(完整版)三角恒等变换-知识点+例题+练习(2),推荐文档
第04讲 简单的三角恒等变换(解析版)
第04讲简单的三角恒等变换 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:三角函数式的化简高频考点二:三角函数求值问题角度1:给角求值型角度2:给值求值型角度3:给值求角型高频考点三:三角恒等变换的应用第四部分:高考真题感悟第五部分:第04讲简单的三角恒等变换(精练)1、半角公式(1)2cos 12sinαα-±=. (2)2cos 12cosαα+±=. (3)αααcos 1cos 12tan+-±=.2、万能公式(拓展视野)(1),2tan 12tan2sin 2ααα+=(2),2tan 12tan 1cos 22ααα+-=(3),2tan 12tan2tan 2ααα-=其中2()k k Z αππ≠+∈3、和差化积公式(拓展视野)cos cos 2coscos22cos cos 2sin sin22sin sin 2sin cos22sin sin 2cos sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=-+-+=+--=4、积化和差公式(拓展视野)1cos cos [cos()cos()]2αβαβαβ=++-1sin sin [cos()cos()]2αβαβαβ=-+--1sin scos [sin()sin()]2αβαβαβ=++-1cos ssin [sin()sin()]2αβαβαβ=+--1.(2022·全国·高二课时练习)若cos α=23,α∈(0,π),则cos 2α的值为( )A B C D 【答案】C 【详解】 由题(0,)απ∈,则(0,)22απ∈,∴cos 02α>, cos2α==故选:C.2.(2022·全国·高一专题练习)cos αα化简的结果可以是( ) A .1cos 26πα⎛⎫- ⎪⎝⎭B .2cos 3πα⎛⎫+ ⎪⎝⎭C .1cos 23πα⎛⎫- ⎪⎝⎭D .2cos 6πα⎛⎫- ⎪⎝⎭【答案】B 【详解】解:1cos 2cos 2cos 23πααααα⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 故选:B.3.(2022·全国·)cos 75sin 75︒+︒的值为( ) A .12 B .12-C D . 【答案】C 【详解】)()cos 75sin 7545os 75cos30︒︒︒︒=-+=︒=故选:C.4.(2022·河北·张家口市宣化第一中学高一阶段练习)已知α为锐角,且sin :sin 8:52=αα,则cos α的值为( ) A .45B .825C .1225D .725【答案】D 【详解】 由题意知:2cos sin:sin8:5222ααα=,由α为锐角,即4cos25α=, ∴27cos 2cos 1225αα=-=. 故选:D5.(2022·黑龙江·哈尔滨市第三十二中学校高一期中)若tan ,m α=则sin 2α的值是( ) A .221mm ±+ B .221mm + C .221mm ±- D .221mm - 【答案】B 【详解】22222sin cos 2tan 2sin 2sin cos 1tan 1mm ααααααα===+++.故选:B.6.(2022·全国·高三专题练习(文))已知3,22a ππ⎛⎫∈ ⎪⎝⎭,sin cos 22αα-=,则sin 2πα⎛⎫+= ⎪⎝⎭( )A .B .CD 【答案】A 【详解】sincos 22a a -=51sin 3α-=, 2sin 3α∴=-,又3,2παπ⎛⎫∈ ⎪⎝⎭,sin cos 2παα⎛⎫∴+== ⎪⎝⎭故选:A高频考点一:三角函数式的化简例题1.(2022·陕西·榆林市第一中学高一期中(文))化简计算:sin58sin13cos45cos13︒-︒︒=︒___________.2【详解】解:()sin4513sin13cos45sin58sin13cos45cos13cos13︒+︒-︒︒︒-︒︒=︒︒,sin45cos13cos45sin13sin13cos45cos13︒︒+︒︒-︒︒=︒,sin45cos13sin45cos13︒︒==︒=︒故答案为:2例题2.(2022=___________.【答案】4【详解】()2sin60204sin4041sin402sin20cos202︒-︒︒===︒⨯︒︒故答案为:4题型归类练1.(2022·湖北·=()A B.C D1【答案】A【详解】cos9050︒︒︒-︒==故选:A2.(2022·海南海口·模拟预测)若tan tan2αβ⋅=,则()()coscosαβαβ-+的值为()A.3-B.13-C.13D.3【答案】A 【详解】由题意得,()()cos cos cos sin sincos cos sin sincosαβαβαβαβαβαβ-+=-+1tan tan1231tan tan12αβαβ++===---.故选:A高频考点二:三角函数求值问题角度1:给角求值型例题1.(2022sin 40sin80cos40cos60︒︒⋅=+()A.B.12-C D.12【答案】C【详解】因为222120sin20sin40sin80sin6020sin60202213cos40cos60cos402sin2022︒︒︒︒︒︒︒︒︒︒︒︒-⋅-⋅+==++-)()()()22222313cos20sin20sin2014443322sin202sin2044︒︒︒︒︒--===--()(),所以原式=故选:C例题2.(20221sin170-=︒________.【答案】4-112sin(1030)1sin170sin10sin202︒-︒===︒︒︒4sin(20)4sin20-︒==-︒.故答案为4-.例题3.(2022·陕西·泾阳县教育局教学研究室高一期中)计算求值:(1)(2cos1023cos100sin10--(2)已知α、β均为锐角,1sin7α=,()cosαβ+=sinβ的值.【答案】(1)(1)()()2cos1023cos 1002cos1023cos 90102cos1023cos100sin101sin101sin10---+-==--()134cos10sin104cos 6010222cos1023sin10cos5sin 5sin1012sin 5cos5⎛⎫+ ⎪-+⎝⎭==--)4cos504cos502245cos5sin 45cos52cos50==-.(2)解:α、β都为锐角,则0αβ<+<π,()11sin14αβ∴+===,cos α=, ()()()111sin sin sin cos sin cos 147βαβααβαααβ∴=+-=+-+==⎡⎤⎣⎦ 角度1题型归类练1.(2022·四川·石室中学模拟预测(文))22sin110cos250cos 25sin 155-的值为( )A .12-B .12C D . 【答案】A 【详解】原式2211sin140sin40sin70cos70122cos 25sin 25cos50sin402-==-=-=--. 故选:A2.(多选)(2022·全国·高三专题练习)下列选下选项中,值为14的是( )A .cos72cos36︒︒B .1sin 50︒C .5sinsin1212ππ D .22cossin 1212ππ-【答案】AC 【详解】对于A 中2sin 36cos36cos72cos36cos722sin 36︒︒︒︒︒=︒2sin 72cos72sin14414sin 364sin 364︒︒︒===︒︒.对于B中原式12cos5050212sin 50cos502⎛⎫︒︒ ⎪⎝⎭==⨯︒︒2sin802sin80411sin100sin8022︒︒===︒︒. 对于C 中sin2sincos511212sinsinsin cos 121212122246πππππππ====. 对于D中22πcos sin cos12126ππ-=故选:AC.3.(2022·全国·高三专题练习)()tan30tan70sin10︒+︒︒=___________.()sin30sin70tan30tan70sin10()sin10cos30cos70︒︒︒+︒︒=+︒︒︒(sin30cos70cos30sin70)sin10cos30cos70︒︒+︒︒=︒︒===角度2:给值求值型例题1.(2022·河南商丘·三模(文))已知tan 3α=-,则sin 21cos 2αα=-( )A .3B .13C .13-D .-3【答案】C 【详解】2sin 22cos sin cos 111cos 22sin sin tan 3αααααααα====--.故选:C例题2.(2022·北京八中高一期中)设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 6πα⎛⎫+ ⎪⎝⎭的值为________,sin 23πα⎛⎫+ ⎪⎝⎭的值为________.【答案】 35##0.6 2425##0.96【详解】α为锐角,则240,,cos()266365πππππααα<<<+<+=, 3sin()65πα∴+=,24sin(2)sin 22sin()cos()366625ππππαααα⎡⎤⎛⎫∴+=+=++= ⎪⎢⎥⎝⎭⎣⎦.例题3.(2022·北京市第十九中学高一期中)已知tan 24πα⎛⎫+= ⎪⎝⎭,,44ππα⎛⎫∈- ⎪⎝⎭.(1)求sin α的值;(2)求()sin cos 4cos 2παααα⎛⎫+⋅+ ⎪⎝⎭的值. 【答案】1 (1)解:因为tan 24πα⎛⎫+= ⎪⎝⎭,所以tan tan421tan tan 4παπα+=-,解得1tan 3α= 因为,44ππα⎛⎫∈- ⎪⎝⎭,所以0,4πα⎛⎫∈ ⎪⎝⎭,又22sin 1tan cos 3sin cos 1ααααα⎧==⎪⎨⎪+=⎩,解得sin α=sin α= (2)解:()sin cos 4cos 2παααα⎛⎫+⋅+ ⎪⎝⎭()22cos cos sin sin sin cos 44cos sin ππαααααα⎫-⋅+⎪⎝⎭=- ()()()()cos sin sin cos 1cos sin sin cos αααααααα-⋅+==-⋅+角度2题型归类练1.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。
高中 简单的三角恒等变换 知识点+例题
教学内容
1.公式的常见变形
(1)tanα+tanβ=tan(α+β)(1-tanαtanβ);tanα-tanβ=tan(α-β)(1+tanαtanβ).
