二元二次方程组练习题

合集下载

初中数学方程与不等式之二元二次方程组经典测试题附答案

初中数学方程与不等式之二元二次方程组经典测试题附答案

0 2y2
0
【答案】
x1
y1
1 4 1 2

x2
y2
2 5 1 5
.
【解析】
【分析】
首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.
【详解】
2x y 1 0① 2x2 5xy 2 y2 0②
将②因式分解,得 2x y x 2y 0
∴方程组可化为两个新方程组:
分别在边 BC,AB 上,求 DN 的值. AM
【答案】(1)证明见解析;(2) 11 ;(3) 4 .
15
5
【解析】
分析:(1)过点 A 作 AP∥EF,交 CD 于 P,过点 B 作 BQ∥GH,交 AD 于 Q,根据矩形的性质
证明△PDA∽△QAB;(2)根据(1)的结论可得 BN ;(3)过点 D 作平行于 AB 的直线,交过点 AM
x2 y2 3 5.解方程:
x y 1 0
【答案】
x
y
1 2
【解析】
【分析】
本题可用代入消元法进行求解,即把方程 2 写成 x=-1-y,代入方程 1,得到一个关于 y 的一
元二次方程,求出 y 值,进而求 x.
【详解】
解:
x x
2 y2 y
3 1 0
1 2
由(2)得: x 1 y (3)
【解析】 【分析】 根据解二元二次方程组的步骤求解即可. 【详解】
解:由方程①得: x yx-y -3 ,③
由方程②得: x y -1,④
联解③④得 x-y=3,⑤
x 1 联解④⑤得 y -2
x 1 所以原方程组的解为 y -2
【点睛】 本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程, 再降次转化为一元一次方程解之.

龙岩市初中数学方程与不等式之二元二次方程组专项训练及解析答案

龙岩市初中数学方程与不等式之二元二次方程组专项训练及解析答案

龙岩市初中数学方程与不等式之二元二次方程组专项训练及解析答案一、选择题1.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii )得,3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩, 所以,原方程组的解是:12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.2.解方程组:⑴3{351x y x y -=+= ⑵3+10{2612x y z x y z x y z -=+-=++=【答案】(1)2{1xy==-;(2)3{45xyz===【解析】(1)先用代入消元法求出x的值,再用代入消元法求出y的值即可.(2)先利用加减消元法去z得到关于x、y的两个方程,解这两个方程组成的方程组求出x、y,然后利用代入法求z,从而得到原方程组的解.(1)2{1xy==-; (2)3{45xyz===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.3.解方程组:(1)4{526y xx y=-+=;(2)358{32x yx y+=-=【答案】(1)22xy=⎧⎨=-⎩;(2)【解析】方程组利用加减消元法求出解即可.解:(1) ①代入②得x=2把x=2代入①得y=-2∴(2) ①-②得y=1把y=1代入①得x=1∴“点睛”本题通过“代入”“加减”达到消元的目的,将解二元一次方程组的问题转化为解一元一次方程的问题.4.解方程组:2220 23x xy yx y⎧--=⎨+=⎩.【答案】原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.5.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩ 由②得,()224x y -= ③,把①代入③,得()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.6.解方程组:226021x xy y x y ⎧+-=⎨+=⎩ 【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩ ∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①②,由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.解方程组 1730x y xy -=⎧⎨=-⎩【答案】1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据第一个式子,得出x 与y 的关系,代入第二个式子求解.【详解】解:1730x y xy -=⎧⎨=-⎩①②, 由①,得x=17+y③,把③代入②式,化简得y 2+17y+30=0,解之,得y 1=-15,y 2=-2.把y 1=-15代入x=17+y ,得x 1=2,把y 2=-2代入x=17+y ,得x 2=15.故原方程组的解为1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题考查了二元二次方程的解法,解题的关键是运用代入法得出x 、y 的值.9.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】【分析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.10.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩ . 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.11.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{ 1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】2224490x xy y x xy ⎧++=⎨+=⎩①②由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.12.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.13.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①② 由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解,所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.14.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】 根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组15.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩ 解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.16.某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元?【答案】实际销售运动衣800套,实际每套运动衣的利润是20元【解析】【分析】根据计划销售的套数×计划每套运动衣的利润=计划获利12000元;实际销售的套数×实际每套运动衣的利润=实际获利12000+4000元;那么可列出方程组求解.【详解】解:设实际销售运动衣x 套,实际每套运动衣的利润是y 元.根据题意 ,可列方程组()()4001012000120004000x y xy ⎧-+=⎨=+⎩解得:1212800800,2020x x y y ==-⎧⎧⎨⎨==-⎩⎩(舍去), 答:实际销售运动衣800套,每套运动衣的实际利润20元.【点睛】本题考查了二元二次方程组的应用,关键是根据题意列出方程组求解后要判断所求的解是否符合题意,舍去不合题意的解.17.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.18.某起重机厂四月份生产A 型起重机25台,B 型起重机若干台.从五月份起, A 型起重机月增长率相同,B 型起重机每月增加3台.已知五月份生产的A 型起重机是B 型起重机的2倍,六月份A 、 B 型起重机共生产54台.求四月份生产B 型起重机的台数和从五月份起A 型起重机的月增长率.【答案】四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%【解析】【分析】设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y,根据题目中的等量关系列出方程组求解即可.【详解】解:设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y.根据题意 ,可列方程组()()()()2251232513254y x y x ⎧+=+⎪⎨+++⨯=⎪⎩ 解得:x=12,y=0.2答:四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%.【点睛】本题考查了二元二次方程组的应用,解题的关键是找准题中的等量关系.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩ 解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:222302x xy y x y ⎧--=⎨-=⎩【答案】1131x y =⎧⎨=⎩ 2211x y =⎧⎨=-⎩ 【解析】【分析】利用因式分解把方程①转化为两个二元一次方程,再分别与方程②组成方程组,解二元一次方程组即可得到答案.【详解】解:222302x xy y x y ⎧--=⎨-=⎩①②, 由①得:x 3y 0-= 或 x y 0+=原方程组化为: 302x y x y -=⎧⎨-=⎩ 或02x y x y +=⎧⎨-=⎩解得:1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ ∴ 原方程组的解为1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ 【点睛】本题考查的是二元二次方程组的解法,掌握利用因式分解降次是解题关键.。

二元二次方程练习题及解析

二元二次方程练习题及解析

二元二次方程练习题及解析一、练习题1. 解方程组:{(x + y)² = 25(x - y)² = 92. 解方程组:{(x + y)² = 144(x - y)² = 163. 解方程组:{(2x + y)² = 25(4x - y)² = 814. 解方程组:{(3x + 2y)² = 16(2x - y)² = 95. 解方程组:{(2x + y)² = 36(3x - y)² = 49二、解析1. 解方程组:{(x + y)² = 25(x - y)² = 9解:将两个方程展开得到:(x² + 2xy + y²) = 25 (1)(x² - 2xy + y²) = 9 (2)将(2)式两边同时乘以4,并与(1)式相加得到: 5x² = 61解得:x = ±√(61/5)将x的值代入(1)或(2)式中,解得相应的y值。

2. 解方程组:{(x + y)² = 144(x - y)² = 16解:将两个方程展开得到:(x² + 2xy + y²) = 144 (1)(x² - 2xy + y²) = 16 (2)将(2)式两边同时乘以9,并与(1)式相加得到: 10x² = 208解得:x = ±√(208/10)将x的值代入(1)或(2)式中,解得相应的y值。

3. 解方程组:{(2x + y)² = 25(4x - y)² = 81解:将两个方程展开得到:(4x² + 4xy + y²) = 25 (1)(16x² - 8xy + y²) = 81 (2)将(2)式两边同时乘以1/9,并与(1)式相加得到: 5x² = 74/9解得:x = ±√(74/45)将x的值代入(1)或(2)式中,解得相应的y值。

(完整版)二元二次方程解法练习题(四种方法)

(完整版)二元二次方程解法练习题(四种方法)

(完整版)二元二次方程解法练习题(四种方法)引言二元二次方程是一个常见的数学问题,解决这类问题可以帮助我们进一步理解二次方程的性质和求解方法。

本文将介绍四种不同的方法来解决二元二次方程,并提供相应的练题,以帮助读者巩固所学的知识。

方法一:代入法代入法是一种简单直接的解法,通过将一个方程的解代入到另一个方程中,从而求得未知数的值。

以下是一个代入法的例子:例题:求解方程组\begin{align*}3x^2-4y^2&=5 \\x+y&=3\end{align*}解法:1. 将第二个方程中的 $x$ 替换为 $3-y$,得到新的方程 $3(3-y)^2-4y^2=5$。

2. 将该方程整理并解得 $y=1$。

3. 将 $y=1$ 代入第二个方程,解得 $x=2$。

因此,该方程组的解为 $x=2$,$y=1$。

练题:1. 求解方程组\begin{align*}2x^2-3y^2&=4 \\x+y&=2\end{align*}2. 求解方程组\begin{align*}4x^2-5y^2&=8 \\2x+y&=3\end{align*}方法二:消元法消元法是另一种常用的解法,通过将两个方程相加或相减,并适当选择系数,使得其中一个未知数的系数相同而相消,从而求解另一个未知数。

以下是一个消元法的例子:例题:求解方程组\begin{align*}2x^2-3y^2&=4 \\5x-2y&=1\end{align*}解法:1. 将第二个方程乘以 2,得到 $10x-4y=2$。

