小学四年级奥数讲义之精讲精练第8讲 巧妙求和(一)
【精品奥数】四年级下册数学思维训练讲义-第八讲 巧妙求和 人教版(含答案)
第八讲巧妙求和
第一部分:趣味数学
高斯与等差数列
一位教师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,一位小男孩即刻把写着答案的小石板交了上去。
1+2+3+4+……+98+99+100=?
老师起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的笞案属于那个男孩时,才大吃一惊。
而更使人吃惊的是男孩的算法……
老师发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。
这种算法是教师未曾教过的计算等差数列的方法,高斯的才华使老师一—彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教这位男孩的了。
此男孩叫高斯,是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
(一)数列的基本知识:
(1)1、2、3、4、5、6……
(2)2、4、6、8、10、12……
(3)5、10、15、20、25、30……
像这样按照一定规律排列成的一列数我们称它为数列,
数列中的每一个数称为一项;第1项称为首项;最后1项称为末项;
在第几个位置上的数就叫第几项;
有多少项称为项数;
(二)等差数列的基本知识
(1)1、2、3、4、5、6……(公差=1)
(2)2、4、6、8、10、12……(公差=2)。
四年级《巧妙求和》奥数教案
三、总结:(5分)
记住以下三个公式,可以帮助我们更好地掌握此类问题:
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
四、随堂练习:
1.一个电影院第一排有36个座位,往后每排都比前一排多2个座位,最后一
排有82个座位,则这些座位被分成几排?
板书:
(82-36)÷2+1=24(排)
答:这些座位被分成24排。
2.工地将一堆规格相同的木料如图码放在空地上,最上面一层有8根,堆了 18层,则最底下一层有多少根木料?
板书:
8+(18-1)×1=25(根)
答:最底下一层有25根木料。
3. 计算3+11+19+……+99+107+115的和。
板书:
(115-3)÷8+1=15
(3+115)×15÷2=885
4.马上父亲节了,卡尔决定为父亲折满一罐纸鹤,她第一天折了15只纸鹤,
之后每天都多折5只纸鹤,一共折了10天,她一共折了多少只纸鹤?
板书:
15+5×(10-1)=60(只)
(60+15)×10÷2=375(只)
答:她一共折了375只。
5.学徒不小心将锁匠的45把锁的钥匙弄乱了,为了使每把锁都找到相配的钥
匙,最多要试几次?
板书:
44+43+…+1
=(44+1)×44÷2
=990(次)
答:最多要试990次。
四年级上册奥数第8讲 巧妙求和(一)
第8周巧妙求和(一)专题简析:若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。
这一周,我们将学习“等差数列求和”。
为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X 项数÷2在等差数列中,只要知道首项、末项、公差、及总和这五个量中的三个,就可以利用通项公式、项数公式及求和公式求其余两个量。
例1:等差数列4,10,16,22,…,52共有多少项?练习一:1、等差数列中,首项=1,末项=39,公差=2。
这个等差数列共有多少项?2、等差数列2,5,8,11,…,101共有多少项?3、已知一个等差数列的首项是11,末项是101,总和是504,这个数列共有多少项?例2:已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习二:1、一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2、已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3、已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?例3:有这样的一个列数1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习三:计算下面各题。
1、1+2+3+4+…+49+502、6+7+8+9+…+753、100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
练习四:计算下面各题。
1、2+6+10+14+19+222、5+10+15+20+…+195+2003、9+18+27+36+…+261+270例5:如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习五:1、如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2、如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3、如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?1、有一个等差数列:9,12,15,18,…,2004,这个数列共有多少项?2、已知等差数列:1000,993,986,979,…,20,这个数列共有多少项?3、求等差数列:1,6,11,16,…的第61项。
四年级奥数巧妙求和(一)
