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CADD .∠BAD <∠CAD二、填空题 5.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =2,DB =1,则DC =______,AD=______.6.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则AB ∶BC =______.7.如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =,则tan 22______.8.如图,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.三、解答题9.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.10.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.11.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.专题十三 相似三角形定理与圆幂定理参考答案习题13一、选择题:1.A 2.C 3.D 4.C二、填空题5.3,3 6.1∶2 7.31 8.3 三、解答题9.(Ⅰ)∵AB ∥CD ,∴∠BAD +∠ADC =180°.∵⊙O 内切于梯形ABCD , ∴AO 平分∠BAD ,有∠DAO =21∠BAD , 又DO 平分∠ADC ,有∠ADO =21∠ADC . ∴∠DAO +∠ADO =21(∠BAD +∠ADC )=90°,∴∠AOD =180°-(∠DAO +∠ADO )=90°.(Ⅱ)∵在Rt △AOD 中,AO =8cm ,DO =6cm , ∴由勾股定理,得.cm 1022=+DO AO∵E 为切点,∴OE ⊥AD .有∠AEO =90°,∴∠AEO =∠AOD .又∠CAD 为公共角,∴△AEO ∽△AOD . ∴cm 8.4,==∴=⋅ADOD AO OE AD AO OD OE . 10.(1)连接OD .∵OA =OD ,AD 平分∠BAC ,∴∠ODA =∠OAD ,∠OAD =∠CAD .∴∠ODA =∠CAD .∴OD ∥AC .∴∠ODB =∠C =90°.∴BC 是⊙O 的切线.(2)过D 作DE ⊥AB 于E .∴∠AED =∠C =90°.又∵AD =AD ,∠EAD =∠CAD ,∴△AED ≌△ACD .∴AE =AC ,DE =DC =3.在Rt △BED 中,∠BED =90°,由勾股定理,得422=-=DE BD BE ,设AC =x (x >0),则AE =x .在Rt △ABC 中,∠C =90°,BC =BD +DC =8,AB =x +4,由勾股定理,得 x 2+82=(x +4)2.解得x =6.即AC =6.11.(1)连结BD ,∵AB 是⊙O 的直径,CD ⊥AB ,∴=.∴∠1=∠2.又∵OA =OC ,∴∠1=∠A .∴∠1=∠2.即:∠ACO =∠BCD .(2)由(1)问可知,∠A =∠2,∠AEC =∠CEB .∴△ACE ∽△CBE .∴CEAE BE CE =.∴CE 2=BE ·AE . 又CD =8,∴CE =DE =4.∴AE =8.∴AB =10.∴AC =.548022==+CE AE。
数学相似三角形(竞赛题专页)
几何:2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)· GAO DB EC Q P NM · O Q PBDEC N M · A OD BFAECP P ADCB4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.1.∠ABC 的顶点B 在⊙O 外,BA 、BC 均与⊙O 相交,过BA 与圆的交点K 引∠ABC 平分线的垂线,交⊙O 于P ,交BC 于M 。
求证:线段PM 为圆心到∠ABC 平分线距离的2倍。
EDCBA2.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。
3.菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O的切线交AB于M,交BC于N,交CD于P,交DA于Q。
求证:MQ∥NP。
4.ABCD是圆内接四边形,其对角线交于P,M、N分别是AD、BC的中点,过M、N分别作BD、AC的垂线交于K。
求证:KP⊥AB。
5.以△ABC的边BC为直径作半圆,与AB、AC分别交于点D、E。
相似三角形的性质(经典全面)
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比). 相似三角形的性质及判定A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AH S BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
相似三角形的六大证明技巧大全
相似三角形的六大证明技巧大全比例式的证明方法比例式是数学中常见的重要概念,其证明方法也是需要掌握的基本技能。
下面介绍几种比例式的证明方法。
1.相似三角形法若两个三角形相似,则它们对应边的比例相等。
因此,可以通过相似三角形的证明来得到比例式。