2. 将第一个方程乘以 5,得到 $10x^2-15y^2=20$。

3. 将第三步的方程与第二步的方程相减,得到$15y^2-4y=18$。

4. 解方程 $15y^2-4y=18$,得到 $y=2$。

5. 将 $y=2$ 代入第一个方程,解得 $x=1$。

因此,该方程组的解为 $x=1$,$y=2$。

方程与不等式之二元二次方程组技巧及练习题

方程与不等式之二元二次方程组技巧及练习题

方程与不等式之二元二次方程组技巧及练习题一、选择题1.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.2.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组:2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.3.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩ 【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩ 解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则4.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩【解析】【分析】把第一个方程化为x=3y,代入第二个方程,即可求解.【详解】由方程①,得x=3y③,将③代入②,得(3y)2+y2=20,整理,得y2=2,解这个方程,得y1,y2④,将④代入③,得x1=,2x=﹣所以,原方程组的解是11xy⎧=⎪⎨=⎪⎩11xy⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.5.解方程组22222()08x y x yx y⎧-++=⎨+=⎩【答案】12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x yx y⎧-++=⎨+=⎩①②,①式左边分解因式得,()20x y x y-++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i)22208x yx y-+=⎧⎨+=⎩或(ii)22+08x yx y=⎧⎨+=⎩解方程组(i)得,12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii)得,3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩,所以,原方程组的解是:12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.6.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.【答案】12cm、16cm、20cm.【解析】【分析】设两直角边为a、b+1=962a bab⎧⎪⎨⎪⎩求解即可.【详解】设该直角三角形的两条直角边为a、b+1=962a bab⎧⎪⎨⎪⎩解得=12=16ab⎧⎨⎩或=16=12ab⎧⎨⎩,经检验,=12=16ab⎧⎨⎩和=16=12ab⎧⎨⎩cm.答:该直角三角形的三边长分别是12cm、16cm、20cm.【点睛】此题运用三角形面积表示出1=962ab7.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.8.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=. 整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩.9.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩ 【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】 先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0, x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.10.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.11.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.12.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.13.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.14.2222340441x xy y x xy y ⎧--=⎨++=⎩【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①②将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ ∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.15.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩ 解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.16.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.17.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩ 【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩ . 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.18.解方程22220x y x xy y -=⎧⎨--=⎩①②【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。

最新初中数学方程与不等式之二元二次方程组专项训练及解析答案

最新初中数学方程与不等式之二元二次方程组专项训练及解析答案

最新初中数学方程与不等式之二元二次方程组专项训练及解析答案一、选择题1.解方程组:226021x xy y x y ⎧+-=⎨+=⎩【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.2.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.3.如图,要建一个面积为45 m 2的长方形养鸡场(分为两片),养鸡场的一边靠着一面长为14m 的墙,另几条边用总长为22 m 的竹篱笆围成,每片养鸡场的前面各开一个宽l m 的门.求这个养鸡场的长与宽.【答案】这个养鸡场的长为9m ,宽为5 m.【解析】试题分析:设鸡场的长为x m ,宽为y m ,根据鸡场的面积和周长列出两个等量关系,解方程组即可,注意鸡场的长小于围墙的长.解:设鸡场的长为xm ,宽为ym ,由题意可得:322245x y xy +-=⎧⎨=⎩,且x <14,解得y =3或5; 当y =3时,x =15;∵x <14,∴不合题意,舍去;当y =5时,x =9,经检验符合题意.答:这个养鸡场的长为9m ,宽为5m.4.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ 【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==, 解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩. 故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.5.解方程组:【答案】,.【解析】【分析】先由①得x=4+y ,将x=4+y 代入②,得到关于y 的一元二次方程,解出y 的值,再将y 的值代入x=4+y 求出x 的值即可.【详解】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程.6.已知113 2x y =⎧⎨=-⎩是方程组22x y mx y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解.【答案】22-2 3x y =⎧⎨=⎩【解析】【分析】先将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中求出m、n的值,然后再求方程组的另一组解.【详解】解:将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中得:131mn=⎧⎨=⎩,则方程组变形为:22131x yx y⎧+=⎨+=⎩,由x+y=1得:x=1-y,将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-2 3x y =⎧⎨=⎩.【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m和n的值是解题的关键.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①②, 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.9.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.10.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为 ()()2620x y x y x y -=⎧⎨-+=⎩∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩ ∴原方程组的解为 42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩ . 【点睛】本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.11.解方程组:223403x xy y x y ⎧--=⎨-=⎩【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.12.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】 2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩,即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】 本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组13.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.14.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩ 【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①② 由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩ 去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.15.21220y x x xy -=⎧⎨--=⎩ 【答案】10x y =-⎧⎨=⎩或23x y =⎧⎨=⎩【解析】本题考查二元二次方程组的解法,在解题时观察本题的特点,可用代入法先消去未知数y ,求出未知数x 的值后,进而求得这个方程组的解.【详解】解:由①得:1y x =+③把③代入②,得22(1)20x x x -+-=,整理得:220x x --=,解得11x =-,22x =.当11x =-时,1110y =-+=当22x =时,2213y =+=∴原方程组的解为1110x y =-⎧⎨=⎩,2223x y =⎧⎨=⎩. 【点睛】本题考查了二元二次方程组的解法,二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组.16.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】 解:222603x y y mx ⎧+-=⎨=+⎩①② 把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.17.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。

初中数学方程与不等式之二元二次方程组专项训练及答案(1)

初中数学方程与不等式之二元二次方程组专项训练及答案(1)

初中数学方程与不等式之二元二次方程组专项训练及答案(1)一、选择题1.解方程组:2263100x y x xy y -=⎧⎨+-=⎩【答案】11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩ 【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.【详解】解:2263100x y x xy y -=⎧⎨+-=⎩由②得:()()250x y x y -+=原方程组可化为620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.2.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k ==或k=2 (舍去),∴FM=6,FT=,MT= ,GN=4,TG=, ∴M (,))、N (6,-4),代入得:=k+b 且-4=6k+b , 解得:k=,b=4, ∴y =x+4, 联立y =x+4与y =,求得P (1, ),Q (3,0).答:存在P 的坐标是(1, ),Q 的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.3.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.4.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①② 由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,;解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.5.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.6.解方程组:22x 2xy 3y 3x y 1⎧--=⎨+=⎩ 【答案】x 1.5y 0.5=⎧⎨=-⎩【解析】【分析】把方程组的第一个方程分解因式求出x 3y 3-=,再解方程组解x y 1x 3y 3+=⎧⎨-=⎩即可. 【详解】由22x 2xy 3y 3--=得:()()x y x 3y 3+-=, x y 1+=Q ,x 3y 3∴-=,解x y 1x 3y 3+=⎧⎨-=⎩得:x 1.5y 0.5=⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成低次方程组是解此题的关键.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】 由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①② , 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.9.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次10.22x -y -3x 10y ⎧=⎨++=⎩,①,② 【答案】x 1y -2=⎧⎨=⎩【解析】【分析】根据解二元二次方程组的步骤求解即可.【详解】解:由方程①得:()()x y x-y -3+⋅=,③由方程②得:x y -1+=,④联解③④得x-y=3,⑤ 联解④⑤得x 1y -2=⎧⎨=⎩所以原方程组的解为x 1y -2=⎧⎨=⎩【点睛】本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.11.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩.本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.12.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.13.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①② 由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.14.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩ 【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.(1)221104100x y y ⎧+-=⎪-+=①② 由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.15.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.16.解方程组22()()08x y x y x y +-=⎧⎨+=⎩ 【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.17.解方程组:22444{10x xy y x y -+=++=①②.【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.18.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩ 解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.19.解方程组:222302x xy y x y ⎧--=⎨-=⎩【答案】1131x y =⎧⎨=⎩ 2211x y =⎧⎨=-⎩ 【解析】【分析】利用因式分解把方程①转化为两个二元一次方程,再分别与方程②组成方程组,解二元一次方程组即可得到答案.【详解】解:222302x xy y x y ⎧--=⎨-=⎩①②, 由①得:x 3y 0-= 或 x y 0+=原方程组化为: 302x y x y -=⎧⎨-=⎩ 或02x y x y +=⎧⎨-=⎩解得:1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ ∴ 原方程组的解为1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ 【点睛】本题考查的是二元二次方程组的解法,掌握利用因式分解降次是解题关键.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。

人教版初中数学方程与不等式之二元二次方程组技巧及练习题含答案

人教版初中数学方程与不等式之二元二次方程组技巧及练习题含答案

人教版初中数学方程与不等式之二元二次方程组技巧及练习题含答案一、选择题1.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则2.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①② 由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩ 解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.3.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.4.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①② 由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.5.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y)(x-2y)=0,x+y=0,x-2y=0,即原方程组化为23x yx y+⎧⎨+⎩==,2023x yx y-⎧⎨+⎩==,解得:123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩,即原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.6.已知113 2x y =⎧⎨=-⎩是方程组22x y mx y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解.【答案】22-2 3x y =⎧⎨=⎩【解析】【分析】先将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中求出m、n的值,然后再求方程组的另一组解.【详解】解:将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中得:131mn=⎧⎨=⎩,则方程组变形为:22131x yx y⎧+=⎨+=⎩,由x+y=1得:x=1-y,将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-2 3x y =⎧⎨=⎩.【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m和n的值是解题的关键.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】 由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①② , 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.9.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解. 【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.10.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0,x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.11.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2, 所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.12.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.13.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】 222403260x y x xy x y ⎧-=⎨-+++=⎩①② 由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.14.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.15.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩ 【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】【分析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.16.解方程组:22444{10x xy y x y -+=++=①②. 【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.17.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,CE=43,求AC BC的值.【答案】(1)见解析;(2)26 ; (3)57. 【解析】【分析】(1)只要证明△ECH ∽△BCD ,可得EC BC =CH CD,即可推出CE•CD=CH•BC ; (2)如图2中,连接AH .只要证明△AEH ∽△HFB ,可得AE HF =EH FB ,推出FH 2=6,推出HE=HF=6,即可解决问题.(3)只要证明△ECF ∽△BCA ,求出CF 即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A ,∠ECF=∠ACB ,∴∠CEF=∠B ,∵∠ECH=∠DCB ,∴△ECH ∽△BCD ,∴EC CH BC CD=,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵3∴3322213EM HM+∵S△HCF:S△HCE=FH:EH=FC:EC,∴x13(53):3,又∵x2=y2+(52)2,解得y=14或2(舍弃), ∴∵∠CEF=∠B ,∠ECF=∠ACB ,∴△ECF ∽△BCA , ∴EC CF BC AC=,∴AC CF BC EC ===57. 【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.18.某起重机厂四月份生产A 型起重机25台,B 型起重机若干台.从五月份起, A 型起重机月增长率相同,B 型起重机每月增加3台.已知五月份生产的A 型起重机是B 型起重机的2倍,六月份A 、 B 型起重机共生产54台.求四月份生产B 型起重机的台数和从五月份起A 型起重机的月增长率.【答案】四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%【解析】【分析】设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y,根据题目中的等量关系列出方程组求解即可.【详解】解:设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y.根据题意 ,可列方程组()()()()2251232513254y x y x ⎧+=+⎪⎨+++⨯=⎪⎩ 解得:x=12,y=0.2答:四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%.【点睛】本题考查了二元二次方程组的应用,解题的关键是找准题中的等量关系.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩ 解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:222302x xy y x y ⎧--=⎨-=⎩【答案】1131x y =⎧⎨=⎩ 2211x y =⎧⎨=-⎩ 【解析】【分析】利用因式分解把方程①转化为两个二元一次方程,再分别与方程②组成方程组,解二元一次方程组即可得到答案.【详解】解:222302x xy y x y ⎧--=⎨-=⎩①②, 由①得:x 3y 0-= 或 x y 0+=原方程组化为: 302x y x y -=⎧⎨-=⎩ 或02x y x y +=⎧⎨-=⎩解得:113 1x y =⎧⎨=⎩或2211xy=⎧⎨=-⎩∴原方程组的解为113 1x y =⎧⎨=⎩或2211xy=⎧⎨=-⎩【点睛】本题考查的是二元二次方程组的解法,掌握利用因式分解降次是解题关键.。