称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?练习:1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
练习:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270例5:计算(2+4+6+...+100)-(1+3+5+ (99)练习:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)例6:如果一个等差数列第4项为21,第6项为33,求他的第8项。
(2)如果一个等差数列的第3项是10,第7项是26,求他的第12项。
四年级奥数巧妙求和(一)
第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列. 数列中的每一个数称为一项. 其中第一项称为首项, 最后一项称为末项, 数列中项的个数称为项数.从第二项开始, 后项与其相邻的前项之差都相等的数列称为等差数列, 后项与前项的差称为公差.在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”.通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式.二、精讲精练【例题1】有一个数列:4, 10, 16, 22.…, 52.这个数列共有多少项?练习1:1、等差数列中, 首项=1, 末项=39, 公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5, 8, 11.…, 101.这个等差数列共有多少项?【例题2】有一等差数列:3.7, 11.15, ……, 这个等差数列的第100项是多少?练习2:1、一等差数列, 首项=3.公差=2.项数=10, 它的末项是多少?2、求1, 4, 7, 10……这个等差数列的第30项.【例题3】有这样一个数列:1.2.3.4, …, 99, 100. 请求出这个数列所有项的和.练习3:计算下面各题.(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2, 4, 6, …, 48, 50的和.练习4:计算下面各题.(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题.(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11, 16, 21, 26, …, 1001.这个等差数列共有多少项?2、求等差数列2, 6, 10, 14……的第100项.3、100+99+98+…+61+604、(1+3+5+...+1999)-(2+4+6+ (1998)5、100+95+90+…+15+10+56、4+7+10+13+…+298+301+298+…+13+10+7+47、 2013-2012+2011-2010+…+3-2+18、影剧院有座位若干排, 第一排有25个座位, 以后每一排比前一排多3个座位, 最后一排有94个座位. 问:这个影剧院共有多少个座位?巧算年龄一、知识要点:年龄问题是一类与计算有关的问题, 它通常以和倍、差倍或和差等问题的形式出现. 有些年龄问题往往是和、差、倍数等问题的综合, 需要灵活地加以解决.解答年龄问题, 要灵活运用以下三条规律:1、无论是哪一年, 两人的年龄差总是不变的;2、随着时间的向前或向后推移, 几个人的年龄总是在减少或增加相等的数量;3、随着时间的变化, 两人的年龄之间的倍数关系也会发生变化.二、精讲精练例1:爸爸今年43岁, 儿子今年11岁. 几年后爸爸的年龄是儿子的3倍?练习一1、妈妈今年36岁, 儿子今年12岁. 几年后妈妈年龄是儿子的2倍?2、小强今年15岁, 小亮今年9岁. 几年前小强的年龄是小亮的3倍?例2:妈妈今年的年龄是女儿的4倍, 3年前, 妈妈和女儿的年龄和是39岁. 妈妈和女儿今年各多少岁?练习二1、今年爸爸的年龄是儿子的4倍, 3年前, 爸爸和儿子的年龄和是44岁. 爸爸和儿子今年各是多少岁?2、今年小丽和她爸爸的年龄和是41岁, 4年前爸爸的年龄恰好是小丽的10倍. 小丽和爸爸今年各是多少岁?例3:今年小红的年龄是小梅的5倍, 3年后小红的年龄是小梅的2倍. 小红和小梅今年各多少岁?练习三1、今年小明的年龄是小娟的3倍, 3年后小明的年龄是小娟的2倍. 小明和小娟今年各多少岁?2、今年小亮的年龄是小英的2倍, 6年前小亮的年龄是小英的5倍. 小英和小亮今年各多少岁?例4:甜甜的爸爸今年28岁, 妈妈今年26岁. 再过多少年, 她的爸爸和妈妈的年龄和为80岁?练习四1、蜜蜜的爸爸今年27岁, 她的妈妈今年26岁. 再过多少年, 她爸爸和妈妈的年龄和为73岁?2、林星今年8岁, 爸爸今年34岁. 当他们的年龄和为72岁时, 爸爸和林星各多少岁?例5:小英一家由小英和她的父母组成. 小英的父亲比母亲大3岁, 今年全家年龄总和是71岁, 8年前这个家的年龄总和是49岁. 今年三人各多少岁?练习五1、父、母、子三人今年的年龄和为70岁, 而10年前三人的年龄和为46岁, 父亲比母亲大4岁. 求三人今年各多少岁.2、全家四口人, 父亲比母亲大3岁, 姐姐比弟弟大2岁. 4年前他们的年龄和为58岁, 现在全家的年龄和是73岁. 现在每个人各多少岁?三、课后作业1、爷爷今年60岁, 孙子今年6岁. 再过多少年爷爷的年龄比孙子大2倍?2、今年小芳和她妈妈的年龄和是38岁, 3年前妈妈的年龄比小芳的9倍多2岁. 小芳和妈妈今年各多少岁?3、10年前父亲的年龄是儿子的7倍, 15年后父亲的年龄是儿子的2倍. 父亲和儿子今年各多少岁?4、今年爸爸56岁, 儿子30岁. 当父子的年龄和为46岁时, 爸爸和儿子各是多少岁?5、吴琪一家由吴琪和他的孪生姐姐吴林还有他们的父母组成, 其中父亲比母亲大2岁. 今年全家的年龄和是64岁, 5年前全家的年龄和是52岁. 求今年每人的年龄.。
