武汉大学数理统计ppt 5回归分析
合集下载
回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
《回归分析》PPT课件
在回归分析中,若自变量间中/高相关,则某些与因变量有关系的变量会被排除在回 归模型之外
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用
数理统计CH回归分析课件
2024/10/4
21
回归最小二乘估计
(2)最小二乘思想
n
n
| i |
2 i
i 1
i 1
残差计算:
yi a bxi i
i yi a bxi
➢用残差(误差)平 方和代表试验点与 回归直线旳总距离
2024/10/4
➢回归方程旳最小二乘
估计可归结为求解下
面旳优化模型:
n
Min a,b
n i 1
yi
a
bxi
2
n i 1
b
yi a bxi
2
n
2 yi a bxi xi i 1
2024/10/4
24
回归最小二乘估计
(3)回归最小二乘估计
x
1 n
n i 1
xi
y
1 n
n i 1
yi
Q 0 a aˆ,b bˆ a
n
即 2 yi aˆ bˆxi 0 i 1
2024/10/4
40
回归明显性检验
(3)模型和假设
线性回归模型 线性有关假设
➢由线性回归模型可推论:
E yi E a bxi i a bxi
Var yi Var a bxi i Var i 2
2024/10/4
10
7.2 一元线性回归
(1)案例和问题
x称作自变量 y称作响应变量
案例:某特种钢抗拉强度试 抗拉强度试验成果 验,控制某稀有金属含量x
x(%) y(MPa) 测得不同抗拉强度y,试验
2.07 128 成果如表所示。
3.10 194 4.14 273 5.17 372 6.20 454
yi
应用统计方法第四章-回归分析PPT课件
应用统计方法第四章-回归分 析ppt课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
回归分析应用PPT课件
回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析
统计分析回归分析课件演示文稿(共74张PPT)
(10)在“线性回归”主对话框中,单击“确定”按钮,完成SPSS 操作,输出结果。
2、结果分析
(1)选入和删除的变量
•在本例中,只有一个自变量“雏鸭重”,所以如下表所示,在
选入的变量中只有“雏鸭重”,没有删除的变量,使用的方法是 “选入”。
•
(3)方差分析
•如下表所示为回归模型的方差分析摘要表,其中的变异量显著
7.3 多元线性回归分析
• 自然界的万事万物都是相互联系和关联的,所以一个因变量往往
同时受到很多个自变量的影响。如本章开篇时讲到的那个例子, 男性胃癌患者发生术后院内感染的影响因素有很多,如年龄、手 术创伤程度、营养状态、术前预防性抗菌、白细胞数以及癌肿病 理分度。这时我们如果要更加精确的、有效的预测男性胃癌患者 发生术后院内感染的具体情况这个因变量,就必须引入多个自变 量,建立多元回归模型。
• (3)阶层回归分析法 • (4)方法的选择
7.3.2 各种回归分析方法的实例分析
• 接下来会举三个例子来分别说明“强迫选入法”、“逐步回
归法”和“阶层多元回归法”是如何运用的。
• 【例7.2】强迫选入法:某医院的一位优秀的男医生,想研究男性胃
癌患者发生术后院内感染的影响因素,在研究了多名病人之后,他 得到了数据资料,请通过多元线性回归统计方法找出哪些因素是对 术后感染产生影响的。其中数据资料如下页所示。
• (4)线性关系
• (5)各个残差之间相互独立假定
• (6)残差的等分散性假定
7.1.3 回归分析的基本步骤
• 具体地说,回归分析的一般过程分成四步,分别是:
• (1)提出回归模型的假设
• (2)获取数据
• (3)建立回归方程
• (4)回归方程的检验
《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
第五章 回归分析ppt课件
利润率(%)y
12.6
10.4
18.5
3.0