二元二次方程组练习题及答案

二元二次方程组练习题及答案

二元二次方程组练习题及答案精品文档二元二次方程组练习题及答案班级姓名学号一、选择题 :1.下列方程中不一定是一元二次方程的是A.x2=B.ax2+bx+c=0C.=x+52?2下列方程中,常数项为零的是A.x2+x=1B.2x2-x-12=12;C.2=3D.2=x+23.一元二次方程2x2-3x+1=0化为2=b的形式,正确的是2223x?2?073?13??? A. ?x???16; B.2?x???;C.?162???3?1?;D.以上都不对 x????4?16?4.关于x的一元二次方程?a?1?x2?x?a2?1?0的一个根是0,则a值为A、1B、?1C、1或?1D、15.已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根, 则这个三角形的周长为A.11B.1C.17或1D.196.已知一个直角三角形的两条直角边的长恰好是方程2x2?8x?7?0的两个根,则这个直角三角形的斜边长是AB、C、 D、91 / 15精品文档x2?5x?67.使分式的值等于零的x是 x?1A.6B.-1或C.-1D.-68.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是777A.k>-B.k?- 且k?0C.k?- D.k> 且k?04449.已知方程x2?x?2,则下列说中,正确的是方程两根和是1方程两根积是2方程两根和是?1 方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为A.2002=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1++2]=1000二、填空题:11.用______法解方程32=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.213.x2?3x?_____?14.若一元二次方程ax2+bx+c=0有一个根为-1,则a、b、c的关系是______.15.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______,b=______.2 / 15精品文档16.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.17.已知x2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.11?219.已知x1,x2是方程x?2x?1?0的两个根,则x1x2等于__________.20.关于x的二次方程x2?mx?n?0有两个相等实根,则符合条件的一组m,n的实数值可以是m?,n?.三、用适当方法解方程:21.2?x2?522.x2??3?0四、列方程解应用题:23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,,把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽,25.某商场销售一批名牌衬衫,平均每天可售出203 / 15精品文档件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

方程与不等式之二元二次方程组基础测试题附答案

方程与不等式之二元二次方程组基础测试题附答案

方程与不等式之二元二次方程组基础测试题附答案一、选择题1.21220y x x xy -=⎧⎨--=⎩【答案】10x y =-⎧⎨=⎩或23x y =⎧⎨=⎩【解析】【分析】本题考查二元二次方程组的解法,在解题时观察本题的特点,可用代入法先消去未知数y ,求出未知数x 的值后,进而求得这个方程组的解.【详解】解:由①得:1y x =+③把③代入②,得22(1)20x x x -+-=,整理得:220x x --=,解得11x =-,22x =.当11x =-时,1110y =-+=当22x =时,2213y =+=∴原方程组的解为1110x y =-⎧⎨=⎩,2223x y =⎧⎨=⎩. 【点睛】 本题考查了二元二次方程组的解法,二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组.2.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①②由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.3.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组: 2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩.所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.4.解方程组:226021x xy y x y ⎧+-=⎨+=⎩【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩ ∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.5.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为()()2620x y x y x y -=⎧⎨-+=⎩∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩∴原方程组的解为 42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【点睛】本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.6.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.7.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.8.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=,将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.9.()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩ 【答案】117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩①② 将①因式分解得:2(2)9x y -=,∴23x y -=或23x y -=-将②因式分解得:(24)(23)0x y x y +-++=∴240x y +-=或230x y ++=∴原方程化为:23240x y x y -=⎧⎨+-=⎩或23230x y x y -=⎧⎨++=⎩或23240x y x y -=-⎧⎨+-=⎩或23230x y x y -=-⎧⎨++=⎩解上述方程组得:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩∴原方程组的解为:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.10.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.11.解方程组:2228560x y x xy y +=⎧⎨+-=⎩【答案】11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】先将第2个方程变形为x +6y =0,x ﹣y =0,从而得到两个二元一次方程组,再分别求解即可.【详解】解:2228560x y x xy y +=⎧⎨+-=⎩①②, 由②得:x +6y =0,x ﹣y =0,原方程组可化为2860x y x y +=⎧⎨+=⎩或280x y x y +=⎧⎨-=⎩, 故原方程组的解为11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.12.解方程组:224490x xy y x y ⎧++=⎨+=⎩ 【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①②方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得;230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.13.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩ 【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =,故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解. 【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.14.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.15.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①② 由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:23x y ⎧=⎪⎨=⎪⎩或1929139x y ⎧=-⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.16.解方程:【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得: ······························································· (2分)解得,························································ (2分) 代人得17.解方程22220x y x xy y -=⎧⎨--=⎩①② 【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.18.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.19.()28024x y x y x ++=⎧⎪⎨++=⎪⎩ 【答案】3022x y =-⎧⎨=⎩【解析】【分析】运用代入法进行消元降次,即可得解.【详解】 ()28024x y x y x ++=⎧⎪⎨++=⎪⎩①② 由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.20.解方程组22224024x y x xy y ⎧-=⎨-+=⎩. 【答案】原方程组的解是114,32;3x y ⎧=⎪⎪⎨⎪=-⎪⎩224,32;3x y ⎧=-⎪⎪⎨⎪=⎪⎩334,2;x y =⎧⎨=⎩444,2.x y =-⎧⎨=-⎩ 【解析】【分析】由①得x+2y=0,或x-2y=0,由②得x-y=2,或x-y=-2,从而可将原方程组化为4个二元一次方程组求解.【详解】 22224024x y x xy y ⎧-=⎨-+=⎩①②, 由①得(x+2y)(x-2y)=0,∴x+2y=0或x-2y=0,由②得(x-y)2=4,∴x-y=2或x-y=-2,∴原方程组可化为202x y x y +=⎧⎨-=⎩,202x y x y +=⎧⎨-=-⎩,202x y x y -=⎧⎨-=⎩,202x y x y -=⎧⎨-=-⎩, 分别解这四个方程组得114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩, ∴原方程组的解是114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,将原方程组化为4个二元一次方程组求解是解答本题的关键.。