四年级奥数巧妙求和(一)
巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?练习:1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?1练习:1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
练习:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
2练习:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270例5:计算(2+4+6+...+100)-(1+3+5+ (99)练习:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)例6:如果一个等差数列第4项为21,第6项为33,求他的第8项。
小学四年级奥数巧妙求和
四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
四年级奥数讲义之精讲精练第8讲巧妙求和一
第2讲巧妙求和〔一〕一、知要点假设干个数排成一列称数列。
数列中的每一个数称一。
其中第一称首,最后一称末,数列中的个数称数。
从第二开始,后与其相的前之差都相等的数列称等差数列,后与前的差称公差。
在一章要用到两个非常重要的公式:“通公式〞和“数公式〞。
通公式:第n=首+〔数-1〕×公差数公式:数=〔末-首〕÷公差+1等差数列和=〔首+末〕×数÷2个公式也叫做等差数列求和公式。
二、精精【例1】有一个数列:4,10,16,22.⋯,52.个数列共有多少?1:1、等差数列中,首=1,末=39,公差=2.个等差数列共有多少?2、有一个等差数列:,8,11.⋯,101.个等差数列共有多少?【例2】有一等差数列:,,⋯⋯,个等差数列的第100是多少?2:1、一等差数列,首=3.公差=2.数=10,它的末是多少?2、求1,4,7,10⋯⋯个等差数列的第30。
【例3】有一个数列:,⋯,99,100。
求出个数列所有的和。
3:1/6算下面各。
1〕1+2+3+⋯+49+502〕6+7+8+⋯+74+75【例4】求等差数列2,4,6,⋯,48,50的和。
4:算下面各。
1〕2+6+10+14+18+222〕5+10+15+20+⋯+195+200【例5】算〔2+4+6+⋯+100〕-〔1+3+5+⋯+99〕5:用便方法算下面各。
1〕〔2001+1999+1997+1995〕-〔2000+1998+1996+1994〕2〕〔2+4+6+⋯+2000〕-〔1+3+5+⋯+1999〕三、后作1、等差数列11,16,21,26,⋯,1001.个等差数列共有多少?2、求等差数列2,6,10,14⋯⋯的第100。
3、100+99+98+⋯+61+604、〔1+3+5+⋯+1999〕-〔2+4+6+⋯+1998〕5、100+95+90+⋯+15+10+56、4+7+10+13+⋯+298+301+298+⋯+10+7+4+137、2021-2021+2021-2021+⋯+3-2+12/68、影院有座位假设干排,第一排有25个座位,以后每一排比前一排多3个座位,最后一排有94个座位。
四年级奥数举一反三第八周 巧妙求和(一)-优选
第八周巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
四年级奥数课后分层作业-第8讲 巧妙求和(一) 通用版
=(2005+1004)×(2005-1004+1)÷2-2×(2003+1004)×[(2003-1004)÷3+1)÷2
=1507509-1004338
=503171
这个数列共141项
3、求等差数列:1,6,11,16…,的第61项。
a1=1 d=6-1=5则an=1+5(n-1)=5n-4
则a61=5×61-4=301
4、求等差数列:307、304、301、298、……的第99项。
由题意可知:
首项:a1=307
公差:d=304-307=-3
则第99项为:
a99=a1+98d
=307-98x3
=307-294
=13
5、计算:4+5+6+7+8+……+80
=(4×77÷2
=6468÷2
=3234
6、计算:11+12+13+……+200
原式=(200-11+1)(11+200)÷2
=190×211÷2
=20045
提高卷
1、计算:3+5+7+9+……+93
,和=(3+93)×(93-1) ÷2 ÷2
=2208
2、计算:100+110+120+……+350
(首项+末项)乘项数除以2=5850
3、计算:160+154+148+……+16
四年级奥数学习讲义第8讲巧妙求和(一)练习及答案
第2讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称
为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后
项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+ 1
等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。
二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?