(2)sin2α= ;cos2α= ;sinαcosα= sin 2α.
(3)1+cosα=2cos2 ;1-cosα=2sin2 ;
(1)求f( )的值;
(2)设α,β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
解(1)由题设知:
f( )=2sin( - )=2sin = .
(2)由题设知: =f(3α+ )=2sinα,
=f(3β+2π)=2sin(β+ )=2cosβ,
即sinα= ,cosβ= ,
又α,β∈[0, ],∴cosα= ,sinβ= ,
∴cos(α+β)=cosαcosβ-sinαsinβ= × - × = .
11.cos 20°cos 40°cos 60°·cos 80°等于_________.
答案
解析原式= = = = = .
12.定义运算 =ad-bc,若cosα= , = ,0<β<α< ,则β等于______.
答案
解析 方法一因为y= = ,
所以令k= .又x∈ ,
所以k就是单位圆x2+y2=1的左半圆上的动点
P(-sin 2x,cos 2x)与定点Q(0,2)所成直线的斜率.
又kmin=tan 60°= ,所以函数y= 的最小值为 .
方法二y= = = = tanx+ .
∵x∈(0, ),∴tanx>0.
∴ tanx+ ≥2 = .(当tanx= ,即x= 时取等号)
三角恒等变换知识点加练习汇总
三角恒等变换测试题 _____贺孝轩三角函数1.画一个单位圆,则xy x y ===αααtan ,cos ,sin 2.一些诱导公式(只要两角之和为/2就行) 3.三角函数间的关系1cos sin 22=+α ⇒ αα22sec 1tan =+, αααcos sin tan =⇒αααcos tan sin ⋅= 4.和差化积βαβαβαsin cos cos sin )sin(±=± , βαβαβαsin sin cos cos )cos( =±5.二倍角αααcos sin 22sin = , ααααα2222sin 211cos 2sin cos 2cos -=-=-=6.二倍角扩展 ααcos 12cos 22+= , ααcos 12sin 22-= , 2)2cos 2(sinsin 1ααα±=±7.)sin(cos sin 22θαβα++=+b a b a ,其中22cos ba a +=θ,22sin ba b +=θ8.半角公式9凡正余弦的次数为二,均可以化成正切函数来表示如:1tan 1tan cos sin cos cos sin cos cos sin 22222++=++=+ααααααααα第Ⅰ卷(选择题,共60分)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案代号填在答题卡上)1.已知)2,23(,1312cos ππαα∈=,则=+)4(cos πα ( )A.1325 B. 1327 C. 26217 D. 2627 2.若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则( ) A.552 B. 2552 C. 2552552或 D. 552-3.=+-)12sin 12(cos )12sin 12(cos ππππ( ) A. 23-B. 21- C. 21 D. 234.=-+0000tan50tan703tan50tan70 ( )A.3 B.33 C. 33- D. 3- 5.=⋅+ααααcos2cos cos212sin22( ) A. αtan B. αtan2 C. 1 D.21 6.已知x 为第三象限角,化简=-x 2cos 1( ) A.x sin 2 B. x sin 2- C. x cos 2 D. x cos 2-7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A .1010 B .1010- C .10103 D .10103- 8. 若).(),sin(32cos 3sin 3ππϕϕ-∈-=-x x x ,则=ϕ( )A. 6π-B.6π C. 65π D. 65π-9. 已知1sin cos 3αα+=,则sin 2α=( )A .89- B .21- C . 21 D .8910. 已知cos 23θ=,则44cos sin θθ-的值为( )A .3-B .3C .49D .1 11. 求=115cos 114cos 113cos 112cos11cosπππππ( )A. 521B. 421 C. 1 D. 012. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A .x =113πB .x =53πC .53x π=-D .3x π=- 二.填空题(本大题共4小题,每小题4分,共16分)13.已知βα,为锐角,的值为则βαβα+==,51cos ,101cos .14.在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = .15.若542cos ,532sin-==αα,则角α的终边在 象限. 16.代数式sin15cos75cos15sin105o o o o += .※知识回顾:1.和差公式cos()αβ±= sin()αβ±= tan()αβ±=2.倍角公式sin 2α=cos2α= = = tan 2α= 3.降幂公式2cos α= ,2sin α= .4.辅助角公式sin cos a x b x += ,sin cos ϕϕ==其中三角恒等变换测试题三.解答题(共5个小题,满分48分)17.(本小题8分)△ABC 中,已知的值求sinC ,135B c ,53cosA ==os .18.(本小题10分)已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.19.(本小题10分)已知α为第二象限角,且 sinα=,415求12cos 2sin )4sin(+++ααπα的值. 20. (本小题10分).已知α∈(0,2π),β∈(2π,π),sin (α+β)=6533,cos β=-135,则sin α=21.(本小题满分10分)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【达标检测】1. sin cos sin cos 15151515o oo o+-的值为( )A.33B.264+ C.264-D. -32. 若αβπ、,∈⎛⎝⎫⎭⎪02,且tan tan αβ==4317,,则αβ-的值是( )A.π3B.π4C.π6D.π83. 函数y x x x =82sin cos cos 的周期为T ,最大值为A ,则( ) A. T A ==π,4 B. T A ==π24,C. T A ==π,2D. T A ==π22,4. 已知111cos sin αα-=,则sin 2α的值为( )A. 21-B. 12-C. 222-D. 222-5. 已知tan θ=13,则cos sin 2122θθ+( )A. -65B. -45C. 45D.656. 设f x x (tan )tan =2,则f ()2=( )A. 4B.45C. -23D. -437. 2242-+sin cos 的值是( )A. sin 2B. -cos2C. -32cosD. 32cos9. 已知:()3250cos cos αββ++=,则()tan tan αβα+的值为( )A. ±4B. 4C. -4D. 11.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩或222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3.(1)两类正弦定理解三角形的问题 1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cotA B C A B C A B C+++===.、 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100° C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA 4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m的值为( )7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A 点离地面的高度AB 等于 ( )A .)sin(sin sin αββα-aB .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.13、在ΔABC 中,求分别满足下列条件的三角形形状:①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ;③sinC=BA B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).1、在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在ABC 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A=sin 2B =,求::a b c3、在ABC 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若9a b c =+=,求b 和c 的值。