2.射影定理法射影定理指:在直角三角形中,直角边上的高的平方等于直角边与这个高的两个部分的乘积。
因此,可以通过射影定理来证明比例式。
3.平行线法若两条直线平行,则它们所截线段的比例相等。
因此,可以通过平行线的证明来得到比例式。
4.等角定理法等角定理指:在同一圆周角或同位角中,对应弧所对应的角相等。
因此,可以通过等角定理来证明比例式。
5.数学归纳法数学归纳法是数学中常见的证明方法,适用于证明一般情况下的比例式。
其基本思路是:证明当n=1时比例式成立,假设当n=k时比例式成立,证明当n=k+1时比例式也成立。
比例式的证明方法多种多样,需要根据具体情况选择合适的方法。
熟练掌握这些方法,可以更加轻松地解决各种数学问题。
通过前面的研究,我们知道,比例线段的证明离不开“平行线模型”(A型、X型、线束型),也离不开上述的6种“相似模型”。
但是,XXX认为,“模型”只是工具,怎样选择工具、怎样使用工具、怎样用好工具,取决于我们如何思考问题。
合理的思维方法能让模型成为解题的利刃,让复杂的问题变简单。
在本模块中,我们将研究比例式的证明中经常用到的思维技巧,包括三点定型法、等线段代换、等比代换、等积代换、证等量先证等比、几何计算。
技巧一:三点定型法例1】在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于F,求证:$\frac{DC}{CF}=\frac{AE}{AD}$。
例2】在直角三角形△ABC中,$\angle BAC=90^\circ$,M为BC的中点,DM垂直于BC交CA的延长线于D,交AB 于E。
求证:$AM^2=MD\cdot ME$。
例3】在直角三角形△ABC中,AD是斜边BC上的高,$\angle ABC$的平分线BE交AC于E,交AD于F。
三角形相似的判定方法
三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。
二 相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)ACD E 12AADDEE12412DBCEAD(3)BCAE (2)CB(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
射影定理在中学数学中的应用
思考2、射影定理与勾股定理的等价性思考。
从证法①中可以看出,射影定理是在默认成立了勾股定理的基础上证明的,那么反过来我们也可以从射影定理来证明勾股定理,且成立。想要更好的掌握数学这一学科,就要学会融会贯通,作该思考有助于学生感受、体会数学证明的逻辑严密性、完整性。
思考1、能否把直角三角形中的射影定理一般化?
答:若△ABC不为直角三角形,当点D满足一定条件时,
类似地仍有部分结论成立。
如图2,在△ABC中,D为AB上一点,若∠CDB=∠ACB,
或∠DCB=∠A,则有△CDB∽△ABC,可得BC²=BD× AB;
反之,若△ABC中,D为AB上一点,且有BC²=BD× AB,则有△CDB∽△ABC,可得到∠DCB=∠A或∠CDB=∠ACB。
任意三角形射影定理
1、定理简介:定理由欧几里得提出,在解三角形,探究三角形边角关系作用很大,并且该定理可以与正弦定理、余弦定理相媲美。
2、定理内容:三角形的边长等于另外两边与所求边成夹角余弦值的乘积之和。
3、定理数学表达:△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,
思考3、射影定理与切割线定理的等价思考。
观察定理表达式,是否能发现直角三角形中的射影定理与圆的切割线定理有相似之处呢?。
切割线定理:是指从圆外一点引圆的切线和割线,切线长是割线和这点到割线与圆交点的两条线段长的比例中项。
如图所示,以AB的中心为圆心,AB的一半为半径做圆,AC为 圆的切线,A为切点,AB⊥AC,BC为圆的割线,此处有个著名 的切割线定理:AC²=CD× BC。以此不难看出,直角三角形中的 射影定理其实就是去掉圆以后的切割线定理。
部编数学九年级下册专项32相似三角形射影定理综合应用(2种类型)(解析版)含答案
专项32 相似三角形-射影定理综合应用(2种类型) 一、射影定理 直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
(证明略)二、变式推广 1.逆用 如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
【类型1:直角三角形中射影定理】【典例1】(2021秋•南京期末)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,且=.(1)求证△ACD∽△ABC;(2)若AD=3,BD=2,求CD的长.【解答】(1)证明:∵=,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴∠ACD=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠ADC=∠BDC,∵∠ACD=∠B,∴△ACD∽△CBD,∴=,∴=,∴CD=.【变式1-1】(2022•义乌市校级开学)如图,在△ABC中,∠ACB=90°,CD⊥AB,若AD=4,BD=8,则CD的长为( )A.4B.4C.4D.【答案】A【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠DCB+∠B=90°,∴∠A=∠DCB,∵∠ADC=∠CDB=90°,∴△ADC∽△CDB,∴=,即=,解得:CD=4,故选:A.