方程与不等式之二元二次方程组基础测试题及答案

方程与不等式之二元二次方程组基础测试题及答案

方程与不等式之二元二次方程组基础测试题及答案一、选择题1.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩ 【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组: 23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.2.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.3.直角坐标系xOy 中,有反比例函数()830y x =>上的一动点P ,以点P 为圆心的圆始终与y 轴相切,设切点为A(1)如图1,⊙P 运动到与x 轴相切时,求OP 2的值.(2)设圆P 运动时与x 轴相交,交点为B 、C ,如图2,当四边形ABCP 是菱形时, ①求出A 、B 、C 三点的坐标.②设一抛物线过A 、B 、C 三点,在该抛物线上是否存在点Q ,使△QBP 的面积是菱形ABCP 面积的12?若存在,求出所有满足条件的Q 点的坐标;若不存在,说明理由.【答案】(1)2)①A (0,B (2,0),C (6,0);②存在,满足条件的Q 点有(0,14,8,6,0).【解析】【分析】(1)当⊙P 分别与两坐标轴相切时,PA ⊥y 轴,PK ⊥x 轴,x 轴⊥y 轴,且PA =PK ,进而得出PK 2,即可得出OP 2的值;(2)①连接PB ,设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP 2m =,P (m ,2),进而得出答案; ②求直线PB 的解析式,利用过A 点或C 点且平行于PB 的直线解析式与抛物线解析式联立,列方程组求满足条件的Q 点坐标即可.【详解】解:(1)∵⊙P 分别与两坐标轴相切,∴PA ⊥OA ,PK ⊥OK .∴∠PAO =∠OKP =90°.又∵∠AOK =90°,∴∠PAO =∠OKP =∠AOK =90°.∴四边形OKPA 是矩形.又∵AP =KP ,∴四边形OKPA 是正方形,∴OP 2=OK 2+PK 2=2PK •OK =2xy ==(2)①连结BP ,则AP =BP ,由于四边形ABCP 为菱形,所以AB =BP =AP ,△ABP 为正三角形, 设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP =,P (m ), 将P 点坐标代入到反比例函数解析式中,则2m 2= 解得:m =4,(m =﹣4舍去),故P (4,),则AP =4,OA =OB =BH =2,CH =BH =2,故A (0,B (2,0),C (6,0);②设过A 、B 、C 三点的抛物线解析式为y =a (x ﹣2)(x ﹣6),将A 点坐标代入得,a =,故解析式为2343y x x 23=-+, 过A 点作BP 的平行线l 抛物线于点Q ,则Q 点为所求. 设BP 所在直线解析式为:y =kx +d ,则20423k d k d +=⎧⎪⎨+=⎪⎩, 解得:323k d ⎧=⎪⎨=-⎪⎩, 故BP 所在的直线解析式为:323y x =-,故直线l 的解析式为323y x =+,直线l 与抛物线的交点是方程组234323323y x x y x ⎧=-+⎪⎨⎪=+⎩的解, 解得:11023x y =⎧⎪⎨=⎪⎩,2214163x y =⎧⎪⎨=⎪⎩, 故得Q (0,23),Q (14,163),同理,过C 点作BP 的平行线交抛物线于点Q 1,则设其解析式为:y 3=x +e ,则0=63+e ,解得:e =﹣63,故其解析式为:y 3=x ﹣63,其直线与抛物线的交点是方程组23432363363y x x y x ⎧=-+⎪⎨⎪=-⎩的解,可求得Q 1(8,23)和(6,0).故所求满足条件的Q 点有(0,23),(14,163),(8,23)和(6,0).【点睛】本题考查了二次函数的综合运用以及二元二次方程组解法和正方形的判定以及菱形的性质等知识,关键是由菱形、圆的性质,数形结合解题.4.解方程组:222321x y x xy y +=⎧⎨-+=⎩ 【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ 【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①②由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩ 解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.5.如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1.解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.【答案】(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(35. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA与抛物线,得21112222y x xy x⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h=5=5.点M到直线AB的距离的最大值是5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键6.已知113 2x y =⎧⎨=-⎩是方程组22x y mx y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解.【答案】22-2 3x y =⎧⎨=⎩【解析】【分析】先将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中求出m、n的值,然后再求方程组的另一组解.【详解】解:将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中得:131mn=⎧⎨=⎩,则方程组变形为:22131x yx y⎧+=⎨+=⎩,由x+y=1得:x=1-y,将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-2 3x y =⎧⎨=⎩.【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m和n的值是解题的关键. 7.如图,在平面直角坐标系中,直线l:沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线与y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k==或k=2 (舍去),∴FM=6,FT=,MT=,GN=4,TG=,∴M(,))、N(6,-4),代入得:=k+b且-4=6k+b,解得:k=,b=4,∴y=x+4,联立y=x+4与y=,求得P(1,),Q(3,0).答:存在P的坐标是(1,),Q的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.8.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或 44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.9.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩,所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.10.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①② 由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩, 故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则11.解方程组:226021x xy y x y ⎧+-=⎨+=⎩ 【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.12.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①② 由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.13.已知正比例函数()()249m n y m n xm -=++-的图像经过第二、四象限,求这个正比例函数的解析式.【答案】19y x =-【解析】【分析】根据正比例函数的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,再根据其所经过的象限进行取舍即可.【详解】解:∵该函数为正比例函数,∴2190m n m -=⎧⎨-=⎩,解得32m n =⎧⎨=⎩或34m n =-⎧⎨=-⎩, ∵该函数图像经过第二、四象限,∴40m n +<,∴34m n =-⎧⎨=-⎩, ∴函数解析式为:19y x =-.【点睛】 本题考查了正比例函数的定义和性质以及二元二次方程组的求解,熟练掌握正比例函数的定义和性质是解题关键.14.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.15.()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩ 【答案】117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:()()22244922120x xy y x y x y ⎧-+=⎪⎨+-+-=⎪⎩①② 将①因式分解得:2(2)9x y -=,∴23x y -=或23x y -=-将②因式分解得:(24)(23)0x y x y +-++=∴240x y +-=或230x y ++=∴原方程化为:23240x y x y -=⎧⎨+-=⎩或23230x y x y -=⎧⎨++=⎩或23240x y x y -=-⎧⎨+-=⎩或23230x y x y -=-⎧⎨++=⎩解上述方程组得:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ ∴原方程组的解为:117214x y ⎧=⎪⎪⎨⎪=⎪⎩,22032x y =⎧⎪⎨=-⎪⎩,331274x y ⎧=⎪⎪⎨⎪=⎪⎩,4430x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.16.解方程组:2228560x y x xy y +=⎧⎨+-=⎩【答案】11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】先将第2个方程变形为x +6y =0,x ﹣y =0,从而得到两个二元一次方程组,再分别求解即可.【详解】解:2228560x y x xy y +=⎧⎨+-=⎩①②, 由②得:x +6y =0,x ﹣y =0,原方程组可化为2860x y x y +=⎧⎨+=⎩或280x y x y +=⎧⎨-=⎩, 故原方程组的解为11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.17.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.18.解方程组2210260x y x x y -+=⎧⎨--+=⎩【答案】1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩. 【解析】【分析】由(1)得21y x =+,代入到(2)中整理为关于x 的一元二次方程,求出x 的值,并分别求出对应的y 值即可.【详解】解: ()()221012602x y x x y ⎧-+=⎪⎨--+=⎪⎩, 由(1),得21y x =+(3),把(3)代入(2),整理,得2540x x -+=,解这个方程,得121,4x x ==,把11x =代入(3),得13y =,把24x =代入(3),得29y =,所以原方程组的解是1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.. 【点睛】本题考查了二元二次方程组的解法,用代入消元法消去一个未知数,转化为解一元二次方程是解题关键.19.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。

解二元二次方程组的练习题

解二元二次方程组的练习题

解二元二次方程组的练习题解题思路:要解二元二次方程组,首先需要将方程组进行整理,消去一个变量,然后将得到的一元二次方程代入另一方程中,从而求解。

下面将通过一个实际的练习题来演示解题过程。

练习题:求解以下二元二次方程组:(1) 2x^2 - 3y^2 = 7x + y = 3解题步骤:Step 1: 将第二个方程变形成 x = 3 - y,并代入第一个方程中,得到: 2(3 - y)^2 - 3y^2 = 7Step 2: 展开并整理方程,得到:2(9 - 6y + y^2) - 3y^2 = 718 - 12y + 2y^2 - 3y^2 = 7-y^2 - 12y + 18 = 7Step 3: 移项并合并同类项,得到一元二次方程:-y^2 - 12y + 11 = 0Step 4: 求解一元二次方程,可以使用配方法或求根公式:首先,计算方程的判别式 D = b^2 - 4ac,其中方程形式为 ay^2 + by + c = 0,代入 a = -1,b = -12,c = 11,得到:D = (-12)^2 - 4(-1)(11) = 144 + 44 = 188判别式 D 大于 0,因此方程有两个不相等的实数解。

使用求根公式 y = (-b ± √D)/(2a) 计算解,代入 a = -1,b = -12,D = 188,得到: y1 = (-(-12) + √188) / (2(-1)) = (12 + √188) / -2y2 = (-(-12) - √188) / (2(-1)) = (12 - √188) / -2Step 5: 分别计算 y 对应的 x 值。

代入第二个方程 x + y = 3,得到: x1 = 3 - (12 + √188) / 2x2 = 3 - (12 - √188) / 2结果:利用计算器,我们得出以下结果:y1 ≈ -7.81,x1 ≈ 10.81y2 ≈ 1.81,x2 ≈ 1.19综上所述,原二元二次方程组的解为:(x1, y1) ≈ (10.81, -7.81)(x2, y2) ≈ (1.19, 1.81)通过以上的解题步骤,我们成功地解出了给定的二元二次方程组的解。

2020-2021学年八年级数学沪教版下册 二元二次方程组练习(有答案)

2020-2021学年八年级数学沪教版下册 二元二次方程组练习(有答案)

