离散数学最小生成树例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学最小生成树例题
离散数学最小生成树例题是:
给定一个带权无向图G,其中顶点集V={1,2,3,4,5},边集E={(1,2),(1,3),(1,4),(2,5),(3,5)},权值集合W={1,2,3,4,5}。

用Kruskal算法求最小生成树。

首先对边集E和权值集合W按照边的权值从小到大进行排序;然后初始化一个空的并查集和一个空的森林;将并查集的根节点设置为第一个顶点,森林中添加这个顶点;对于每一条边,如果它的两个顶点不在同一个集合中,将这条边添加到森林中,并将这两个顶点合并到同一个集合中;最后森林中的边就是最小生成树。

相关文档
最新文档