【变式1-2】(2021秋•漳州期末)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,CD=4,则BD的长为( )A.B.C.D.2【答案】A【解答】解:∵∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC,∴∠DAC+∠C=90°,∠ADB=∠ADC=90°,∴∠B=∠DAC,∴△BDA∽△ADC,∴=,∵AD=3,CD=4,∴=,解得:BD=,故选:A.【变式1-3】(2020秋•梁平区期末)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是( )A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 【答案】B【解答】解:∵∠ACB=90°,CD⊥AB于点D,∴AC2=AD•AB,CD2=DA•DB,BC2=BD•BA.故选:B.【变式1-4】(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )A.3B.8C.D.2【答案】A【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.【类型2:非直角三角形中射影定理】【典例2】如图,已知∠A=70°,∠APC=65°,AC2=AP•AB,则∠B的度数为( )A.45°B.50°C.55°D.60°【答案】A【解答】解:∵∠A=70°,∠APC=65°,∴∠ACP=180°﹣70°﹣65°=45°.∵AC2=AP•AB,∴=.∵∠B=∠B,∴△BAC∽△CPA.∴∠B=∠ACP=45°.故选:A.【变式2-1】如图,在△ABC中,点D在边AB上,若∠ACD=∠B,AD=3,BD=4,则AC的长为( )A.2B.C.5D.2【答案】B【解答】解:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∵AD=3,BD=4,∴AB=AD+BD=3+4=7,∴,∴AC=或﹣(舍去),故选:B.【变式2-2】如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC∽△ACD;(2)若AD=2,AB=6.求AC的长.【解答】(1)证明:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴,∴AC2=2×6=12,∴AC=2.【典例3】如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 .【答案】8【解答】解:∵∠A=90°,∴∠ABD+∠ADB=90°,∵BD=CD,∴∠DBC=∠C,∴∠ADB=∠DBC+∠C=2∠C,∵∠C+∠CDE=45°∴2∠C+∠CDE=90°,∴∠ADB+∠CDE=90°,∴∠BDE=90°,作DF⊥BC于F,如图所示:则BF=CF,△DEF∽△BED∽△BDF,∴===,设EF=x,则DF=2x,BF=CF=4x,∴BC=8x,DE=x,∴CD=BD=2x,AC=6+2x,∵∠DFC=∠A=90°,∠C=∠C,∴△CDF∽△CBA,∴=,即=,解得:x=,∴BC=8;故答案为:8.【变式3】如图,在锐角△ABC中,BD⊥AC于D,DE⊥BC于E,AB=14,AD=4,BE:EC=9:2,则CD= .【答案】2【解答】解:∵BD⊥AC,∴∠ADB=90°,∴BD2=AB2﹣AD2=142﹣42=180,设BE=9x,EC=2x,∵DE⊥BC,∴BD2=BE•BC,即180=9x(9x+2x),解得x2=,∵CD2=CE•CB=2x•11x=22×=40,∴CD=2.1.(2022秋•义乌市月考)如图,小明在A时测得某树的影长为3m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.B.C.6D.【答案】B【解答】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=3m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△CDF,∴=,即DC2=ED•FD=2×3=6,解得CD=m.故选:B.2.(2012•麻城市校级自主招生)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是( )A.3B.4C.4D.2【答案】D【解答】解:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.∵DE∥BC,∴△ADE∽△ABC.∴.则DE=4.在直角△ADF中,根据射影定理,得EF==4.根据勾股定理,得DF==4,则圆的半径是2.故选:D.3.(2022春•周村区期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .【答案】6【解答】解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.4.(2021春•汉阴县期中)如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD 交于O,且BE:ED=1:3,AD=6cm,则AE= cm.