8.1
16.3
12.3
6.2
6.6
16.8
;
110.8
相关系数检验法 第一步,计算相关系数R; 第二步,根据回归模型的自在度〔n-2〕和给定的显 著性程度值α,从相关系数临界值表中查出临界值; 第三步,判别。假设|R|≥Rα(n-2),阐明两变量之间 线性相关关系显著,检验经过,这时回归模型可以用来 预测;假设|R|< Rα ,阐明两变量之间线性相关关系不 显著,检验不经过。
7173.54
8765.45
1、建立计量模型 ●由经济实际知,消费支出受可支配收入的影
响,两者之间具有正向同步变化的趋势。 ●除可支配收入之外,对消费支出有影响的其
他要素均包含在随机误差项中。 ●模型中,解释变量为年人均可支配收入X,
被解释变量为年人均消费支出Y。
;
模型方式可根据凯恩斯的边沿消费倾向实际建立一元 线形回归模型,也可经过散点图来选择适宜的模型 方式。两变量的散点图如下:
S圆 R2
;
〔2〕相关关系
反映客观事物之间非严厉、不确定的线性 依存关系。
一个变量发生数量变化,要影响另一变量 相应变化
给定一个变量一个数值,另一变量有多个 数值与之对应。
如:月收入与月支出
;
2、回归分析与相关分析
;
3名毕业生月收入与月支出表〔元〕
月收入 X
1800
小王 1500
月支出 Y 小李 小刘 1650 1800
当 月 收 入 为 0 时 , 为 满 足 日 常 基 本 生 活 需 求 , 每 月 仍 需 支 出 6 0 0 元 。
回归分析法PPT课件
线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
《回归分析方法》课件
线性回归模型的评估与优化
评估指标:R平方值、调整R平方值、F统计量、P值等 优化方法:逐步回归、岭回归、LASSO回归、弹性网络回归等 交叉验证:K折交叉验证、留一法交叉验证等 模型选择:AIC、BIC等模型选择方法来自01逻辑回归分析
逻辑回归分析的定义
逻辑回归是一种统计方法,用于预测二分类因变量 逻辑回归使用逻辑函数(logistic function)来估计概率 逻辑回归的目标是找到最佳的参数,使得模型能够准确预测因变量 逻辑回归广泛应用于医学、金融、市场营销等领域
逻辑回归模型的应用场景
预测客户是 否会购买产 品
预测客户是 否会违约
预测客户是 否会流失
预测客户是 否会响应营 销活动
预测客户是 否会购买保 险
预测客户是 否会进行投 资
01
多项式回归分析
多项式回归分析的定义
多项式回归分析是一种统计方法,用于建立因变量与多个自变量之 间的关系模型。 多项式回归分析通过使用多项式函数来拟合数据,从而得到更精确 的预测结果。 多项式回归分析的优点是可以处理非线性关系,并且可以处理多个 自变量之间的关系。
求解结果:得到模型的参 数值,用于预测和评估模
型的性能
套索回归模型的应用场景
预测股票价格 预测房价 预测汇率 预测商品价格
Ppt
感谢观看
汇报人:PPT
岭回归模型的参数求解
岭回归模型: 一种线性回归 模型,通过在 损失函数中加 入一个L2正 则项来防止过
拟合
参数求解方法: 梯度下降法、 牛顿法、拟牛
顿法等
梯度下降法: 通过迭代求解 参数,每次迭 代都沿着梯度 下降的方向更
新参数
牛顿法:通过 求解Hessian 矩阵的逆矩阵 来更新参数, 收敛速度快, 但计算复杂度
《统计学回归分析》PPT课件
精选ppt
88
【例】
(1) 某种商品的销售额(y)与销售量(x)之间的 关系可表示为 y = p x (p 为单价)
(2)圆的面积(S)与半径之间的关系可表示为
S = R2
(3)企业的原材料消耗额(y)与产量(x1) 、单位 产量消耗(x2) 、原材料价格(x3)之间的关系可 表示为y = x1 x2 x3
精选ppt
14 14
停下来 想一想?
下列变量之间存在相关关系吗?
1 抽烟与肺癌之间的关系 2 怀孕期妇女的饮酒量与婴儿出生体重之间的关系 3 纳税者年龄和他们交纳税款的数量之间的关系 4 采光量与植物的生产量之间的关系 5 一个人的投票倾向性与其年龄之间的关系
精选ppt
15 15
相关关系与函数关系的关系:在一定的条件下互相转化.