二元二次方程知识要点:1. 二元二次方程的定义:含有2个未知数,并且所含未知数的项的最高次数为2的整式方程,叫做二元二次方程.2. 解二元二次方程组的基本思想:降次,消元.3. 解二元二次方程组的基本方法:(1)代入消元法 (2)因式分解法 (3)韦达定理一、选择题1. 下列方程:① 2230x x --=,② 22230x xy y +-= ③ 22y -=,④ 20,xy -= ⑤2211106x xy y +-= 二元二次方程的个数为( ). A . 4B . 3C . 2D . 非以上数目2. 解方程组 22227540x xy y x xy y ⎧++=⎨-+=⎩一般应先( ). A .消去二次项B .消去一个未知数C .消去常数项D .把方程 22540x xy y -+= 的左边因式分解3. 解方程组 512x y =+=⎪⎩ 时,若设 ,a b ==,则原方程可化为( ) A .22511a b a b +=⎧⎨+=⎩B .22514a b a b +=⎧⎨+=⎩ C .22515a b a b +=⎧⎨+=⎩D .22512a b a b -=⎧⎨-=⎩4. 二元二次方程组 310x y xy +=⎧⎨=-⎩ 的解是( ) A .121252,25x x y y ⎧=-=⎧⎪⎨⎨==-⎪⎩⎩ B .121252,25x x y y ⎧==⎧⎪⎨⎨==⎪⎩⎩C .121252,25x x y y ==-⎧⎧⎨⎨=-=⎩⎩ D .121252,25x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩二、填空题5. 关于 x 、y 的方程 2ax y xy += 的两组解是 13x y =⎧⎨=⎩ 和 2x k y =⎧⎨=⎩,则 2k a -+ 的值是______.6. 解方程组127xy x y =⎧⎨+=⎩有两种方法:第一种方法是方程 ②化为 y = ____________ (或 x =____________),代入 ①转化为一元二次方程解之;第二种方法是根据一元二次方程根与系数的关系,把 x 、y 看成是方程 ____________的两个根,通过解这个方程得到原方程的解.7. 如果方程组 223y x m y x=-⎧⎨=⎩ 只有一组实数解,那么 m 的值为 ____________. 8. 方程 22155x y x y ⎧-=⎨+=⎩ 的解为 ____________三、解答题9. 解方程组:(1)22187 0x y y x -=⎧⎨-+=⎩(2)221188124x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩10. 方程组22520x y x xy y +=⎧⎨+-=⎩可化为两个方程组50x y x y +=⎧⎨-=⎩或5_______x y +=⎧⎨⎩11. 解方程组:22210230x y x xy y --=⎧⎨++=⎩.12. 解方程组:2232848x xy xy y ⎧+=⎨+=⎩13. 解方程组:941094()()24x y x y x y x y ⎧+++=⎪⎪⎨⎪++=⎪⎩14. 解方程组:221329 xy x y x y ++=-⎧⎨+=⎩15. 设方程组2 021x x y y x ⎧--=⎨=-⎩的解是11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩,求1211x x +和12y y ⋅的值16. 若二元二次方程组22( 12)1x y y k x ⎧-=⎨=-+⎩有唯一解,求实数k 的值.17. 已知关于x , y ,的方程组220()2210 x y k x y x y ⎧-+=⎨--++=⎩①②有两组不相同的实数解. (1)求实数k 的取值范围;(2)若11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组的两组不相同的实数解,是否存在实数k ,使得121221x x y y x x --的值等于2?若存在,求出k 的值;若不存在,请说明理由18. 解方程组:222()392()522()782x y z x x y z x y y z x y z x ⎧+-=-⎪+-=-⎨⎪+-=-⎩19. 解方程组:(1)2211x y x xy y -=⎧⎨++=⎩(2)23()(2)40y x x y x y -=⎧⎨+-+=⎩20. 解关于 x 、y 的方程组 221x y a x y +=⎧⎨-=⎩.21. 解方程组:2220449x xy x xy y ⎧-=⎨++=⎩22. 解方程组:712x y xy +=⎧⎨=⎩23.解方程组:943xy =⎧⎪+=24. k 取什么值时,方程组2 080 x y k x y --=⎧⎨-=⎩只有一组实数解? 并求出此方程组的解.25. 已知方程组22y x y x m⎧=⎨=+⎩有两组实数解11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩且121132x x +=,求m 的值参考答案1. B2. D3. A4. C5. 由题意知 9342a ak k +=⎧⎨+=⎩ 解得 612a k =-⎧⎪⎨=⎪⎩,则 221()622k a --+=-=-6. 7y x =-7x y =-27120t t -+=7. 2(2)3x m x -= 整理得 22(43)40x m x m -++= 由题意知 22(43)160m m ∆=+-= 解得 38m =-8. 原方程组变形为 35x y x y -=⎧⎨+=⎩ 解得 41x y =⎧⎨=⎩9. (1)由① 知 21y x =- ③代入②得 2(21)870x x --+=解得 121,2x x ==代入 ③得 121,3y y ==∴ 原方程组的解为 121212,13x x y y ⎧==⎧⎪⎨⎨==⎪⎩⎩ (2)原方程组整理得22 492724x y x y ⎧+=⎨-=⎩由 ② 得 24y x =-代入①得 2249(24)72x x +-=解得 1233,5x x == 代入 ③ 得 12142,5y y ==-∴ 原方程组的解为 21123352145x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩,10. 520x y x y +=⎧⎨+=⎩11. 由 ② 得 0x y += 或 20x y += 原方程组可化为 2121,020x y x y x y x y -=-=⎧⎧⎨⎨+=+=⎩⎩解得 111313x y ⎧=⎪⎪⎨⎪=-⎪⎩,221412x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴ 原方程组的解为 111313x y ⎧=⎪⎪⎨⎪=-⎪⎩,221412x y ⎧=⎪⎪⎨⎪=-⎪⎩12. 两式相加 224436x xy y ++=2(2)36x y += 则 26x y += 或 26x y +=-原方程组化为 232826x xy x y ⎧+=⎨+=⎩232826x xy x y ⎧+=⎨+=-⎩解得 31243124441414,,,1144x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨=-==-=⎩⎩⎩⎩ 13. 令9x a x+= , 4y b y += 则 10,24a b ab +== 由韦达定理知 a , b 可以看作方程 210240t t -+= 的两个实数根解得 124,6t t ==9446x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩时 22490640x x y y ⎧-+=⎨-+=⎩, 此时无解 当 9644x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩时 22690440x x y y ⎧-+=⎨-+=⎩ 解得 32x y =⎧⎨=⎩ 经检验: 32x y =⎧⎨=⎩ 为原方程组的解14. 2 +⨯②① 得 2222()3x y xy x y ++++= 整理得 (1)(3)0x y x y +-++=则 1x y += 或 3x y +=-代入 ① 得 14xy =- 或 10xy =-则原方程组可化为 114x y xy +=⎧⎨=-⎩ 或310x y xy +=-⎧⎨=-⎩由韦达定理知 x , y ,可看作方程 2140t t --= 或 23100t t +-= 的两个实数根 解112t += ,212t = 或 342,5t t ==-即123434122552x x x x y y y y ⎧⎧==⎪⎪==-⎧⎧⎪⎪⎨⎨⎨⎨=-=⎩⎩⎪⎪==⎪⎪⎩⎩,15. 把② 代入 ① 得 2310x x -+=由韦达定理知 12123,1x x x x +==121212113x x x x x x ++== 12121212(21)(21)42()11y y x x x x x x ⋅=--=-++=-16. ② 代入 ① 得 22[(2)1]1x k x --+=整理得 2222(1)(42)(442)0k x k k x k k -+---+=当 210k -= 即 1k =± 时 2420k k -≠,方程 ③ 比有唯一解当 210k -≠ 即 1k ≠± 时,2222(42)4(1)(442)0k k k k k ∆=-+--+= 整理得 23420k k -+=,此时无解综上所述: 当 1k =± 时原方程组有唯一解.17. (1)由②知2(1)0x y --= 即 10x y --= ③ ①-③得 :210x x k -++=由题意知14(1 >)0k ∆=-+解得3 <4k -(2)由韦达定理12121,1x k x x x +==+由 ③ 知 1y x =- 则()()()()22212121212121212122112122111x x x x x x x x y y x x x x x x x x x x x x +-+--=---=-++- 由题意知 12(1)121k k k -++-=+ 解得 0k = (舍去)或 2k =- 故 2k =- .18. 原方程组整理()39()52()78x x y z y x y z z x y z ++=⎧⎪++=⎨⎪++=⎩三式相加得 2()169x y z ++= 则 13x y z ++=±当 13x y z ++= 时 3,4,6x y z ===当 13x y z ++=- 时 3,4,6x y z =-=-=-∴ 原方程组的解为 111346x y z =⎧⎪=⎨⎪=⎩ , 222346x y z =-⎧⎪=-⎨⎪=-⎩19. (1)代入消元法:1212x 1x 0,y 0y 1⎧==⎧⎪⎨⎨==-⎪⎩⎩ (2)代入消元法:1125x y =⎧⎨=⎩ , 2217454x y ⎧=-⎪⎪⎨⎪=-⎪⎩20. 把 y a x =- 代入 221,x y -= 得 22 1.ax a =+ (1)当 0a = 时,上式不可能成立,从而原方程组无解;(2)当 0a ≠ 时,12a x a += 代入 x y a +=,求得 212y a a =-. 所以,原方程组的解是 221212a x a a y a ⎧+=⎪⎪⎨-⎪=⎪⎩21. 原方程组变形为(10)23x x y =⎧⎨+=⎩ 0()223x x y =⎧⎨+=-⎩ (30)23x y x y -=⎧⎨+=⎩ 0()234x y x y -=⎧⎨+=-⎩解得 1212003322x x y y ==⎧⎧⎪⎪⎨⎨==-⎪⎪⎩⎩, ,3311x y =⎧⎨=⎩,4411x y =-⎧⎨=-⎩22. 由韦达定理知 x , y 可以看作方程 27120t t -+= 的两个实数根 解 123,4t t == 则 121234,43x x y y ==⎧⎧⎨⎨==⎩⎩23. =则4,10x y =+= 由韦达定理知 x , y 可以看作方程 21090t t -+= 的两个实数根解得 121,9t t == 则 12121991x x y y ==⎧⎧⎨⎨==⎩⎩24. 当 2k = 时原方程组只有一组实数解 42x y =⎧⎨=⎩25. 2()2x m x += 整理得 22(22)0x m x m +-+= 由题意知 22(22)40m m ∆=--≥ 解得 12m ≤ 由韦达定理 2121222,x x m x x m +=-=121212113322x x x x x x ++=∴= 即 22232m m -= 解得 23m = (舍去)或 2m =-。

初中数学方程与不等式之二元二次方程组经典测试题及答案

初中数学方程与不等式之二元二次方程组经典测试题及答案

初中数学方程与不等式之二元二次方程组经典测试题及答案一、选择题1.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则2.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.3.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组: 2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩.所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.4.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y. 【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.7.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩【解析】【分析】把第一个方程化为x=3y,代入第二个方程,即可求解.【详解】由方程①,得x=3y③,将③代入②,得(3y)2+y2=20,整理,得y2=2,解这个方程,得y1,y2④,将④代入③,得x1=,2x=﹣所以,原方程组的解是11xy⎧=⎪⎨=⎪⎩11xy⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.8.某商场计划销售一批运动衣,能获得利润12000元.经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利润10元,但可多销售400套,结果总利润比计划多4000元.求实际销售运动衣多少套?每套运动衣实际利润是多少元?【答案】实际销售运动衣800套,实际每套运动衣的利润是20元【解析】【分析】根据计划销售的套数×计划每套运动衣的利润=计划获利12000元;实际销售的套数×实际每套运动衣的利润=实际获利12000+4000元;那么可列出方程组求解.【详解】解:设实际销售运动衣x套,实际每套运动衣的利润是y元.根据题意,可列方程组()()4001012000120004000x yxy⎧-+=⎨=+⎩解得:1212800800,2020x xy y==-⎧⎧⎨⎨==-⎩⎩(舍去),答:实际销售运动衣800套,每套运动衣的实际利润20元.【点睛】本题考查了二元二次方程组的应用,关键是根据题意列出方程组求解后要判断所求的解是否符合题意,舍去不合题意的解.9.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①② 由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.10.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.11.222102520x y x xy y +-=⎧⎨-+=⎩【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.12.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩,解得:1213xy⎧=⎪⎪⎨⎪=⎪⎩,经检验,1213xy⎧=⎪⎪⎨⎪=⎪⎩是方程组的解.【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.13.计算:(1(2)解方程组:3534106x yx y-=-⎧⎨-+=⎩(3)解不等式组,并把解集在数轴上表示出来:6234 2111 32x xx x-≥-⎧⎪--⎨-<⎪⎩【答案】(1)12-;(2)35xy=⎧⎪⎨=⎪⎩;(3)21137x-≤≤.【解析】【分析】(1)先求开方运算,再进行加减;(2)用加减法解方程组;(3)解不等式组,再在数轴上表示解集.【详解】解:(1)原式=-3+4-32=12-(2)353 4106x yx y-=-⎧⎨-+=⎩①②①×2+②,得x=0把x=0代入①式 y=3 5所以,方程组的解是35 xy=⎧⎪⎨=⎪⎩(3)6234 211132x xx x-≥-⎧⎪⎨---<⎪⎩①②由①式得,x≥-23 由②式得,x <117所以,不等式组的解集是21137x -≤≤, 把解集在数轴上表示:【点睛】本题考核知识点:开方,解二元一次方程组,解不等式组.解题关键点:掌握相关解法.14.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.15.解方程组:2220{25x xy y x y --=+=①②【答案】5{5x y ==-或21x y =⎧⎨=⎩. 【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】 2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩.16.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.17.(探究证明)(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.,求证:=EF AD GHAB ; (结论应用) (2)如图2,在满足(1)的条件下,又AM ⊥BN ,点M ,N 分别在边BC ,CD 上.若11=15EF GH ,求BN AM; (联系拓展)(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DN AM的值.【答案】(1)证明见解析;(2)11 15;(3)45. 【解析】分析:(1)过点A 作AP ∥EF ,交CD 于P ,过点B 作BQ ∥GH ,交AD 于Q ,根据矩形的性质证明△PDA ∽△QAB ;(2)根据(1)的结论可得BN AM;(3)过点D 作平行于AB 的直线,交过点A 平行于BC 的直线于R ,交BC 的延长线与S ,SC =x ,DS =y ,在Rt △CSD ,Rt △ARD 中,用勾股定理列方程组求出AR ,AB ,结合(1)的结论求解.详解:(1)如图1,过点A 作AP ∥EF ,交CD 于P ,过点B 作BQ ∥GH ,交AD 于Q , ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC .∴四边形AEFP ,四边形BHGQ 都是平行四边形,∴AP =EF ,GH =BQ .又∵GH ⊥EF ,∴AP ⊥BQ ,∴∠QAT +∠AQT =90°.∵四边形ABCD 是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB.∴AP ADBQ AB=,∴EF ADGH AB=.(2)如图2,∵GH⊥EF,AM⊥BN,∴由(1)的结论可得EF ADGH AB=,BN ADAM AB=,∴1115BN EFAM GH==.(2)如图3,过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得DN ARAM AB=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,222525x yx y⎧⎨-⎩+==,解得34xy⎧⎨⎩==,5xy-⎧⎨⎩==(舍),所以AR=5+x=8,则84105DN ARAM AB===.点睛:这是一个类比题,主要考查了相似三角形的判定与性质,在特殊图形中存在的结论,放在非特殊图形中结论是有可能成立也有可能不成立,但特殊图形中结论的推导过程仍然适用于一般图形.18.解方程组:22444{10x xy yx y-+=++=①②.【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.()28024x y x y x ++=⎧⎪⎨++=⎪⎩ 【答案】3022x y =-⎧⎨=⎩【解析】【分析】运用代入法进行消元降次,即可得解.【详解】()28024x y x y x ++=⎧⎪⎨++=⎪⎩①②由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④ 将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.。