【答案】3【解答】解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x (3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.5.(2022•武汉模拟)在矩形ABCD中,BE⊥AC交AD于点E,G为垂足.若CG=CD=1,则AC的长是 .【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.6.(2021秋•滦州市期中)已知关于x的方程x2﹣2(a+b)x+c2+2ab=0有两个相等的实数根,其中a、b、c为△ABC的三边长.(1)试判断△ABC的形状,并说明理由;(2)若CD是AB边上的高,AC=2,AD=1,求BD的长.【解答】解:(1)∵两根相等,∴可得:4(a+b)2﹣4(c2+2ab)=0,∴a2+b2=c2,∴△ABC是直角三角形;(2)由(1)可得:AC2=AD×AB,∵AC=2,AD=1,∴AB=4,∴BD=AB﹣AD=3.7.如图,点D在△ABC的边BC上,∠ADC+∠BAC=180°,AB=4,BC=8,求BD的长.【解答】解:∵∠ADC+∠BAC=180°,∠ADC+∠ADB=180°,∴∠ADB=∠BAC,又∵∠B=∠B,∴△BAD∽△BCA,∴=,∴BA2=BD•BC,∵AB=4,BC=8,∴BD=2.即AC⋅CF=CB⋅DF.8.(盐城校级模拟)【问题情境】如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E 在CD上,过点C作CF⊥BE,垂足为F,连接OF,(1)试利用射影定理证明△BOF∽△BED;(2)若DE=2CE,求OF的长.【解答】【问题情境】证明:如图1,∵CD⊥AB,∴∠ADC=90°,而∠CAD=∠BAC,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,∴AC2=AD•AB;【结论运用】(1)证明:如图2,∵四边形ABCD为正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即=,而∠OBF=∠EBD,∴△BOF∽△BED;(2)方法一:∵BC=CD=6,而DE=2CE,∴DE=4,CE=2,在Rt△BCE中,BE==2,在Rt△OBC中,OB=BC=3,∵△BOF∽△BED,∴=,即=,∴OF=.方法二:将△OFC绕O顺时针旋转90度得到△OGB,如图3,由△BOF∽△BED得到∠OFB=45°,∴∠OGB=∠OFC=45°+90°=135°,∵OG=OF,∴△OGF为等腰直角三角形,∴∠OGF=45°,∴G点在BE上,∵BG=CF=,∴GF=,∴OF=GF=.。
相似三角形-基本知识点+经典例题
相似三角形-基本知识点+经典例题(完美打印版)知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)假如两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,假如说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,假如b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 现在有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 差不多性质:注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =⇔=. (4)合、分比性质:a c a b c d b d b d ±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. (5)等比性质:假如)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )如此能够减少未知数的个数,这种方法是有关比例运算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或 注: ①重要结论:平行于三角形的一边,同时和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.B此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. ③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 注:平行线分线段成比例定理的推论: 平行线等分线段定理:两条直线被三条平行线所截,假如在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
九年级数学相似三角形知识点总结及例题讲解
1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a
:
c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE
相似三角形的性质(经典全面)
相似三角形的性质(经典全面)相似三角形的性质及判定一、相似的有关概念相似形是指具有相同形状的图形,但大小不一定相同。
相似图形之间的互相变换称为相似变换。
二、相似三角形的概念相似三角形是指对应角相等,对应边成比例的三角形。