三角恒等变换知识点及题型归纳总结
三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。
三角恒等变换(知识、题型、训练及答案)
三角恒等变换知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan α. 3.辅助角公式函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2·cos(α-φ).(其中,ab =ϕtan )注意:1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.在三角求值时,往往要借助角的范围求值.基础自检测1.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.792.若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.453.tan 20°+tan 40°+3tan 20°·tan 40°=________.4.sin 347°cos 148°+sin 77°·cos 58°=________.题型解析题型一 三角函数式的化简【例1】(1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.【训练1】 cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α题型二 三角函数式的求值【例2】(1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.(2)若sin ⎪⎭⎫ ⎝⎛-απ3=14,则cos ⎪⎭⎫ ⎝⎛+απ23=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.【训练2】 (1)已知x ∈(0,π),且cos ⎪⎭⎫ ⎝⎛-22πx =sin 2x ,则tan ⎪⎭⎫ ⎝⎛-4πx =( )A.13B.-13C.3D.-3(2)已知α∈⎥⎦⎤⎢⎣⎡20π,,cos ⎪⎭⎫ ⎝⎛+3πα=-23,则cos α=________.题型三 三角变换的简单应用【例3】 △ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B 2的最大值.【训练3】已知函数f (x )=3cos ⎪⎭⎫ ⎝⎛-32πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡-4,4ππ时,f (x )≥-12.答案诊 断 自 测1.A2.D3.34.22【例1】 (1)sin(α+γ) (2)cos α 【训练1】 D 【例2】(1)6 (2)-78 (3)-3π4【训练2】(1)A (2)15-26【例3】解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A-cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin ⎝ ⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,B +A >π2,所以π6<B <π2, 所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值, 此时B =π3,y max =2.【训练3】 (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12. ∴f (x )≥-12成立.。
三角恒等变换习题及答案
a2 b2
a2 b2
。
2.在三角函数化简时注意:
①能求出的值应求出值; ③尽量使项数最少;
②尽量使三角函数种类最少; ④尽量使分母不含三角函数;
⑤尽量使被开方数不含三角函数;
⑥必要时将 1 与 sin 2 cos2 进行
替换 化简的方法:弦切互化,异名化同名,异角化同角,降幂或升幂等
两角和公式 sin(A+B)= sin(A-B)= cos(A+B)= cos(A-B)= tan(A+B)= tan(A-B)= 倍角公式 tan2α=
cos2α=
sin2α= 半角公式 sin^2(α/2)= cos^2(α/2)= tan^2(α/2)=
和差化积 2sinAcosB= 2cosAsinB= 2cosAcosB= -2sinAsinB= 积化和差公式 sinαsinβ= cosαcosβ= sinαcosβ=
角函数公式复习
和差化积 2sinΑcosB=sin(Α+B)+sin(Α-B) 2cosΑsinB=sin(Α+B)-sin(Α-B) ) 2cosΑcosB=cos(Α+B)+cos(Α-B) -2sinΑsinB=cos(Α+B)-cos(Α-B)
积化和差公式 sin(α)sin(β)=—1/2*[cos(α+β)-cos(α-β)] cos(α)cos(β)=1/2*[cos(α+β)+cos(α-β)] sin(α)cos(β)=1/2*[sin(α+β)+sin(α-β)]
2 sin 100
2 sin 100
cos100 2sin(300 100 ) cos100 2sin 300 cos100 2 cos 300 sin100
数学课程三角恒等变换练习题及答案
数学课程三角恒等变换练习题及答案1. 练习题1.1 简单练习题1. 计算下列三角函数值,并化简为有理数:(1) sin 30°(2) cos 45°(3) tan 60°2. 利用三角恒等变换证明以下等式:(1) sin^2 x + cos^2 x = 1(2) 1 + tan^2 x = sec^2 x3. 使用三角恒等变换求解以下方程:(1) sin 2x = 0.5(2) cos 2x - sin 2x = 01.2 提高练习题1. 利用三角恒等变换化简下列表达式:(1) cos x + sin x + 1 - cos x(2) cot^2 x + 1 - csc^2 x2. 解下列方程:(1) 2 sin^2 x - 3 cos x - 1 = 0(2) tan^2 x + sec x = 22. 答案2.1 简单练习题答案1.(1) sin 30° = 1/2(2) cos 45° = 1/√2(3) tan 60° = √32. 证明以下等式:(1) 三角恒等变换:sin^2 x + cos^2 x = 1证明:根据三角恒等变换公式 sin^2 x + cos^2 x = 1代入 sin x = cos (90° - x),可得:cos^2 (90° - x) + cos^2 x = 1sin^2 x + cos^2 x = 1(2) 三角恒等变换:1 + tan^2 x = sec^2 x证明:根据三角恒等变换公式 1 + tan^2 x = sec^2 x代入 tan x = sin x / cos x,可得:1 + (sin x / cos x)^2 = (1 / cos x)^21 + sin^2 x / cos^2 x = 1 / cos^2 x(cos^2 x + sin^2 x) / cos^2 x = 1 / cos^2 x1 / cos^2 x = 1 / cos^2 x2.2 提高练习题答案1. 化简以下表达式:(1) cos x + sin x + 1 - cos x= sin x + 1(2) cot^2 x + 1 - csc^2 x= (cos^2 x / sin^2 x) + 1 - (1 / sin^2 x)= (cos^2 x + sin^2 x) / sin^2 x= 1 / sin^2 x2. 解以下方程:(1) 2 sin^2 x - 3 cos x - 1 = 0首先,利用三角恒等变换将方程中的 cos x 表示为 sin x:2 (1 - cos^2 x) - 3 cos x - 1 = 02 - 2 cos^2 x -3 cos x - 1 = 0-2 cos^2 x - 3 cos x + 1 = 0然后,令 t = cos x,将方程转化为关于 t 的二次方程:-2 t^2 - 3 t + 1 = 0解这个二次方程可得 t = -1 或 t = 1/2。