初中数学方程与不等式之二元二次方程组专项训练解析附答案(1)

初中数学方程与不等式之二元二次方程组专项训练解析附答案(1)

初中数学方程与不等式之二元二次方程组专项训练解析附答案(1)一、选择题1.解方程组2210260x y x x y -+=⎧⎨--+=⎩【答案】1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩. 【解析】【分析】由(1)得21y x =+,代入到(2)中整理为关于x 的一元二次方程,求出x 的值,并分别求出对应的y 值即可.【详解】解: ()()221012602x y x x y ⎧-+=⎪⎨--+=⎪⎩, 由(1),得21y x =+(3),把(3)代入(2),整理,得2540x x -+=,解这个方程,得121,4x x ==,把11x =代入(3),得13y =,把24x =代入(3),得29y =,所以原方程组的解是1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.. 【点睛】本题考查了二元二次方程组的解法,用代入消元法消去一个未知数,转化为解一元二次方程是解题关键.2.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①② , 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.3.解方程组:(1)4{526y x x y =-+= ;(2) 358{32x y x y +=-= 【答案】(1)22x y =⎧⎨=-⎩;(2) 【解析】方程组利用加减消元法求出解即可.解:(1) ①代入②得x =2把x =2代入①得y =-2 ∴(2) ①-②得y =1把y =1代入①得x =1∴“点睛”本题通过“代入”“加减”达到消元的目的,将解二元一次方程组的问题转化为解一元一次方程的问题.4.解方程组:222321x y x xy y +=⎧⎨-+=⎩ 【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①②由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.5.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩ ①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩,解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .6.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可. 试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①②由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.7.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ 【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==, 解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩. 故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.8.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩ 中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.9.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.10.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩ 由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩ 分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.11.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩ 【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则12.解方程组 1730x y xy -=⎧⎨=-⎩【答案】1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】 根据第一个式子,得出x 与y 的关系,代入第二个式子求解.【详解】解:1730x y xy -=⎧⎨=-⎩①②, 由①,得x=17+y③,把③代入②式,化简得y 2+17y+30=0,解之,得y 1=-15,y 2=-2.把y 1=-15代入x=17+y ,得x 1=2,把y 2=-2代入x=17+y ,得x 2=15.故原方程组的解为1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题考查了二元二次方程的解法,解题的关键是运用代入法得出x 、y 的值.13.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.14.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.15.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.16.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①② 由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.17.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①② 由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.18.解方程组:22444{10x xy y x y -+=++=①②. 【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.19.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,CE=43,求AC BC的值.【答案】(1)见解析;(2)26 ; (3)57. 【解析】【分析】(1)只要证明△ECH ∽△BCD ,可得EC BC =CH CD,即可推出CE•CD=CH•BC ; (2)如图2中,连接AH .只要证明△AEH ∽△HFB ,可得AE HF =EH FB ,推出FH 2=6,推出HE=HF=6,即可解决问题.(3)只要证明△ECF ∽△BCA ,求出CF 即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A ,∠ECF=∠ACB ,∴∠CEF=∠B ,∵∠ECH=∠DCB ,∴△ECH ∽△BCD ,∴EC CH BC CD=,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵3∴3322213EM HM+∵S△HCF:S△HCE=FH:EH=FC:EC,∴x13(53):3,又∵x2=y2+(52)2,解得y=53或33(舍弃),∴CF=2037,∵∠CEF=∠B,∠ECF=∠ACB,∴△ECF∽△BCA,∴EC CF BC AC=,∴203743AC CFBC EC===57.【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.20.解方程:【答案】【解析】解:原方程组即为····································(2分)由方程(1)代人(2)并整理得:·······························································(2分)解得,························································(2分)代人得。

二元二次方程题目

二元二次方程题目

二元二次方程题目一、已知二元二次方程x2 + y2 - 4x + 6y + 13 = 0,请问该方程的图形是什么?A. 椭圆B. 双曲线C. 抛物线D. 圆(答案)二、方程x2 - 2xy + y2 = 4 的解集中,满足x + y = 2 的解有多少个?A. 0个B. 1个C. 2个D. 无数个(答案)三、设二元二次方程xy = 8,与直线x + y = a 相交于两点,则a 的取值范围是?A. a < 0B. 0 < a < 4C. a > 8D. 4 < a < 8(答案)四、方程x2 + 2xy + y2 - 6x - 6y + 9 = 0 的图像经过几个象限?A. 1个B. 2个C. 3个D. 4个(答案)五、已知二元二次方程x2 - y2 = 16,若x - y = 2,则x + y 的值为?A. -2B. 2C. 4D. 8(答案)六、方程x2 + y2 - 2x - 5 = 0 与x2 + y2 - 4x + 4y - 6 = 0 的交点个数为?A. 0个B. 1个C. 2个D. 无数个(答案)七、设二元二次方程组为{ x2 + y2 = 25, x2 - y2 = 7 },则x2 + 2y2 的值为?A. 16B. 22C. 28D. 34(答案)八、已知二元二次方程x2 + axy + by2 = c,若该方程表示一个椭圆,则以下哪个条件必须满足?A. a2 - 4b > 0B. a2 - 4b < 0C. a2 - 4b = 0D. b2 - 4ac > 0(答案)。

含参的二元二次方程组训练题

含参的二元二次方程组训练题

含参的二元二次方程组训练题问题描述求解以下含参的二元二次方程组:方程1:$a_1x^2 + b_1xy + c_1y^2 + d_1x + e_1y + f_1 = 0$方程2:$a_2x^2 + b_2xy + c_2y^2 + d_2x + e_2y + f_2 = 0$解法为了求解该二元二次方程组,我们可以使用配方法或代入法,具体方法如下:1. 配方法1) 如果方程的二次项系数$a_1$和$a_2$都是非零常数,则可以通过配方法求解。

首先,将方程1和方程2两侧同时乘以$a_2$和$a_1$的乘积,得到新的方程组:$a_2(a_1x^2 + b_1xy + c_1y^2 + d_1x + e_1y + f_1) = 0$$a_1(a_2x^2 + b_2xy + c_2y^2 + d_2x + e_2y + f_2) = 0$2) 接下来,把方程1中的一次项和方程2中的一次项移到等式左边,同时把常数移到等式右边,得到新的方程组:$(a_1a_2)x^2 + (a_1b_2+b_1a_2)xy + (b_1b_2)y^2 +(a_1d_2+d_1a_2)x + (b_1e_2+e_1b_2)y = -(a_1f_2+f_1a_2)$ $(a_1d_2+d_1a_2)x + (b_1e_2+e_1b_2)y + (d_1d_2)x^2 +(d_1e_2+e_1d_2)xy + (e_1e_2)y^2 = -(d_1f_2+f_1d_2)$3) 对新的方程组应用配方法,即将方程组转化为完全平方的形式。