用符号XXX表示,例如△ABC∽△A B C。
三、相似三角形的性质1.对应角相等:如果△ABC与△A B C相似,则有A A,B B,C C。
2.对应边成比例:如果△ABC与△A B C相似,则有AB/BC=AC/A C=BC/B C=k(k为相似比)。
3.对应边上的中线、高线和对应角的平分线成比例,都等于相似比。
例如,如果AM是△ABC中BC边上的中线,A M是△A B C中B C边上的中线,则有AM/A M=k。
如果AH是△ABC中BC边上的高线,A H是△A B C中B C边上的高线,则有AH/A H=k。
如果AD是△ABC中BAC的角平分线,A D是△A B C中B A C的角平分线,则有AD/A D=k。
4.相似三角形周长的比等于相似比。
如果△ABC与△A B C相似,则有AB+BC+AC/A B+B C+A C=k。
ABCD中间观察,比例式中的比AD和BC中的三个字母A,B,C恰为△ABC的顶点;比CD和EF中的三个EFDC字母D,E,F恰为△DEF的三个顶点.因此只需证欲证△ABC∽△DEF.证明比例中项式或倒数式或复合式的方法,可以运用“三点定形法”,也可以利用“分离比例中项法”或“分离倒数式法”或“分离复合式法”.由于在运用三点定形法时,可能会遇到三点共线或四点中没有相同点的情况,此时可以考虑使用等线、等比或等积进行变换,然后再使用三点定形法来寻找相似三角形。
这种方法被称为等量代换法。
在证明比例式时,常常会用到中间比。
证明比例中项式通常涉及与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,需要熟练掌握和透彻理解其特征和结论。
证明倒数式往往需要先进行变形,将等式的一边化为1,另一边化为几个比值的形式,然后对比值进行等量代换,进而证明之。
相似三角形的判定总结+题型分析(带答案)
相似三角形定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);性质:两个相似三角形中,对应角相等、对应边成比例。
相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC∽△DEF。
相似比为k。
判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:1)斜边与一条直角边对应成比例的两直角三角形相似。
2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
ABCDDABCDABCEAB C D E推论二:腰和底对应成比例的两个等腰三角形相似。
2017-2018学年高中数学 第一章 相似三角形定理与圆幂定理 1.1.4 锐角三角函数与射影定理
1.1.4 锐角三角函数与射影定理[对应学生用书P12][读教材·填要点]1.锐角三角函数的定义含有相等锐角α的所有直角三角形都相似,锐角三角函数(或三角比)为: sin α=α的对边斜边,cos α=α的邻边斜边,tan α=对边邻边.2.射影定理(1)定理的内容:直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项.(2)符号语言表示:如图若CD 是Rt△ABC 的斜边AB 上的高,则:①AC 2=AD ·AB ②BC 2=BD ·AB ③CD 2=AD ·BD[小问题·大思维]1.线段的正射影还是线段吗?提示:不一定.当该线段所在的直线与已知直线垂直时,线段的正射影为一个点. 2.如何用勾股定理证明射影定理? 提示:如图,在Rt △ABC 中, ∵AB 2=AC 2+BC 2, ∴(AD +DB )2=AC 2+BC 2, ∴AD 2+2·AD ·DB +DB 2=AC 2+BC 2,即2AD ·DB =AC 2-AD 2+BC 2-DB 2. ∵AC 2-AD 2=CD 2,BC 2-DB 2=CD 2,∴2AD·DB=2CD2,即CD2=AD·DB.在Rt△ACD中,AC2=AD2+CD2=AD2+AD·DB=AD(AD+DB)=AD·AB,即AC2=AD·AB.在Rt△BCD中,BC2=CD2+BD2=AD·DB+BD2=BD(AD+DB)=BD·AB,即BC2=BD·AB.[对应学生用书P13][例1] 如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,已知BD=4,AB=29,试求BC,AC和CD的长度.[思路点拨] 本题考查射影定理与勾股定理的应用.解答本题可由已知条件先求出AD,然后利用射影定理求BC,AC和CD的长度.[精解详析] ∵BD=4,AB=29,∴AD=25.由射影定理得CD2=AD·BD=25×4=100,∴CD=10.BC2=BD·BA=4×29.∴BC=229.AC2=AD·AB=25×29,∴AC=529.运用射影定理时,要注意其成立的条件,要结合图形去记忆定理,当所给条件中具备定理的条件时,可直接运用定理,不具备时可通过作垂线使之满足定理的条件,再运用定理.1.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD∶AD=1∶9,则tan∠BCD=________.解析:由射影定理得CD2=AD·BD,又BD∶AD=1∶9,令BD=x,则AD=9x(x>0).∴CD 2=9x 2,CD =3x . Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13. 