(完整word)高中数学高考总复习简单的三角恒等变换习题及详解.doc
高考总复习高 中 数 学 高 考 总 复习 简 单 的 三 角 恒 等 变 换 习 题 及 详 解一、选择题π π ,x ∈ R ,则函数 f(x) 是()1. (文 )(2010 山·师大附中模考 )设函数 f(x)= cos 2(x + )- sin 2(x + )44A .最小正周期为 π的奇函数B .最小正周期为 π的偶函数πC .最小正周期为 2的奇函数πD .最小正周期为 2的偶函数 [ 答案 ] Aπ2π[ 解析 ] f(x)= cos(2x + 2)=- sin2x 为奇函数,周期 T = 2 = π. ( 理)(2010 辽·宁锦州 )函数 y = sin 2x + sinxcosx 的最小正周期 T = ()π π A . 2π B . πC.2D.3[ 答案 ] B[ 解析 ] y = sin 2x + sinxcosx = 1- cos2x 12+ sin2x2 = 1+ 2π,∴最小正周期 T = π.2 2 sin 2x - 4232. (2010 重·庆一中 )设向量 a = (cos α, 2 )的模为 2 ,则 cos2α= ()111 3 A .- 4 B .- 2C.2D. 2[ 答案 ] B[ 解析 ] ∵ |a|2= cos 2α+ 2 2= cos 2α+ 1= 3,2 2 4∴ cos 2α=1,∴ cos2α= 2cos 2α- 1=- 1.42α3.已知 tan 2= 3,则 cos α= ()444 3A. 5 B .- 5C.15D .- 5[ 答案 ] Bαααα cos2- sin2222含详解答案高考总复习1- tan 2α= 2 =1- 9=- 4,故选 B. 1+ tan 2α 1+ 9522C4.在△ABC 中,若 sinAsinB = cos 2 ,则△ABC 是 ()A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [ 答案 ] B[ 解析 ] ∵ sinAsinB = cos 2C,211∴ 2[cos(A - B)- cos(A + B)] = 2(1+ cosC), ∴ cos(A - B)-cos( π-C)= 1+ cosC ,∴ cos(A - B)=1,∵- π<A -B<π,∴ A - B = 0,∴△ ABC 为等腰三角形.π5. (2010 ·阳市诊断绵 )函数 f(x)= 2sin(x - 2) +|cosx|的最小正周期为( )πA. 2B .πC . 2πD . 4π[ 答案 ] C[ 解析 ] f(x)=- 2cosx + |cosx|- cosx cosx ≥ 0=,画出图象可知周期为2π.- 3cosx cosx<016. (2010 揭·阳市模考 )若 sinx + cosx = 3, x ∈ (0, π),则 sinx - cosx 的值为 ()17171 17 A . ± 3 B .- 3C.3D. 3[ 答案 ] D[ 解析 ]11 ,∴ sin2x =- 8π 由 sinx + cosx = 两边平方得, 1+ 2sinxcosx = <0,∴ x ∈ , π,3 99 2∴ (sinx - cosx)2= 1- sin2x =17且sinx>cosx , 9∴ sinx -cosx =17,故选 D.3高考总复习7. (文 )在锐角△ABC 中,设 x = sinA ·sinB , y = cosA ·cosB ,则 x , y 的大小关系是 ( )A . x ≤yB . x < yC . x ≥ yD . x >y[ 答案 ] Dπ[ 解析 ] ∵ π>A + B > ,∴ cos(A + B)<0,即 cosAcosB - sinAsinB < 0,∴ x > y ,故应选 D.2( 理)(2010 皖·南八校 )在△ABC 中,角 A 、B 、 C 的对边分别为 a 、b 、 c ,如果 cos(2B + C)+ 2sinAsinB<0,那么 a 、 b 、 c 满足的关系是 ()A . 2ab>c 2B . a 2+ b 2<c 2C . 2bc>a 2D . b 2+ c 2<a 2[ 答案 ] B[ 解析 ] ∵ cos(2B +C)+ 2sinAsinB<0,且 A +B + C = π,∴ cos( π- A +B)+ 2sinA ·sinB<0,∴ cos( π- A)cosB - sin( π- A)sinB + 2sinAsinB<0,∴- cosAcosB + sinAsinB<0 ,即 cos(A + B)>0,π π∴ 0<A + B< ,∴ C> ,22a 2+b 2-c 2由余弦定理得,cosC =<0,2ab∴ a 2+ b 2- c 2<0,故应选 B.8. (2010 ·林省调研吉 )已知 a = (cosx ,sinx),b = (sinx ,cosx),记 f(x)=a ·b ,要得到函数 y = sin 4x - cos 4x 的图象,只需将函数 y = f( x)的图象 ()πA .向左平移 2个单位长度πB .向左平移 4个单位长度πC .向右平移 2个单位长度πD .向右平移 4个单位长度[ 答案 ] D[ 解析 ] y = sin 4x - cos 4 x =(sin 2x + cos 2x)(sin 2x - cos 2x)=- cos2x ,π π π π将 f( x)= a ·b = 2sinxcosx = sin2x ,向右平移 4 个单位得, sin2 x -4 = sin 2x -2 =- sin - 2x=- cos2x ,故2 选 D.高考总复习π 29. (2010 浙·江金华十校模考 )已知向量 a = (cos2α, sin α), b = (1,2sin α- 1), α∈ 4, π,若 a ·b =5,π 则 tan α+4 的值为 ( )12 1 2 A.3 B.7C.7D.3[ 答案 ] C[ 解析 ]a ·b = cos2α+ 2sin 2α-sin α= 1- 2sin 2α+ 2sin 2α- sin α= 1- sin α= 2,∴ sin α= 3,5 5 π∵ <α<π,∴ cos α=- 4,∴ tan α=- 3,454π 1+ tan α 1 .∴ tan α+ = =4 1- tan α 75π 7π10. (2010 湖·北黄冈模拟 )若 2 ≤ α≤ 2 ,则 1+ sin α+ 1- sin α等于 ()α α A .- 2cos 2 B . 2cos 2α α C .- 2sin 2 D . 2sin 2[ 答案 ]C5π7π 5π α 7π[ 解析 ] ≤ α≤,∴4≤ ≤4.∵ 2 2 2∴ 1+ sin α+ 1- sin α=1+ 2sin α α 1- 2sin α α2 cos + cos22 2 =α α α α2sin + cos2 +sin - cos2 2 22αα α α=- (sin + cos )- (sin - cos )2222α=- 2sin 2. 二、填空题π 311. (2010 广·东罗湖区调研 )若 sin 2+ θ=5,则 cos2θ= ________. [ 答案 ] 7 - 25π 3,∴ cos θ= 3,[ 解析 ] ∵ sin + θ=2 5 5∴ cos2θ= 2cos2θ- 1=- 257.高考总复习tanx- tan3 x12. (2010 江·苏无锡市调研 )函数 y=的最大值与最小值的积是 ________.1+ 2tan 2x+tan4x[ 答案 ]1 -16[ 解析 ] y=tanx- tan3x tanx 1- tan2x2 4=2 21+ 2tan x+ tan x 1+ tan x=tanx 1- tan2x=sinxcosx cos2x- sin2x2 · 2 2 2 + 2 2 1+ tan x 1+ tan x cos x+ sin x cos x+ sin x 1 1=2sin2x·cos2x=4sin4x,1所以最大与最小值的积为-16.13. (2010 ·江杭州质检浙)函数 y= sin(x+ 10°)+ cos(x+ 40°),( x∈R )的最大值是 ________.[ 答案 ] 1[ 解析 ]y= sinxcos10 °+ cosxsin10 +°cosxcos40 °- sinxsin40 =°(cos10 -°sin40 )sinx°+ (sin10 +°cos40 °)cosx,其最大值为=2+ 2 sin10 °cos40°- cos10°sin40 °=2+ 2sin - 30°= 1.