精选ppt
16 16
二、 相关关系的种类
1.按相关情况下,销售收入Y与销售量X 的关系;
不相关:股票价格的高低与气温的高低是不相关的;
精选ppt
17 17
2.按相关的方向分:
正相关:两个变量之间的变化方向一致,都是增长趋 势或下降趋势。
例: 收入与消费的关系; 工人的工资随劳动生产率的提高而提高。
精选ppt
11 11
变量之 间关系
相关关系
因果关系 互为因果关系
共变关系
随机性依存关系
函数关系
确定性依存关系
精选ppt
1212
相关关系
(1)变量间关系不能用 函数关系精确表达;
(2)一个变量的取值不 能由另一个变量唯一 确定;
(3)当变量 x 取某个值 时,变量 y 的取值可 能有几个;
(4)各观测点分布在直 线周围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…,
yn
的总变差为
:
S
2 总
( yi y)2
i 1
y
yi
yˆ 0 1 x
y i yˆ i
aˆ
yˆ
y
o
xi
x
可以证明
n
n
n
S
2 总
( y i y ) 2 ( yˆ i y ) 2 ( y i yˆ i ) 2
i 1
i 1
i 1
n
S
2 回
( yˆ i y ) 2
i 1
n
出检验.
(2)如果方程真有意义,用它预测y时,预测值与
真值的偏差能否估计?
4.线性回归方程的显著性检验
对任意两个变量的一组观察值
(xi , yi), i=1, 2, …, n 都可以用最小二乘法形式上求得 y 对 x的 回归方程, 如果y 与x 没有线性相关关系, 这种形式的回归方程就没有意义 .
i 1
ˆ 0 y ˆ1 x
x
1 n
n i 1
xi
y
1 n
n i 1
yi
n
n
若记பைடு நூலகம்Lxx ( xi x )2 xi2 nx 2
i 1
i 1
n
n
Lxy ( xi x )( yi y ) xi yi nxy
i 1
i 1
n
n
Lyy ( yi y )2 yi2 ny 2
y x 1
高尔顿对此进行了深入研究.他们将观察值在平 面直角坐标系上绘成散点图,发现趋势近乎一条直线, 计算出的回归直线方程为
yˆ 3 3 .7 3 0 .5 1 6 x
在回归分析中, 当自变量只有两个时, 称 为一元回归分析; 当自变量在两个以上时, 称 为多元回归分析. 变量间成线性关系, 称线性 回归,变量间不具有线性关系, 称非线性回归.
2
1
2
n
( yi
i 1
yˆi ) 2
~
(2 n 2)
检验假设 H 0 : 1 0 H 1 : 1 0
选取统计量 F (n 2)S回2 S2
~F(1,n-2)
残
对给定的显著性水平 ( 0 1 ), H0 的拒绝域为
F
(n 2)S回2 S2
F (1, n 2)
残
我们可以用更简单的公式计算回归平
而 S残2 反映了种种其它因素对y的影响, 这些
因素没有反映在自变量中, 它们可作为随机
因素看待.
可见, S回2/S残2 为x 的影响部分与随机因素
影响部分的相对比值.
y
yi
yˆ 0 1 x 若它不是显著地
y i yˆ i
aˆ
大, 表明我们所选
yˆ
y 的x , 并不是一个
重要的因素.
o
xi
A X T X 1 X T y.
例1 在钢线碳含量x对于电阻效应y的研究中, 得到 了以下数据:
碳含量(%) 0.10 0.30 0.40 0.55 0.70 0.80 0.95
电阻(微欧) 15 18 19 21 22.6 23.8 26
假设对于给定的 x,y 为正态变量, 且方差与 x 无关.
为残差.
y
yi
yˆ 0 1 x
y i yˆ i
aˆ
yˆ
y
o
xi
x
于是观测值yi可以分解为两部分yˆi和 y i yˆ i,
y i yˆ i ( y i yˆ i )
并且 yi y 也可分解为两部分.
y i y ( yˆ i y ) ( y i yˆ i )
n
y1,
y2,
n
S
2 T
( yi y )2
( yˆi y ) ( yi yˆi ) 2
i 1
i 1
n
n
( yˆi
i 1
y )2
( yi
i 1
yˆi ) 2
S
2 回
S2 残
定理5
当
1 0 时
S2与 S2相 互 独 立 , 且
回
残
S 2 回
2
1
2
n
( yˆi y )2
i 1
~
2 (1)
S 2 残
如果x,y满足经验公式 y 0 1 x ,
求线性回归方程 yˆ ˆ 0 ˆ1 x
解 设 y 0 1 x , ~ N 0 , 2
现在 n 7 ,
xi 3.8,
yi 145.4
x i 2 2 .5 9 5
xi yi 85.61 yi2 3104.2
回归分析
数学与统计学院
• 回归分析的目的:依靠观察数据建立变量间的关系, 分析数据规律。
• 回归分析的内容:
回归分析
线性回归分析 参数回归分析
非线性回归分析 非参数回归分析
• 本章内容:线性回归分析。
1. 回归分析的基本概念
函数关系与相关关系
函数关系——变量之间确实存在的,且在数量上表现 为确定性的相互依存关系.