练习1:
1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?
2、有一个等差数列: 2.5,8,11.…,101.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
练习2:
1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
2、求1,4,7,10……这个等差数列的第30项。
小学四年级奥数思维问题之巧妙求和(一)
巧妙求和教学目标:①知识与技能目标:使学生理解首项,末项以及项数的概念,掌握数列求和的公式②过程与方法目标:使学生能利用数列求和公式解决实际问题③情感态度与价值观目标:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣教学重点:数列求和公式及其适用条件教学难点:数列求和公式的推导过程[知识引领与方法]通项公式:第n项=首项+(项数-1)X公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X项数÷2巧妙求和(一)[例题精选及训练]【例1】等差数列4,10,16,22,…,52共有多少项?练习:1.等差数列中,首项=7,末项=119,公差=4。
这个等差数列共有多少项?2.等差数列2,5,8,11,…,101共有多少项?3.已知一个等差数列的首项是5,末项是117,总和是976,这个数列共有多少项?【例2】已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习:1.一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2.已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3.已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?【例3】有这样的一个数列1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习:计算下面各题。
(1)1+2+3+4+…+49+50(2)6+7+8+9+…+75(3)100+99+98+…+61+60【例4】求等差数列2,4,6,…,48,50的和练习:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)99+96+93+…+21+18【例5】如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习:1.如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2.如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3.如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?[课堂练习]1.有一个等差数列:9、12、15、18、...、2004,这个数列共有多少项?2.已知等差数列:1000、993、986、979、...、20,这个数列共有多少项?3.求等差数列:1、6、11、16、...的第61项。
四年级奥数巧妙求和一PPT学习教案
➢ 项数=(52-4)÷6+1=9,
对应练习
➢ 1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有 多少项?
➢ 2,有一个等差数列:2,5,8,11,…,101,这个等差数列共 有多少项?
➢ 3,已知等差数列11,16,21,26,…,1001,这个等差数列共 有多少项?
四年级奥数巧妙求和一
名人故事
说一说右图是谁,你知道他小时候 的故事吗?
第1页/共14页
• 数列:若干个数排成一列。(一列数字) • 项数:数列中项的个数。(数字个数) • 首项:数列第一项。(第一个数字) • 末项:数列最后一项。(最后一个数字) • 等差数列:从第二项开始,后项与其相邻的前项之差都相
➢ 进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个 数分成了奇数与偶数两个等差数列,每个数列都有50个项。因 此,我们也可以把这两个数列中的每一项分别对应相减,可得 到50个差,再求出所有差的和。
➢ (2+4+6+…+100)-(1+3+5+…+99) ➢ =(2-1)+(4-3)+(6-5)+…+(100-99) ➢ =1+1+1+…+1 ➢ =50
如果我们把112344??9999100100与列与列1001009999??33221加则得到加则得到11001100299299398398??99299210011001其中其中每个小括号内的两个数的和都是每个小括号内的两个数的和都是101101一共有一共有100100个个101101相加所得的和就是相加所得的和就是所求数列的和的所求数列的和的22倍再除以倍再除以22就是所求数列的和
小学四年级奥数(40讲)
小学四年级奥数1—40讲第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
四年级奥数秋季班讲义(上)
莱特1+1思维教育辅导讲义莱特1+1思维教育辅导讲义课题巧妙求和(二)授课时间:授课教师:知识点梳理某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可以用等差数列求和公式计算。
在解决自然数的数字问题时,应根据题目的具体特点,有时可以考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
教学内容例1 小林读一本长篇小说,他第一天读30页,从第二天起他每天读的页数都比前一天多3页,第11天读了60页,正好读完,这本书共有多少页?分析根据“他每天读的页数都比前一天多3页”可以知道他每天的读的页数是按照一定的规律排列的数,即30、33、36……57、60。
要求这本书共有多少页就是求出这列数的和。
这列数是一个等差数列,首项是30,末项是60,项数是11,因此可以根据等差数列的公式求解总和。
例2 一些同样粗细的圆木,像如图所示的一样均匀的堆放在一起,已知最下面一层有70根,那么一共有多少根圆木?分析根据图可以发现这是一个公差是1的等差数列,首项是1,末项是70,要求一共有多少根圆木,其实就是求这个等差数列的和。
可以根据通项公式求解计算。
例3 30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?分析开第一把锁时如果不凑巧,试了29把钥匙都还不行,那么剩下的一把就一定能把它打开,即开第一把锁至多需要29次,同样的,开第二把锁至多需要试28次,开第三把锁至多需要试27次……等打开第29把锁时,剩下的一把就不用试了,一定能打开。
所以,至多需要29+28+27+……+1次,从而将实际问题转化成了等差数列的求和问题。