θ14.(文 )如图, AB 是半圆 O 的直径,点 C 在半圆上, CD⊥ AB 于点 D ,且 AD= 3DB ,设∠COD =θ,则 tan22=________.[ 答案 ] 1 3[ 解析 ]3r,∴ OD=r,∴ CD = 3 CD =3,设 OC= r,∵ AD = 3DB,且 AD+ DB=2r,∴ AD =2 2 2 r ,∴ tanθ=OD θ∵ tanθ=2tan2 θ3,∴ tan =1- tan2θ 2 3 (负值舍去 ),2θ1∴tan22=3.( 理)3tan12 -°3= ________. 4cos212 °- 2 sin12 °[ 答案 ] - 4 3[ 解析 ]3tan12 -°3 = 3 sin12 -°3cos12 °4cos212°-2 sin12 ° 2cos24 sin12°cos12° °2 3sin 12 °- 60°3. = 1 =- 4三、解答题15. (文 )(2010 北·京理 )已知函数f(x)=2cos2x + sin 2x - 4cosx.π(1) 求 f(3)的值;(2) 求 f(x)的最大值和最小值.[ 解析 ] π 2π π π 3 9 (1) f( )= 2cos+ sin2- 4cos =- 1+-2=- .3 33344(2) f(x)=2(2cos 2 x - 1)+(1 -cos 2x)- 4cosx= 3cos 2x - 4cosx - 1= 3(cosx -23)2-73, x ∈ R因为 cosx ∈ [ - 1,1] ,所以当 cosx =- 1 时, f(x)取最大值 6;当 cosx =2时, f(x)取最小值-733.( 理)(2010 广·东罗湖区调研 )已知 a =(cosx +sinx , sinx), b = (cosx - sinx,2cosx),设 f(x)= a ·b. (1) 求函数 f(x)的最小正周期;(2) 当 x ∈ 0,π时,求函数 f(x)的最大值及最小值.2[ 解析 ] (1) f(x)= a ·b = (cosx + sinx) ·(cosx - sinx)+ sinx ·2cosx = cos 2x -sin 2x + 2sinxcosx= cos2x + sin2x = 2222 cos2x + 2 sin2xπ = 2sin 2x +4 .∴ f(x)的最小正周期 T = π.πππ 5π(2) ∵ 0≤ x ≤ ,∴ ≤ 2x + ≤ 4 ,2 4 4π π ππ 5π π∴当 2x +4= 2,即 x =8时, f(x)有最大值 2;当 2x + 4= 4 ,即 x =2 时, f(x)有最小值- 1.π16. (文 )设函数 f(x)= cos 2x + 3 + sin 2x.(1) 求函数 f(x)的最大值和最小正周期;1C1(2) 设 A 、 B 、 C 为△ABC 的三个内角,若 cosB =3, f(2 )=-4,且 C 为锐角,求 sinA 的值. [ 解析 ] (1) f(x)= cos 2x + π π π 1- cos2x 1 - 3 + sin 2x = cos2xcos - sin2xsin + = 2 sin2x ,3 3 3 2 2所以函数 f(x)的最大值为1+ 3,最小正周期为π.2(2) f(C )= 1- 3sinC =- 1,所以 sinC = 3π因为 C 为锐角,所以C = 3,在△ ABC 中, cosB =13,所以 sinB =2 3 2,所以 sinA = sin(B + C)= sinBcosC + cosBsinC= 2 2 1 1 × 3 = 22+ 33 × + 26 .2 3→ → → →( 理)已知角 A 、B 、 C 为△ABC 的三个内角, OM = (sinB + cosB , cosC), ON = (sinC , sinB - cosB), OM ·ON =1- 5.(1) 求 tan2A 的值;2A(2) 2cos 2- 3sinA - 1 的值.求π2sin A +4[ 解析 ]→ →(1) ∵OM ·ON = (sinB + cosB)sinC +1cosC(sinB - cosB)= sin(B + C)- cos(B + C) =- 5,∴ sinA + cosA =- 1①5两边平方并整理得: 2sinAcosA =- 24,25∵-24π, π ,25<0,∴ A ∈ 2∴ sinA - cosA = 1-2sinAcosA = 75②联立①②得: sinA = 3,cosA =- 4,∴ tanA =- 3, 5 5 4- 3∴ tan2A =2tanA2=224 . A =- 1-tan 1- 9 7163(2) ∵ tanA =- 4,A2cos 22 - 3sinA - 1 cosA -3sinA 1- 3tanA ∴ π= cosA +sinA =1+ tanA 2sin A +43=1-3× -4 = 13.-341+π点之间的距离为2.(1) 求 m 和 a 的值;π(2) 若点 A(x 0, y 0) 是 y = f( x)图象的对称中心,且 x 0∈ 0, 2 ,求点 A 的坐标. [ 解析 ] (1) f(x)= sin 2ax - 3sinaxcosax1- cos2ax3π 1= 2 - 2 sin2ax =- sin 2ax + 6 + 2,由题意知, m 为 f(x)的最大值或最小值,所以 m =- 12或 m =32,π 由题设知,函数f(x)的周期为,∴ a = 2,2所以 m =- 1或 m =3, a = 2. 2 2(2) ∵ f(x)=- sin 4x + π+1,6 2ππ∴令 sin 4x + 6 =0,得 4x +6= k π(k ∈ Z) ,∴ x = k π π-424(k ∈ Z),由 0≤ k π π π(k ∈ Z),得 k = 1 或 k = 2,4 -24≤2 因此点 A 的坐标为 5π 1 或 11π1 , ,24 2 24 2.( 理)(2010 广·东佛山顺德区检测 )设向量 a = (sinx,1), b = (1, cosx),记 f(x)= a ·b , f ′ (x)是 f( x)的导函数.(1) 求函数 F(x)= f(x)f ′ (x)+ f 2(x)的最大值和最小正周期;(2) 若 f(x)= 2f ′ (x),求1+ 2sin 2x的值.cos 2x - sinxcosx[ 解析 ] (1) f(x)= sinx +cosx ,∴ f ′( x)= cosx -sinx ,∴ F(x)= f(x)f ′ (x)+ f 2(x) = cos 2x -sin 2x + 1+2sinxcosx= cos2x + sin2x + 1= 1+ 2sin π2x +4 ,π π π ∴当 2x + = 2k π+ ,即 x = k π+ (k ∈ Z)时, F( x)max =1 + 2.428最小正周期为 T = 2π= π.2(2) ∵ f(x)= 2f ′ (x),∴ sinx+ cosx= 2cosx- 2sinx,∴cosx= 3sinx,∴ tanx=1,3∴1+ 2sin2x = 3sin2x+ cos2x = 3tan2x+ 1=2.cos2x-sinxcosx cos2x-sinxcosx 1- tanx。
三角恒等变换知识点归纳(可编辑修改word版)
α第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 ⑴ c os (- ) = cos cos + s in sin ;⑵ c os (+ ) = cos cos - s in sin ; ⑶ s in (-) = s incos - c os sin ;⑷ s in (+) = s incos + c os sin ;⑸tan (-)= tan - tan⇒ 1+ tan tan⑹tan (+ ) = tan + tan⇒1- tan tan( tan - tan = tan (- )(1+ tan tan ) );( tan + tan = tan (+ )(1- tan tan ) ).25、二倍角的正弦、余弦和正切公式: ⑴⇒ 1 ± s in 2= s in 2 + c os 2 ± 2 s incos = (sin± c os )2sin 2= 2 sincos.⑵ cos 2= cos 2- sin 2= 2 cos 2-1 = 1- 2 sin 2⇒ 升幂公式1 + cos = 2 cos 2 2 ⇒ 降幂公式cos 2cos 2+1,- cos = 2 s in 2221- cos 226、 =2万能公式:sin= .22 tan α 1 - tan 2 αsin α= 2 ; cos α=2 1 + tan 2 α 2 1 + tan 2 α 2tan 2=2 tan.1- tan227、半角公式:cos = ± 2 1+ cos α α ; sin ± 2 21- cos α2 tan α= 2⇒ (后两个不用判断符号,更加好用)28、合一变形 ⇒ 把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的y = A sin(x +) + B 形式。