答案:13[例2] 如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F .求证:DF AF =AEEC.[思路点拨] 本题考查射影定理的应用,利用三角形的内角平分线定理及射影定理可证得.[精解详析] 由三角形的内角平分线定理得, 在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC,②在Rt △ABC 中,由射影定理知,AB 2=BD ·BC ,即BD AB =AB BC.③由①③得:DF AF =AB BC ,④ 由②④得:DF AF =AE EC.将原图分成两部分来看,分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的,在求解此类问题时,一定要注意对图形进行剖析.2.如图,AD 、BE 是△ABC 的高,DF ⊥AB 于F ,交BE 于G ,FD的延长线交AC 的延长线于H ,求证:DF 2=FG ·FH . 证明:∵BE ⊥AC , ∴∠ABE +∠BAE =90°. 同理,∠H +∠HAF =90° ∴∠ABE =∠H .又∠BFG =∠HFA , ∴△BFG ∽△HFA . ∴BF ∶HF =FG ∶AF . ∴BF ·AF =FG ·FH . Rt △ADB 中,DF 2=BF ·AF , ∴DF 2=FG ·FH .[对应学生用书P14]一、选择题1.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD =2,BD =3,则AC 等于( )A.53 B.213C.523D .13解析:由射影定理知,CD 2=BD ·AD ,∴AD =43.∴AB =AD +BD =133.∴AC 2=AD ·AB =43×133=529.∴AC =523. 答案:C2.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t .又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B3.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,若AC AB =34,则BDCD=( ) A.34 B .43 C.169D .916解析:如图,由射影定理,得AC 2=CD ·BC ,AB 2=BD ·BC .∴AC 2AB 2=CD BD =⎝ ⎛⎭⎪⎫342.即CD BD =916. ∴BD CD =169. 答案:C4.在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AD ∶BD =2∶3,则△ACD 与△CBD 周长的相似比为( )A .2∶3B .4∶9 C.6∶3D .不确定解析:如图,在Rt △ACB 中,CD ⊥AB ,由射影定理得,CD 2=AD ·BD ,即CD AD =BD CD.又∵∠ADC =∠BDC =90°,∴△ACD ∽△CBD . 又∵AD ∶BD =2∶3,令AD =2x ,BD =3x (x >0), ∴CD 2=6x 2.∴CD =6x .∴△ACD 与△CBD 周长的相似比为AD CD=2x6x=63, 即相似比为6∶3.答案:C 二、填空题5.如果两条直角边在斜边上的射影分别是4和16,则此直角三角形的面积是________. 解析:由题意知,直角三角形斜边长为20,根据射影定理知,斜边上的高为4×16=8,所以直角三角形的面积为12×20×8=80.答案:806.已知:在△ABC 中,∠ACB =90°,CD 是AB 边上的高,BC =15 cm ,BD =3 cm ,则AD 的长是________.解析:∵BC 2=BD ·AB , ∴15=3AB ,∴AB =5(cm). ∴AD =AB -BD =5-3=2(cm). 答案:2 cm7.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB ,AD 的中点,则EF =________.解析:连接DE ,可知△AED 为直角三角形,则EF 是Rt △DEA 斜边上的中线,其长等于斜边长的一半,为a2.答案:a28.已知在梯形ABCD 中,DC ∥AB ,∠D =90°,AC ⊥BC ,AB =10 cm ,AC =6 cm ,则此梯形的面积为________.解析:如图,过C 作CE ⊥AB 于E . 在Rt △ACB 中,∵AB =10 cm ,AC =6 cm ,AC 2=AE ·AB ,∴AE =3.6 cm ,BE =AB -AE =6.4 cm.又∵CE 2=AE ·BE ,∴CE = 6.4×3.6=4.8(cm). 又∵在梯形ABCD 中,CE ⊥AB , ∴DC =AE =3.6 cm. ∴S 梯形ABCD =+2=32.64(cm 2).答案:32.64 cm 2三、解答题9.已知∠CAB =90°,AD ⊥CB ,△ACE ,△ABF 是正三角形,求证:DE ⊥DF . 证明:如图,在Rt △BAC 中,AC 2=CD ·CB ,AB 2=BD ·BC ,∴AC AB=CD BD=CD 2CD ·BD=CD 2AD 2=CD AD =AD BD. ∵AC =AE ,AB =BF , ∴AE BF =AD BD ,即AE AD =BFBD.又∠FBD =∠60°+∠ABD ,∠EAD =60°+∠CAD ,∠ABD =∠CAD , ∴∠FBD =∠EAD .∴△EAD ∽△FBD .