例4 某班有51个同学,毕业时每人都和其他的每个人握一次手,那么共握了多少次手?分析假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个人依次和剩下的人握手,共握了49次,第三个人握了48次,依此类推,第50个人和剩下的人握了一次手,这样他们握手的次数如下:50、49、48、……、2、1。
【精品奥数】四年级下册数学思维训练讲义-第八讲巧妙求和人教版(含答案)
【精品奥数】四年级下册数学思维训练讲义-第八讲巧妙求和人
教版(含答案)
第八讲巧妙求和
第一部分:趣味数学
高斯与等差数列
一位教师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,一位小男孩即刻把写着答案的小石板交了上去。
1+2+3+4+……+98+99+100=?
老师起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的笞案属于那个男孩时,才大吃一惊。
而更使人吃惊的是男孩的算法……
老师发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。
这种算法是教师未曾教过的计算等差数列的方法,高斯的才华使老师一—彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教这位男孩的了。
此男孩叫高斯,是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。
(一)数列的基本知识:
(1)1、2、3、4、5、6……
(2)2、4、6、8、10、12……
(3)5、10、15、20、25、30……
像这样按照一定规律排列成的一列数我们称它为数列,
数列中的每一个数称为一项;第1项称为首项;最后1项称为末项;
在第几个位置上的数就叫第几项;
有多少项称为项数;
(二)等差数列的基本知识
(1)1、2、3、4、5、6……(公差=1)
(2)2、4、6、8、10、12……(公差=2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。
二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:
1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?
2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:
1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
2、求1,4,7,10……这个等差数列的第30项。
【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
练习3:
计算下面各题。
(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
【例题4】求等差数列2,4,6,…,48,50的和。
练习4:
计算下面各题。
(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
练习5:
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)
(2)(2+4+6+...+2000)-(1+3+5+ (1999)
三、课后作业
1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?
2、求等差数列2,6,10,14……的第100项。
3、100+99+98+…+61+60
4、(1+3+5+...+1999)-(2+4+6+ (1998)
5、100+95+90+…+15+10+5
6、4+7+10+13+…+298+301+298+…+13+10+7+4
7、2013-2012+2011-2010+…+3-2+1
8、影剧院有座位若干排,第一排有25个座位,以后每一排比前一排多3个座位,最后一排有94个座位。
问:这个影剧院共有多少个座位?
第8讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习1:
1.等差数列中,首项=1.末项=39,公差=
2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
【答案】1.(39-1)÷2+1=20项
2.(101-2)÷3+1=34项
3.(1001-11)÷5+1=199项
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
【思路导航】这个等差数列的首项是3.公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399.
练习2:
1.一等差数列,首项=3.公差=
2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
【答案】1.末项是21 2.1+(30-1)×3=88 3.2+(100-1)×4=398
【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)
×100÷2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。
练习3:
计算下面各题。
(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
【答案】(1)1275(2)2835(3)3280
【例题4】求等差数列2,4,6,…,48,50的和。
【思路导航】这个数列是等差数列,我们可以用公式计算。
要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25
首项=2.末项=50,项数=25
等差数列的和=(2+50)×25÷2=650.
练习4:
计算下面各题。
(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
【答案】(1)72(2)4100(3)4185
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。
进一步分析还可以发现,这两个数列其实是把1~100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。
因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。
(2+4+6+...+100)-(1+3+5+ (99)
=(2-1)+(4-3)+(6-5)+…+(100-99)
=1+1+1+…+1
=50
练习5:
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)
【答案】(1)4(2)1000(3)1000。