如果
与随机变量y之间存在相关关系,
——解释变量、自变量 y ——被解释变量、响应变量、因变量
ε——其它随机因素的影响,通常假设ε是不可观
测的随机误差,它是一个随机变量.
多元线性回归模型 :
一元线性回归
一元线性回归模型
y 0 1x
一元线性回归方程
通常假定
yˆ ˆ 0 ˆ1 x ~ N (0, 2 )
i 1
i 1
ˆ1 Lxy / Lxx , ˆ 0 y ˆ1 x
由 ˆ0 y ˆ1 x y ˆ0 ˆ1x
记
y1
y
y2
yn
,
1 x1
X
1
x2
,
1 xn
A
ˆ0 ˆ1
,
则一元线性回归的数据模型为 y XA 这是一个不相容线性
方程组,当 rank(X ) 2 n 时,其最小二乘解为
y1 , y 2 , , y n 相互独立 1 , 2 , , n 相互独立 假设 x1 , x 2 , , x n 是确定性的变量,其值是可以精确
测量和控制的.
请思考:
下列散点的4条近似直线中,哪条线条最合适?
Y 60
40
20
0
X
0
20
40
60
1.最小二乘估计
设( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) 是( x , y )的一组 观测值,对每个样本观测值 ( xi , y i )考虑 yi与其回归值
n2
且 与 相互独立
=>该假设检验问题的拒绝域为
t
ˆ1 Lxx ˆ
t / 2 (n 2)
例3 检验例1中的线性回归是否显著.
解 检验假设
由例2得
拒绝域为
=>拒绝
即认为线性回归显著
(3)r检验
相关系数的定义
r lxy lxx l yy
r2
l
2 xy
lxxl yy
n
n
S2= R
( yˆi y)2 =
的离差
E (yi) 0 1xi yi E (yi) yi 0 1xi
综合考虑每个离差值,定义离差平方和
n
n
Q ( 0 , 1 ) y i E ( y i ) 2 ( y i 0 1 xi ) 2
i 1
i 1
最小二乘法,就是寻找参数 0 , 1 的估计值
ˆ0, ˆ1,使得离差平方和达到极小值,即选择 ˆ0, ˆ1
这种变量间既互相联系但又不是完全 确定的关系,称为相关关系.
回归分析就是研究相关关系的一种重 要的数理统计方法.
回归分析的基本思想是由英国著名生物学家兼统 计学家F.高尔顿(F.Galton:1822-1911)在研究人 类遗传问题时提出的.
他和他的学生、现代统计学的奠基者之一K.皮 尔逊(K.Pearson:1856-1936)在研究父母亲身高 与其子女身高的遗传关系时,观察了1078对夫妇,他 们观察的这1078对夫妇的平均身高为68英寸,而其 成年儿子的平均身高为69英寸.
的比率其值越大,越说明x 的变化引起的Y 的变化就越大
(1) r 1
(2) r 0 时,
y与 x 有线性相关关系; (3) r 0 时,SR 0, ST SE
y与 x 无线性相关关系; r 越大,变量 y 与 x 之间的线性相关程度越强。
5.回归系数的区间估计
ˆ1
~
N
1,
2
Lxx
方和
S回2与残差平方和
S
2 残
:
S
2 回
n
( yˆ i y )2
n
(ˆ0 ˆ1xi ˆ0 ˆ1x )2
i 1
i1
n
ˆ12 ( xi x ) 2 ˆ12 Lxx ˆ1Lxy
i 1
S
2 残
S
2 总
S
2 回
L yy
ˆ1 L xy
(2)t 检验
检验假设 由于
,因此当原假设成立时,有
ˆ 2 Qe
例如,圆的面积S与半径R有关,一旦半径R确定, 则
面积S可通过函数 f (R) R 2 求出,即 S R2.
相关关系——变量之间确实存在的,但在数量上表现 为不确定的相互依存关系.
人的身高与体重之间有一定的关系,知道 一个人的身高可以大致估计出他的体重,但并 不能算出体重的精确值.
其原因在于人有较大的个体差异, 因而身高 和体重的关系, 是既密切但又不能完全确定 的函数关系.