∴∠BDF =∠ADE . ∴∠FDE =∠FDA +∠ADE =∠FDA +∠BDF =90°. ∴DE ⊥DF .10.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,DF ⊥AC 于F ,DE ⊥AB 于E ,试证明:(1)AB ·AC =BC ·AD ; (2)AD 3=BC ·CF ·BE .证明:(1)Rt △ABC 中,AD ⊥BC , ∴S △ABC =12AB ·AC =12BC ·AD .∴AB ·AC =BC ·AD . (2)Rt △ADB 中,DE ⊥AB ,由射影定理可得BD 2=BE ·AB , 同理CD 2=CF ·AC ,∴BD 2·CD 2=BE ·AB ·CF ·AC .又Rt △BAC 中,AD ⊥BC ,∴AD 2=BD ·DC , ∴AD 4=BE ·AB ·CF ·AC .又AB ·AC =BC ·AD , 即AD 3=BC ·CF ·BE .11.如图所示,CD 为Rt △ABC 斜边AB 边上的中线,CE ⊥CD ,CE =103,连接DE 交BC 于点F ,AC =4,BC =3.求证: (1)△ABC ∽△EDC ; (2)DF =EF .证明:(1)在Rt △ABC 中,AC =4,BC =3,则AB =5. ∵D 为斜边AB 的中点, ∴AD =BD =CD =12AB =2.5.∴CD CE =2.5103=34=BC AC. ∴△ABC ∽△EDC .(2)由(1)知,∠B =∠CDF , ∵BD =CD ,∴∠B =∠DCF , ∴∠CDF =∠DCF . ∴DF =CF .①由(1)知,∠A =∠CEF ,∠ACD +∠DCF =90°, ∠ECF +∠DCF =90°,∴∠ACD =∠ECF .由AD =CD ,得∠A =∠ACD . ∴∠ECF =∠CEF , ∴CF =EF .② 由①②,知DF =EF .。
相似里面的射影定理ppt课件
1、已知,如图,FD⊥BC,AC⊥BF(1)、写出与△ABC相似的所有三角形 。
例1
解:
分析:利用射影定理和勾股定理
1、如图,在△ABC中,∠C=90°,CD⊥AB若AD=1,AC=3, 求 BD的长。
例2:在△ABC中,∠BAC=90°,D为AC中点,AE⊥BD,E为垂足,求证:(1) (2)△DCE∽△DBC (3) ∠CBD= ∠ECD
(3)解题过程中,注意和勾股定理联系,选择简便方法.
(2)、求证:△ABC∽△ADE 。
2、如图,在△ABC中,∠C=90°,CD⊥AB若BC=5,CD=3, 求AC的长。
如图,圆0上一点C在直径AB上的射影为D,AD=2,DB=8,求CD、AC和BC的长
C
A
D
O
B
A
B
C
D
如图,△ABC中,顶点C在AB边上的射影为D,且求证:三角形是直角三角形
如图,在△ABC中,∠C=90°,CD⊥AB此图中有几个直角三角形,它们相似吗?
1.AC2=AB·AD
3.BC2=AB·BD
2.CD2=AD·BD
结论:
射影的三个结论
A
B
C
D
AC2=AB·AD
BC2=AB·BD
CD2=AD·BD
直角三角形射影定理: 直角三角形一条直角边的平方等于该直角边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两条直角边的在斜边上射影的乘积
(2)SAS判定相似,夹角是直角
(3) HL判定相似,但不能直接用
(常用方法)
“ 射影”
从一点向A'
最新中考射影定理及其运用
2017中考射影定理及其运用相似三角形------射影定理的推广及应用射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。
一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。
一、射影定理射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
二、变式推广1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2))如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
三、应用例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H,求证:4DH•DA=BC2分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式(2),可得BD2=DH•DA,又BC=2BD,故有结论成立。
(证明略)例2 如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分,求DC。
分析:易得到∠DBC=∠ABD=∠DCE,满足射影定理变式(2)的条件,故有CD2=DE•DB,易求得DC=8(解略)例3 已知:如图(5),△ABC中,AD平分∠BAC,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F,求证:DF2=CF•BF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
相似三角形
经典模型
“平行型”: A 字型和8字型
由DE ∥BC 可得:AC
AE
AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.