A sin + B cos =(+) ,其中tan= B . A29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件, 灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1) 角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的A 2+ B 2,1= sin α = 1- cos α 1+ cos α sin α 1- cos α 1+ cos α3(差异,使问题获解,对角的变形如:①2是的二倍;4是2的二倍;是的二倍;是的二倍;o o o o o 30o2 2 4②15 = 45 - 30 = 60 - 45 = ;问:sin2 12 =;cos =12;③= (+) -;④+=4 2-) ;4⑤2= (+) + (-) = (4 +) -4-) ;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
高一三角恒等变换专题.docx
高一三角恒等变换专题1.两角和的余弦公式(简记C): coscos cossin sin(α+β)2.两角差的余弦公式(简记Cα β): coscos cossin sin( - ). .3.两角和(差)余弦公式的公式特征:①左加号,右减号;②同名函数之积的和与差;③α、 β叫单角, α±β叫复角,通过单角的正、余弦求和(差)的余弦值;④ “正用 ”、 “逆用 ”、“变用 ”.4.两角和的正弦公式(简记 S (α+β)): sin sin cos cos sin . 5.两角差的正弦公式(简记S (α- β)): sinsin coscos sin.6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同;②右方是异名函数之积的和与差,且正弦值在前,余 弦值在后.用途:可以由单角的三角函数值求复角(和角与差角)的三角函数值.7.两角和的正切公式(简记T ()tantan): tan().α+β1 tantan8.两角差的正切公式(简记Tα β): tan(tantan).( - )1 tan tan9.两角和(差)正切公式的公式特征及公式变形:①左边的运算符号与右边分子的运算符号相同,右边分子分母运算符号相反;②k , k , k2(k Z ) .22公式变形 :① tan tan tan( )(1 tan tan ) ;② tantan tan()(1 tantan ) .核心题型与高频考点1.若 tan() 1 =(),则 tan47( A )3( B ) 4( C )3 ( D ) 443432. sin 75o sin15 o 的值是()11A.B.423 C.23. sin 27 cos63 cos27 sin63( )A . 1B . 12 2C .D .4.已知角为第二象限角, sin3, 则 sin 2( )5121224D.24A.B.C.252525255.已知 sin x4 ( , ) ,则 tan(x) ( ), x52 41 B . 7C .17A.D .776.已知 sin 1 5 3,则 cos α- sin α的值为 ()α cos =α ,且4π <α<82A .-3 B .3 C .-3D .322447.已知 tan=2,, 则 3sin 2 -cos sin+1=?? (???? )8.式子 cos cos sin sin 的值为( )12 6 1261 B .2 3 D . 1A .2C .229.如果函数 y cos(ax) 的图象关于直线 x 对称,则正实数a 的最小值是 ()4A . a1 B . a1C . a3 D . a 142410.计算 sin15 0 sin 750 cos150 cos750A .3 B .1C .13D .3 1222211.若sin() cos( )=3 ,则 tan (π +α) =()sin() cos()( A )1(B ) 2( C ) 1( D ) -2212.已知 coscos1,sinsin1,cos()5913259 313 A.B .C .D .7272727213.已知函数 f ( x)cos(x) sin 2 (2x) , x R ,则 f (x) 的最大值为()3 5 2A .B .C . 1D . 2 24414.函数 g( x) 的图像是函数 f (x)sin 2 x3 cos2x 的图像向右平移个单位而得到的,则函数 g( x) 的图像的对称轴可以为()A. 直线x4B. 直线x3C. 直线x2D. 直线x615.已知( 0, ) ,且 sin cos 1的值为(),则 cos22A .77C.73 4B.4D.4416.在ABC 中,sin A 35(), cos B,则 cosC513A .16 或 56B.16 或- 56C.16 D .1665656565656517.设当 x= θ时,函数 f(x) = sinx- 2cosx 取得最大值,则cos θ = (???? )B.D.18.若是三角形的最小内角,则函数的最小值是()A. B. C. D.19.(本小题满分12 分)已知函数 f (x) sin(3 x) .4( 1)求f ( x)的单调递增区间;( 2)若是第二象限角, f ( )4cos()cos 2 ,求cos sin 的值.35420.已知函数 f ( x)2sin 2 x 2 3 sin x cos x1⑴求 f (x) 的最小正周期及对称中心;⑵若 x [, ] ,求 f ( x) 的最大值和最小值.6321.已知函数 f ( x) sin(2 x) cos(2x)2cos2 x .63(1)求 f ( )的值;12(2)求函数f (x)的单调区间;(3)函数f (x)的图像可由y sin x的图像如何变换得来,请详细说明.参考答案 1.( C )【解析】试题分析:由 tan() 1 所以 tan 1 1, tan 3 4 7 1 tan 74.故选( C ) .考点: 1.角的和差公式 .2.解方程的思想 .2.A【解析】试题分析: sin 75sin15cos15sin151 sin2 15 1 sin 30 1,选A224考点:诱导公式sin2cos ,二倍角公式3. A【解析】试题分析:根据两角和的公式, sin27 cos63cos27 sin63sin 27 063 0sin 9001 ,故选 A.考点:两角和的正弦公式4. C 【解析】试题分析:为第二象限角,所以cos4 , sin 2 2sin cos23 -4- 24 ,故选 C.55525考点: 1.同角基本关系式; 2.二倍角公式 .5. B【解析】434tan x tan试题分析:∵ sin x( , ) ,∴ cos xtan(x)47 .,, x,∴ tan x,∴525341 tan x tan4考点:平方关系、商数关系、两角差的正切 .6. B【解析】∵ 5 3π <α< ,∴ cos α>sin ,α42∴ cos α- sin α>0,23 又∵ (cos α- sin α)= 1-2cos αsin =α,4∴ cos α- sin α= 3 .27. A 【解析】3sin 2-cos sin+1=4sin 2 -cossin +cos 2==38. B试题分析:由两角和与差的余弦公式得cos cossin sincoscos26212612 612 4考点:三角恒等变换9. C 【解析】试题分析:由ax k ,当 x 时, a k1(kZ ) ,因为 a 0 ,所以当 k 1时,正数 a 取得最小值3,故选444C考点:三角函数的图像及其性质。
高考数学知识点:简单的三角恒等变换
高考数学知识点:简单的三角恒等变换一、半角公式(不要求记忆)
典型例题1:
二、三角恒等变换的常见形式
三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.
1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.
2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.