2. 代入法1) 如果方程组中的一个方程可以表示成另一个方程中的某个变量(如$x$或$y$)的函数形式,那么可以使用代入法求解。

2) 选择其中一个方程(如方程1)将其表示成另一个方程中的一个变量的函数形式(如$x$),代入到另一个方程中(如方程2)。

3) 解方程得到一个方程中的变量值(如$y$),然后代入到第一个方程中求解另一个变量值(如$x$)。

21.5-21.6二元二次方程(组)及其解法(分层作业)(3种题型基础练+提升练)解析版

21.5-21.6二元二次方程(组)及其解法(分层作业)(3种题型基础练+提升练)解析版

21.5-21.6二元二次方程(组)及其解法(3种题型基础练+提升练)题型一:二元二次方程1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y;⑤2253370+++=x xy y x 中,是二元二次方程的有( )A .1个B .2个C .3个D .4个【答案】C【分析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.【详解】解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.2.(2022秋·上海·八年级校考期中)二元二次方程2560x xy y --=可以化为两个一次方程,它们是______.【答案】x -6y =0或x +y =0【分析】把y 看成常量,方程就是关于x 的一元二次方程,利用因式分解法化为两个一次方程即可.【详解】解:x 2-5xy -6y 2=0,(x -6y )(x +y )=0,∴x -6y =0或x +y =0.故答案为:x -6y =0或x +y =0.【点睛】本题考查了二元二次方程,把y 看成常量,方程看成关于x 的一元二次方程是解决本题的关键.题型二:二元二次方程组1.下列方程组中,是二元二次方程组的是( )A .51x y x y +=ìí-=îB .210618x y x y ì+=ïïíï-=ïîC .716xy x =ìí=îD .312x y xy x yì+=í=+î【答案】C 【分析】根据二元二次方程组的定义进行解答即可.【详解】解:A 项为二元一次方程组,故本选项错误;B 项二元一次分式方程组,故本选项错误;C 项的第一个方程为二元二次方程,故为二元二次方程组,故本选项正确;D 中未知数的最高次数为3,故不是二元二次方程组,故本选项错误.故选:C【点睛】本题主要考查二元二次方程组的定义,解题的关键是根据二元二次方程组的定义逐个分析判断.2.(2023下·上海浦东新·八年级上海市进才中学北校校考阶段练习)方程组212x y x y k ì-=í-=î有实数解,则k 的取值范围是( )A .2k ³B .2k =C .2k <D .2k £【答案】D【分析】①-②得出221x x k -=-,求出2210x x k -+-=,根据方程组有实数解得出()()224110k D =--´´-³,再求出k 的取值范围即可.【详解】解:212x y x y k ì-=í-=î①②,①-②,得221x x k -=-,即2210x x k -+-=,∵方程组212x y x y k ì-=í-=î有实数解,∴一元二次方程2210x x k -+-=有实数根,∴()()224110k D =--´´-³,解得:2k £,故选:D .【点睛】本题考查了解高次方程组和一元二次方程根的判别式,方程组消元转化成一元二次方程是解此题的关键.3.(2022春·上海静安·八年级新中初级中学校考期末)写出一个由二元一次方程和一个二元二次方程组成的二元二次方程组___________,使它的解是34x y =ìí=î和34x y =-ìí=-î.【答案】2277x y x y +=ìí-=î(答案不唯一)【分析】根据方程组的解可得71x y x y +=-=,,再由平方差公式得到227x y -=,则可写出满足条件的一个方程组为2277x y x y +=ìí-=î.【详解】解:Q 方程组的解为34x y =ìí=î和34x y =-ìí=-î,71x y x y \+=-=,,227x y x y x y \-=+-=()(),\方程组可以是2277x y x y +=ìí-=î,故答案为:2277x y x y +=ìí-=î(答案不唯一).【点睛】本题考查二元二次方程组,熟练掌握二元一次方程和二元一次方程的基本形式,根据所给的条件写出符合题意的方程组是解题的关键.4.(2022秋·上海浦东新·八年级校考期中)方程组()()210x y m y x ì-+=í=î的解只有一组,则m 的取值范围是______.【答案】0m >【分析】根据条件表示方程组的解,再求m 的范围.【详解】解:()()210x y m y x ì-+=í=î①②,由①,得10x -=或0y m +=,1x \=,y m =-.当1x =时,代入②得:1y =,\原方程组的一组解为:11x y =ìí=î,当y m =-时,代入②得:2m x -=,Q 原方程只有一组解,2m x \-=无解,0m \-<.0m \>.故答案为:0m >.【点睛】本题考查二元二次方程组的解,根据第一个方程,求得1x =,y m =-是解题的关键.题型三:二元二次方程组的解法5.(2023下·上海黄浦·八年级统考期末)解方程组:2226444y x x xy y -=ìí++=î①②【答案】1114x y =-ìí=î或2222x y =-ìí=î【分析】由②得22x y +=±从而将原方程组化成两个二元一次方程组,分别求二元一次方程组的解即可.【详解】解:由②得:()224x y +=,∴22x y +=±,即22x y +=或22x y +=-,∴原方程组可化为两个二元一次方程组()Ⅰ2622y x x y -=ìí+=î ,()Ⅱ2622y x x y -=ìí+=-î,解()Ⅰ得:1114x y =-ìí=î 解()Ⅱ得:2222x y =-ìí=î所以原方程组的解是1114x y =-ìí=î,2222x y =-ìí=î.【点睛】本题考查二元二次方程的解法,掌握二元二次方程的解法是解题的关键.6.(2023下·上海虹口·八年级上外附中校考期末)222209x y x xy y ì-=í--=î.【答案】1133x y =ìí=-î,2233x y =-ìí=î.【分析】①-②得9xy =-③,由①得0x y +=或0x y -=,和③组成方程组,再得出答案即可.一、填空题1.(2022春·上海·八年级专题练习)把二元二次方程22560x xy y --=化成两个一次方程,则这两个一次方程分别是:__________和__________.【答案】 60x y -= 0x y +=【分析】把方程则左边分解因式,根据两个式子的积是0,则至少有一个因式是0,即可转化成两个一次方程.【详解】解:x 2﹣2xy ﹣3y 2=0即(x ﹣6y )(x +y )=0,则这两个一次方程分别是:x ﹣6y =0和x +y =0.故答案是:x ﹣6y =0和x +y =0.【点睛】本题考查了高次方程通过分解因式的方法转化成两个一次方程,降次是高次方程的基本思想.2.(2022春·上海徐汇·八年级校考期中)一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =ìí=î和24x y =-ìí=-î,试写出符合要求的方程组________(只要填写一个即可).【答案】28y x xy =ìí=î【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy =8,y =2x ,∴符合要求的方程组为28y x xy =ìí=î.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.二、解答题3.(2022春·上海·八年级上海市张江集团中学校考期末)解方程组:22222241929x xy y x x xy y y ì+++=í++-=î5411222x y x y íï+=ï+-î5.(2022春·上海·八年级期中)解方程组:22220290x y x xy y --=ìí++-=.6.(2022春·上海·八年级上海市市西初级中学校考期中)解方程组:2232032x xy yx yì-+=í+=î7.(2022春·上海·八年级期中)解方程组:2222449560x xy yx xy yì++=í+-=î.8.(2022春·上海普陀·八年级校考期中)解方程组:22240 40x xyx yì-+=í-=î.【答案】1124x y =ìí=î或2224x y =-ìí=-î.【分析】把第二个方程通过因式分解化为2x+y =0或2x−y =0,与第一个方程组成方程组,解方程组即可.【详解】解:原方程组为:2224040x xy x y ì-+=í-=î①②由②得,(2x+y )(2x−y )=0,则2x+y =0或2x−y =0,∴可得(1)24020x xy x y ì-+=í+=î,此方程组无解,(2)24020x xy x y ì-+=í-=î,解得,1124x y =ìí=î,2224x y =-ìí=-î,则原方程组的解为:1124x y =ìí=î或2224x y =-ìí=-î.【点睛】本题考查的是高次方程(组)的解法,解高次方程一般要降次,即把它转化成二次方程或一次方程.9.(2023春·八年级单元测试)k 为何值时,方程组242102y x y y kx ì--+=í=+î.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案】(1)k =1;(2)k <1且k ≠0;(3)k >1【分析】(1)将方程组转化为k 2x 2+(2k ﹣4)x +1=0,用根的判别式,列出方程求解即可;(2)同(1)用根的判别式,列出不等式求解即可;(3)通过讨论k =0和k ≠0,根据方程无实根,确定k 的范围即可.10.解方程组:21238438 xy x yyz z yzx z x=+-ìï=+-íï=+-î11.(2022秋·上海·八年级上海市市西初级中学校考期中)“程,课程也,二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这是我国古代著名数学家刘徽在《九章算术》对方程一词给出的注释.对于一些特殊的方程,我们给出两个定义:①若两个方程有相同的一个解,则称这两个方程为“相似方程”:②若两个方程有相同的整数解,则称这两个方程为“相伴方程”.(1)判断分式方程12111x x+=-+=“相似方程”,并说明理由;(2)已知关于x ,y 的方程:224928x y -=和234x y -=,它们是“相似方程”吗?如果是,请写出它们的公共解;如果不是,请说明理由;(3)已知关于x ,y 的二元一次方程:()14y k x =+-和3y x k =-(其中k 为常数)是“相伴方程”,求k 的值.。

二元二次方程组专项解析练习[优质文档]

二元二次方程组专项解析练习[优质文档]