例1:如图,111EE FF MM ∥∥,若
AE EF FM MB ===, 则1
11
1
1
1
:::_________AEE EE F F FF M M MM CB S S S S ∆=四边形四边形四边形 M 1F 1E 1M E F A B
C
总结:相似比和面积比,周长比的关系是
例2:如图,AD EF MN BC ∥∥∥,若9AD =,18BC =,::2:3:4AE EM MB =,则_____EF =,
_____MN =
M N A B
C
D E F
2
例3.已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H
求证:
PE PH
PF PG
= P
H
G
F
E
D
C
B
A
例4.已知:在ABC ∆中,D 为AB 中点,E 为AC 上一点,且
2AE
EC
=,BE 、CD 相交于点F , 求
BF
EF
的值
例5.已知:在ABC ∆中,12AD AB =
,延长BC 到F ,使1
3
CF BC =,连接FD 交AC 于点E
求证:①DE EF = ②2AE CE =
A
B
C
D
F
E
7.如图,在ABC ∆中,D 是AC 边的中点,过D 作直线EF 交AB 于E ,交BC 的延长线于F
求证:AE BF BE CF ⋅=⋅
F
E
D
C B
A
F
E D
C
B
A
3
2.直角三角形中的相似问题:
斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似. 射影定理:
CD ²=AD ·BD , AC ²=AD ·AB , BC ²=BD ·BA
(在直角三角形的计算和证明中有广泛的应用).
例1 如图,圆O 上一点C 在直径AB 上的射影为D 。
,,82==DB AD 求的长。
和BC AC CD ,
2.如图1—4—1中,∠ACB=90°,CD ⊥AB 于D ,AD=3,BD=2,则AC :BC 的值是( )
A .3:2
B .9:4
C .3:2
D .2:3
3.已知直角△ABC 中,斜边AB=5cm ,BC=2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD=3.2cm ,则DE=( )
A .1.24 cm
B .1.26 cm
C .1.28cm
D .1.3 cm
4.在Rt ABC 中,90BAC ∠= ,AD BC ⊥于点D ,若
34AC AB =,则BD
CD
=( ) A 、34 B 、43 C 、169 D 、916
A
4
圆
例1.在半径为的⊙中,弦、的长分别为和,求∠的度数。
132O AB AC BAC
练习
1. 已知:一个圆的弦切角是50°,那么这个弦切角所夹的弧所对的圆心角的度数为___________。
2. 圆内接四边形ABCD 中,如果∠A :∠B :∠C=2:3:4,那么∠D=___________度。
3. 若⊙O 的半径为3,圆外一点P 到圆心O 的距离为6,则点P 到⊙O 的切线长为___________。
4. 如图所示CD 是⊙O 的直径,AB 是弦,CD ⊥AB 于M ,则可得出AM=MB ,AC BC ⋂=⋂
等多个结
论,请你按现有的图形再写出另外两个结论:___________。
5. ⊙O 1与⊙O 2的半径分别是3和4,圆心距为43,那么这两圆的公切线的条数是___________。
6. 圆柱的高是13cm ,底面圆的直径是6cm ,则它的侧面展开图的面积是___________。
7. 已知:如图所示,有一圆弧形桥拱,拱的跨度AB=16cm ,拱高CD=4cm ,那么拱形的半径是___________。
8. 若PA 是⊙O 的切线,A 为切点,割线PBC 交⊙O 于B ,若BC=20,PA=103,则PC 的长为___________。
9.如图5,△ABC 内接于⊙O ,点P 是C A
上任意一点(不与C A 、重合),
POC ABC ∠=∠则,55
的取值范围是 .
10.如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则
∠1的度数为 .
(第9题图)
5
11.已知O 的半径是3,圆心O 到直线l 的距离是3,则直线l 与圆O 的位置关系是 .
12.如图,已知点E 是圆O 上的点, B 、C 分别是劣弧AD 的三等分点, 46BOC ∠= ,则AED ∠的度数为 .
13.如图,Rt ABC △中90ACB ∠=
,4AC =,3BC =.将ABC △绕AC 所在的直线f 旋转一周
得到一个旋转体,该旋转体的侧面积= .
15.如图,AB 是圆O 的直径,AM 为弦,30MAB ∠=
,过M 点的O 的切线交AB 延长线于点N .若
12c m
ON =,则O 的半径为 cm .
第13题图
f A
B
C。