二元二次方程组专项解析训练【例题精选】例1 解方程组解:由,得——————,xy,,322 把,代入,,得, ()()yyy,,,,,343212 整理得 yy,,,120( ?,,,yy34,12把代入,,得 y,,3x,,6;1x,1 把y,4代入,,得( 2x,,6,x,1,,, ?原方程组的解为,,y,,3;y,4.,,小结:由一个二元一次方程和一个二元二次方程组成的二元二次方程组,一般可用代入消元法解,当求出一个未知数的值后,一定要代入到二元一次方程中去求另一个未知数的值(例2 解方程组——————, 解法一由,得 yx,,2622 将,代入,,得 xxxx,,,,,5266260()()218,1538720xx,,,即 ,x,2,4x,,,15 ?原方程组的解为 ,,y,2,6181,,y,.xx,,4, 解得 112,5,5解法二由,得()()xyxy,,,230x,4y,2, 把代入,得11 xyxy,,,,2030或186xy,. 把,代入,得2255 原方程组可化为两个二元一次方程组:26xy,,,26xy,,,,, ,,xy,,20,xy,,30.,,18,x,,2,4x,,,15 ?原方程组的解为,,y,2,61,,y,.1,5,例3 解方程组113,x 解法一由,得 , y,224113(),113,113,xxxx,,2 把,代入,,得 x,,4,,x2?,,20.,,,,222 2421270xx,,,. 整理得9 ?,,xx3,.124把x,3代入,,得y,1, 11917 把x代入,,得y,. ,22849,x,,2,3,x,,,14 ?原方程组的解为 ,,y,1;171,,y,.2,8,解法二方程,可化为2()(),xyxy,,,,,2220即()(),xyxy,,,,,22210?,,,,,,xyxy220210,.于是原方程组可化为xy,,,220,xy,,,210,,, 和,,32110xy,,,;32110xy,,,.,,9,x,,2,x,3,,,14 分别解得 ,,y,1;171,,y,.2,8,例4 解方程组解析:此题可用代入法解,对于这个方程组,也可以根据一元二次方程的根与系数的关系,把xy,xy,看作一个一元二次方程的两个根,通过解这个一元二次方程来求(2zz,,,7120xy, 解:设原方程组的是一元二次方程的两个根,解这个方程,得zz,,34,.或x,3,x,4,,,12 所以原方程组的解是 ,,y,4;y,3.12,,2 小结:(1)设原方程组的的两个根,所设的一xyzz、是一元二次方程,,,7120元二次方程的未知数(这里是这样才能避免字母的混乱;zmnxy,也可以是…应异于,,),,x,3,,1 (2)当解出一元二次方程的解得出原方程组的解zz,,34,后,12,y,4,1, x,4,,2这是两个对称解,解这类题时,注意别丢掉一组解( ,y,3.2,例5 解方程组解析:先将分式方程组化为整式方程组解:由,得, , 65100xxyy,,,,由,得, , 2360xy,,,解由,、,组成的二元二次方程组36y, 由,得 x, , 2236yyy,36,6?,,,,5100y 将,代入, 2214 解得yy,,,4,. 123将y,4代入,,x,3 1114y,,x,,10将代入,, 223x,,10,,2x,3,,,1经检验原方程组的解为; .14,,y,4.y,,1,2,3,例6 解方程组解析:首先要将第,个方程化为有理方程(解:由,得xy,,,20 ,2xxyxy,,,,,250 由,得 ,xy,,,20, 于是原方程组变为 ,2xxyxy,,,,,250,x,3, 解这个方程组,得 ,y,5.,x,3, 经检验,原方程组的解为 ,y,5.,小结:方程组中含有分式方程或无理方程,要注意验根(例7 甲、乙两辆汽车在A、B两地间相向而行,甲车比乙车每小时快10千米,若甲车比乙车晚出发40分钟,两车在两地中点处相遇;若两车同时出发,经过3小时两车相遇后又相距25.2千米,求乙车速度及两地距离(解析:甲车速度=乙车速度+10;甲走AB距离的一半所用时间比乙走AB距离一半2所用的时间少40分钟,即甲走AB一半所用的时间乙走AB一半所用的时间,利,,3用这一关系可列一个方程(另外根据题目中: 甲、乙两车同时相向出发3小时,则两车相遇后又相距25.2千米,可得:3×(甲速+乙速)=AB距离+25.2(解:设乙车速度为x千米/小时,两地距离为y千米,依题意得:由,得 , yx,,648.2 由,得 , 220150xxy,,,2xx,,,35360 把,代入,得解这个方程得xx,,,361,. 12把x,36代入,得y,2208. 11把x,,1代入,得y,,12. 22?经检验方程组的解为36,1,x,x,,,,12,,y,2208.;y,,12..12,,x,,1,,2 但不合题意,舍去( ,y,,12..2,答:乙的速度为36千米/小时,AB两地间的距离为220.8千米(22,xyxy,,,,01(),例8 解方程组 ,22,xyxy,,,,2312(),解析:在这个方程组里,因为方程(1)的右边是零,而左边又可以分解为()(),xyxy,,,1所以方程(1)可以化为两个一次方程,从而原方程组可以转化成两个第一种类型的二元二次方程组(解:由(1)得 ()()xyxy,,,,10所以 xyxy,,,,,010,或因此,原方程组可以化为两个方程组xy,,0,xy,,,10,,, ,,2222xyxy,,,,231,xyxy,,,,231,,,解这个两个方程组,得原方程组的解为,,,,533,,5333,x,x,x,,,,,123,x,1,,,,,4424 ,,,,1y,,2.,,533,,5334,,,,y,;y,;;y,312,,,2,44,,22,xxyy,,,201(),例9 解方程组 ,22,xxyyxy,,,,,,2202(),解法一由()得120()(),xyxy,,,?,,,,xyxy020,.原方程组可化为xy,,0,xy,,20,,, ,,2222xxyyxy,,,,,,220;xxyyxy,,,,,,220.,,1,x,,,2,x,1,x,4,x,,2,,,,,1234 解这两个方程组,得原方程组的解为 ,,,,y,1;1y,,2;y,1.134,,,,y,,;2,2,解法二由()得120()(),xyxy,,,?,,,,xyxy020,.由()得2210()(),xyxy,,,,,?,,,,,,xyxy2010,.?原方程组可化为xy,,0,xy,,0,xy,,20,xy,,20,,,,,,,,,xy,,,20;xy,,,10;xy,,,20;xy,,,10.,,,,解得原方程组的解为1,x,,,2,x,1,x,4,x,,2,,,,,1234 ,,,,y,1;1y,,2;y,1.134,,,,y,,;2,2, 以下例10——例13为补充的类型(2,xxy,,3281,(),例10 解方程组 ,2,272xyy,,.(),解析:这个方程组的两个方程都不含未知数的一次项,消去常数项后就可得到形如22的方程,解由这个方程与原方程组的任何一个方程组成的方程组,就axbxycy,,,0可以求得原方程组的解(解:(1),(2)×4,得22xxyy,,,540,()().xyxy,,,40?,,,,xyxy040,.或因此,原方程组可化为两个方程组xy,,0,xy,,40,,, ,,2227xyy,,,27xyy,,.,,解这两个方程组,得原方程组的解为,,x,,4,x,7,x,,7,x,4,,,,,4123 ,,,,y,1;y,,1。

方程与不等式之二元二次方程组经典测试题及答案

方程与不等式之二元二次方程组经典测试题及答案

14.
x2 x2
3xy 4xy
4y2 4y2
0 1
【答案】
x1
y1
2 3 1 6

x2
y2
2 3 1 6

x3 y3
1

1
x4 y4
1 1
【解析】
【分析】
由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二
元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.
4xy
y2
1
【答案】
x1 y1
1 ,
1
x2 y2
1 5 7 5
【解析】
分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方
程组,求解即可.
详解: 4x2
x2 y3 ①
4xy y2
1②
由 ② 得 (2x y)2 1 ,
所以 2x y 1③ , 2x y 1④
x 3y 2 0①
x2
4xy
4y2
9②
由②得:(x+2y)2=9,
即:x+2y=3 或 x+2y=﹣3
所以原方程组可化为
x 3y x 2y
2 3

x 3y x 2y
2

3
解方程组
x
x
3y 2y
2 3
;得
x1 y1
1 1

解方程组
x
x
3y 2y
2 3
.得
x2
y2
x2 4xy 4y2 9
10.解方程组:
{ x2
xy
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、方程组⎩⎨⎧--=+=3212x x y x y 的解是 。

2、方程组⎩⎨⎧=+=-1
23422y x y x 的解是 。

3、解方程组⎩⎨⎧=--=+0
)3)(2(2022y x y x y x 时可先化为 和 两个方程组。

4、方程组⎪⎪⎩⎪⎪⎨⎧==+6
1
116511y x y x 的解是 。

5、方程组⎩⎨⎧==+b xy a y x 的两组解为⎩⎨⎧==11
11b y a x ,⎩⎨⎧==2222b y a x ,则2121b b a a -= 。

二、选择题:
1、由方程组⎩⎨⎧=+++-=-0
4)1()1(122y x y x 消去y 后得到的方程是( ) A 、03222=--x x
B 、05222=+-x x
C 、01222=++x x
D 、09222=++x x 2、方程组⎩⎨⎧=-+++=+0320
2y x x y x 解的情况是( ) A 、有两组相同的实数解 B 、有两组不同的实数解
C 、没有实数解
D 、不能确定
3、方程组⎩⎨⎧=--=-+0
0122m x y y x 有唯一解,则m 的值是( ) A 、2 B 、2- C 、2± D 、以上答案都不对
4、方程组⎩⎨⎧+==m x y x
y 2有两组不同的实数解,则( ) A 、m ≥41- B 、m >41- C 、4
1-<m <41 D 、以上答案都不对 三、解下列方程组: 1、⎩⎨⎧=-=+15
522y x y x ; 2、⎩⎨⎧=+=+25722y x y x 3、⎪⎩⎪⎨⎧=--=+-0352122222y xy x y xy x ; 4、⎩⎨⎧==+127xy y x ; 5、⎩⎨⎧==+6
1322xy y x 四、m 为何值时,方程组⎩⎨⎧=+=+m
y x y x 2022有两组相同的实数解,并求出这时方程组的解。

1、二元二次方程组⎩⎨⎧=++=-1440942222y xy x y x 可化为四个二元一次方程组,它们是 。

2、已知⎩⎨⎧=-=01y x 和⎩⎨⎧==32y x 是二元二次方程x 2+ay+bx=0的两个解,则a= ,b= 。

3、把y=x -1代入方程2x 2+xy -3=0所得的结果是 ( )
A.2x 2+xy+2=0
B.x 2-x -3=0
C.3x 2-x -3=0
D.2(x -1)2+x(x -1)-3=0
4、方程组⎪⎩⎪⎨⎧==+86xy y x 的解是 ( )
A.⎩⎨⎧==4,2y x
B. ⎩
⎨⎧==2,4y x C. ⎩⎨⎧==;2,211y x D. ⎩⎨⎧==⎩⎨⎧==.4,16;16,41211y x y x
5、⎩⎨⎧=-+-=+-;0323,012322y y x y x
6、 ⎪⎪⎩⎪⎪⎨⎧==+.61,511xy y x
7、⎩⎨⎧=--=+;0232,52222y xy x y x
8、⎩⎨⎧+=+-=+-+.6)(,18)(9)(222y x y x y x y x 9、⎩⎨⎧=+=-++12512y x y x
10、k为何值时,方程组⎩


=
-
=
+
k
y
x
y
x,
16
2
2
只有唯一解?
11、一块长方形场地的面积是96平方米,如果把它的长减少1米,宽增加2米,得到的新的长方形面积比原长方形面积增加14平方米,求原来长方形场地的长与宽。

12、试讨论方程组⎪⎩



=
+
+
=
+
x
y
a
a
y
x
4
2
,2
2
22
2
的实数解的个数。

相关文档
最新文档