3、三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典型例题2:
三、三角函数式的化简要遵循“三看”原则
1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
3、三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
典型例题3:
四、三角函数求值有三类
1、“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
2、“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
3、“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
典型例题4:
三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y=Asin(ωx+φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.典型例题5:
【作者:吴国平】。
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
第四章 三角恒等变换(讲义+例题)(解析版)
第四章 三角恒等变换(讲义+例题)1.同角三角函数基本关系式22sin cos 1αα+=sin tan tan cot 1cos ααααα=⇒= ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin •,三式之间可以互相表示) 例1.已知α是第二象限,且1tan 3α=-,计算: (1)sin()25cos sin()πααπα+--; (2)2sin cos()cos .απαα++ 答案(1)316;(2)65. 【分析】(1)首先根据诱导公式化简,再上下同时除以cos α 后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值. 【详解】(1)原式cos 5cos sin ααα=-,上下同时除以cos α后,得11315tan 1653α==-+; (2)原式2222sin cos cos sin cos cos cos sin αααααααα-+=-+=+, 上下同时除以2cos α后,得211tan 16311tan 519αα+-+==++举一反三1.已知tan 2α=, 求:(1)sin 2cos sin cos αααα+-;(2)221sin sin cos 2cos αααα+-.答案.(1) 4 (2)54【分析】(1)分子分母同时除以cos α,化为tan 2tan 1αα+-可得答案.(2)将分子1写成22sin cos αα+,再分子分母同时除以2cos α,化为22tan 1tan tan 2ααα++-,可得答案. 【详解】 (1)sin 2cos tan 2224sin cos tan 121αααααα+++===---(2)2222221sin cos sin sin cos 2cos sin sin cos 2cos αααααααααα+=+-+- 2222tan 1215tan tan 22224ααα++===+-+-2. 两角和与差的正弦、余弦、正切公式: (1)βαβαβαcos sin cos sin )sin(+=+ (2)βαβαβαcos sin cos sin )sin(-=- (3)βαβαβαsin sin cos cos )cos(-=+ (4)βαβαβαsin sin cos cos )cos(+=- (5)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(6)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+22)a b αϕ++(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,2222sin tan baa b a b ϕϕϕ===++ ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-例2:(1).若1tan 2α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为( )A .1B .3C .5D .71.B 【分析】利用两角和的正切公式求解即可. 【详解】由tan tantan 14tan 41tan 1tan tan 4παπααπαα++⎛⎫+== ⎪-⎝⎭-⋅, 又1tan 2α=,原式1+1tan 12=311tan 1-2αα+==-. 故选:B.(2).sin140cos10cos40sin350︒︒+︒︒=( ) A .12B .12-C .32D .3 2.A 【分析】根据诱导公式和两角差的正弦公式进行化简,由此求得正确选项. 【详解】依题意,原式()1sin 40cos10cos 40sin10sin 4010sin 302=-=-==,故选A.本小题主要考查三角函数诱导公式,考查两角差的正弦公式,属于基础题. 3.求值: (1)7sin12π; (2)tan105︒. 答案.(1)264;(2)23- 【分析】(1)根据两角和的正弦公式,结合特殊角的三角函数值进行求解即可; (2)根据两角和的正切公式,结合特殊角的三角函数值进行求解即可. 【详解】 (1)7212326sinsin()sin cos cos sin 1243434322224πππππππ=+=+=+=; (2)tan 60tan 453tan105tan(6045)231tan 60tan 4513︒︒︒︒︒︒+︒=+===--- 【点睛】本题考查了两角和的正弦、正切公式,考查了特殊角的三角函数值,考查了数学运算能力. 举一反三1.sin115cos55cos115sin55︒︒︒︒-=( ) A 3B .22C .12D .22-答案.A 【分析】逆用两角差的正弦公式进行化简即可. 【详解】3sin115cos55cos115sin55sin 602︒︒︒︒︒-==.本题主要考查两角差的正弦公式,属于基础题. 2(多选).下列说法正确的是( ) A .sin15cos152sin 60︒+︒=︒B .()()()sin 15sin 15cos cos 15sin αβαβαβ+-︒=-︒+-︒C .()cos cos cos sin sin αβαβαβ+=+D .()tan tan tan 1tan tan αβαβαβ+-=-【答案】AB 【分析】利用辅助角公式以及两角和与差的正弦、余弦、正切公式即可求解. 【详解】对于A ,22sin15cos152sin15cos1522⎛⎫︒+︒=︒+︒ ⎪ ⎪⎝⎭()2sin 45152sin 60=︒+︒=︒,故A 正确;对于B ,由两角和的正弦公式,()()()sin 15sin 15cos cos 15sin αβαβαβ+-︒=-︒+-︒,故B 正确.对于C ,()cos cos cos sin sin αβαβαβ+=-,故C 错误. 对于D ,()tan tan tan 1tan tan αβαβαβ--=+,故D 错误.故选:AB3.如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α的终边与单位圆O 交于点A ,且点A 10.(1)求3cos 4απ⎛⎫- ⎪⎝⎭的值:(2)若以x 轴正半轴为始边的钝角β的终边与单位圆O 交于点B ,且点B 的横坐标为5求αβ+的值. 答案.(1)52)34αβπ+=【分析】(1)依题意,任意角的三角函数的定义可知,1010sin α=,进而求出310cos 10α= 在利用余弦的和差公式即可求出3cos 4απ⎛⎫-⎪⎝⎭. (2)根据钝角β的终边与单位圆交于点B ,且点B 的横坐标是5得出5cos β=,进而得出25sin β=利用正弦的和差公式即可求出()2sin αβ+=,结合α为锐角,β为钝角,即可得出αβ+的值. 【详解】解:因为锐角α的终边与单位圆交于点A ,点A 10所以由任意角的三角函数的定义可知,1010sin α=. 从而2310cos 1sin 10αα=-=.(1)于是333cos cos cos sin sin 444αααπππ⎛⎫-=+ ⎪⎝⎭ 310210251021025⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2)因为钝角β的终边与单位圆交于点B ,且点B 的横坐标是55-所以5cos 5β=-,从而225sin 1cos ββ=-= 于是()sin sin cos cos sin αβαβαβ+=+1053102522⎛=+ ⎝⎭. 因为α为锐角,β为钝角,所以3,22ππαβ⎛⎫+∈ ⎪⎝⎭从而34αβπ+=. 【点睛】本题本题考查正弦函数余弦函数的定义,考查正弦余弦的两角和差公式,是基础题.3,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a b b a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x例3:1.已知1cos 63x π⎛⎫-= ⎪⎝⎭,则cos cos 3x x π⎛⎫+-= ⎪⎝⎭( )A 3B 3C .12D .33答案.D【分析】根据题中条件,由两角差的余弦公式化简整理所求式子,即可得出结果. 【详解】 因为1cos 63x π⎛⎫-= ⎪⎝⎭, 所以33cos cos cos cos cos sin sin cos sin 33322x x x x x x x πππ⎛⎫+-=++=+ ⎪⎝⎭ 33cos 63x π⎛⎫=-=⎪⎝⎭. 故选:D. 【点睛】本题主要考查根据两角差的余弦公式化简求值,属于基础题型. 2.化简31cos15cos 7522︒-︒=______. 2【分析】 化简可得:31cos 75sin 60cos15cos 60sin15sin 4522︒-︒=-=,根据特殊值即可得解. 【详解】31cos15cos75sin 60cos15cos60sin15222sin(6015)sin 452︒-︒=-=-==故答案为:22【点睛】本题考查三角函数的化简求值,考查了正弦的两角差公式,考查了计算能力,属于基础题. 举一反三1.化简:(13cos x x +;(22(sin cos )x x -. 答案.(1)2cos 3x π⎛⎫- ⎪⎝⎭;(2)2cos 4x π⎛⎫-+ ⎪⎝⎭. 【分析】逆用两角和与差的正弦函数公式变形即可. 【详解】(1)原式312cos 22x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin sin cos cos 33x x ππ⎛⎫=+ ⎪⎝⎭2cos 3x π⎛⎫=- ⎪⎝⎭.(2)原式222x x ⎫=-⎪⎝⎭2sin sin cos cos 44x x ππ⎛⎫=- ⎪⎝⎭2cos 4x π⎛⎫=-+ ⎪⎝⎭.【点睛】本题主要考查两角和与差的余弦公式的应用,属于基础题. 2.已知函数()3sin cos f x x x +. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π,π6⎡⎤-⎢⎥⎣⎦上的最大值.”解答:(1)因为()3sin cos f x x x =+,所以()312cos 22f x x x ⎛⎫=+ ⎪ ⎪⎝⎭ππ2sin cos cos sin 66x x ⎛⎫=+ ⎪⎝⎭π2sin 6x ⎛⎫=+ ⎪⎝⎭.所以2π2π1T ==. 所以函数()f x 的最小正周期是2π.(2)因为ππ6x -≤≤, 所以π7π066x ≤+≤. 所以当ππ62x +=时,函数πsin 6y x ⎛⎫=+ ⎪⎝⎭的最大值是1.所以当π3x =时,函数()f x 的最大值是2.4.二倍角公式(1)a a a cos sin 22sin =(2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2aa -=升幂公式(1)2cos 2cos 12αα=+ (2)2sin 2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin2sin ααα=例4:1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425- B .725-C .7-D .17-2.D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-, 所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细. 2.(多选)下列各式中,值为12的是( ) A .22cossin 1212ππ-B .2tan 22.51tan 22.5- C .2sin195cos195D .1cos62π+【答案】BC 【分析】由正弦、余弦与正切的二倍角公式计算求值即可. 【详解】选项A ,223cos sin cos 2cos 1212126ππππ⎛⎫-=⨯==⎪⎝⎭,错误; 选项B ,22tan 22.512tan 22.511tan 451tan 22.521tan 22.522=⋅==--,正确; 选项C ,()()12sin195cos1952sin 18015cos 180152sin15cos15sin 302=++===,正确;选项D 31cos 1236222π+++==,错误.故选:BC 【点睛】本题考查由正弦、余弦与正切的二倍角公式计算求值,属于基础题. 3.已知:2()2cos 32f x x x a =++(a R ∈,a 为常数). (1)若x ∈R ,求()f x 的最小正周期; (2)若()f x 在[6π-,]4π上最大值与最小值之和为3,求a 的值.22.(1)π;(2)0 【分析】(1)利用二倍角和辅助角公式化简,即可求出最小正周期; (2)根据x 在[6π-,]4π上,求解内层函数范围,即可求解最值,由最大值与最小值之和为3,求a 的值. 【详解】解:2()2cos 32f x x x a =++3sin 2cos21x x a =+++2sin(2)16x a π=+++,(1)()f x ∴的最小正周期222T πππω===; (2)[,]64x ππ∈-,22[,]663x πππ∴+∈-,当ππ266x 时,即6x π=-,()f x 取得最小值为2sin()16a a π-++=,当262x ππ+=时,即6x π=,()f x 取得最大值为2sin()132a a π++=+, 最大值与最小值之和为3,33a a ∴++=,0a ∴=, 故a 的值为0. 【点睛】本题主要考查三角函数的性质和图象的应用,属于基础题.举一反三1.22cos 30sin 30-的值是( ) A .12- B .12C .3D 34.B 【分析】根据二倍角的余弦公式可得结果. 【详解】22cos 30sin 30-=cos 6012=. 故选:B 【点睛】本题考查了二倍角的余弦公式,属于基础题.2.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( ) A .53B .23 C .13D 5 .A 【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又25(0,),sin 1cos 3απαα∈∴=-=. 故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.3.已知α ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B .55 C .33D .2557.B 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.4.设向量()()2,sin ,1,cos a b θθ==,其中θ为锐角.()1若136a b ⋅=,求sin cos θθ+的值;()2若//a b ,求cos2θ的值.答案.(1)233;(2)35-【解析】 【分析】(1)根据向量的数量积和三角函数的关系,即可求出; (2)根据向量的平行和同角的三角函数的关系,即可求出. 【详解】()1向量()()2,,1,a sin b cos θθ==,13216a b sin cos θθ∴⋅=⨯+=, 16sin cos θθ∴=,214()12133sin cos sin cos θθθθ∴+=+=+=, θ为锐角,0sin θ∴>,0cos θ>,23sin cos θθ∴+=. ()2//a b ,2221cos sin sin cos θθθθ∴=+=,2241cos cos θθ∴+=,215cos θ∴=,223221155cos cos θθ∴=-=-=-【点睛】本题考查了向量的数量积和向量与平行的关系,以及三角函数的化简,属于基础题. 5.已知向量2(cos ,sin )m x a x =,(3,cos )n x =-,函数3()2f x m n =⋅-. (1)若1a =,当[0,]2x π∈时,求()f x 的值域; (2)若()f x 为偶函数,求方程3()4f x =-在区间[,]-ππ上的解. 答案.(1)3[]-;(2)75,1212x ππ=±±. 【分析】(1)将()f x 化为()cos(2)6f x x π=+,然后可得答案; (2)由()f x 为偶函数可求出0a =,然后可得答案.(1)233()3sin cos 2sin 22a f x x a x x x x =--=- 当1a =,31()cos 2sin 2cos(2)226f x x x x π=-=+ 由73[0,],2[,],cos(2)[1,]266662x x x πππππ∈∴+∈∴+∈- 所以()f x 的值域为3[]-(2)若()f x 为偶函数,则()()f x f x -=恒成立即332sin 22sin 22222a a x x x x +=-成立,整理得sin 20,0a x a =∴= 所以由33()cos 224f x x ==-得3cos 22x =-又752[2,2],,1212x x ππππ∈-∴=±±5 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=补充. 万能公式(用的不多,了解一下): (1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=例5:1.若()4tan 3πα+=-,α是第二象限角,则1sin sin 22παπα=+-⋅( ) A .35B .3C .5D .53【答案】C 【解析】由题知43sin ,cos 55αα==-,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为()4tan tan 3παα+==-,α是第二象限角,所以43sin ,cos 55αα==-,所以1122531cos sin sin coscos122225παπαααα====+-+⎛⎫⋅⋅+- ⎪⎝⎭. 故选:C 2.若3sin 5θ=,532πθπ<<,则tan 2cos 22θθ+=____________. 【答案】1035-##15105- 【解析】 【分析】先利用同角三角函数的关系求出cos θ,再利用半角公式求出cos 2θ,sin2θ,从而可求出tan2θ,进而可求得答案【详解】 因为3sin 5θ=,532πθπ<<, 所以294cos 1sin 1255θθ=-=-=-, 因为532πθπ<< 所以53422πθπ<<, 所以411cos 105cos222θθ-+=-=411cos 3105sin 222θθ+-==-=, 所以sin 2tan32cos2θθθ==, 所以10tan2cos322θθ+=故答案为:1035-3.已知函数()2sin cos cos ,R f x x x x x =⋅+∈.(1)求函数f (x )的最小正周期; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数f (x )的值域.【答案】(1)π; (2)210,2⎡⎤+⎢⎥⎢⎥⎣⎦. 【解析】 【分析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期; (2)求出24x π+的范围,进而结合三角函数的性质求得答案.(1)()11cos 221sin 2sin 222242x f x x x π⎛⎫+=+=++ ⎪⎝⎭,∴函数()f x 的最小正周期为π. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,2sin 2,142x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦, ∴()210,2f x ⎡⎤+∈⎢⎥⎣⎦,即函数的值域为210,2⎡⎤+⎢⎥⎢⎥⎣⎦.举一反三1.已知1sin23α=,则2cos 4πα⎛⎫+ ⎪⎝⎭=( )A .16B .13C .23D .122【答案】B 【解析】 【分析】利用半角公式和诱导公式进行求解. 【详解】∴1sin23α=,∴2π11cos 21π1sin2123cos 42223ααα⎛⎫++-⎪-⎛⎫⎝⎭+==== ⎪⎝⎭. 故选:B .2.已知7sin cos 5αα+=,且α是第一象限的角,则tan 2α=______. 【答案】13或12【解析】【分析】根据同角三角函数关系,建立方程求出sinα,cosα的值,结合正切函数的公式进行求解即可. 【详解】解:∴α是第一象限角,7sin cos 5αα+=, ∴7sin cos 5αα=-+平方得2221449sin cos cos 1cos 525αααα=-+=-, 得214242cos cos 0525αα-+=,即46cos 2cos 055αα⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,则3cos 5α=或4cos 5α=,当3cos 5α=时,4sin 5α,则311cos 15tan 42sin 25ααα--===. 当4cos 5α=时,3sin 5α=,则411cos 15tan 32sin 35ααα--===, 即1tan22α=或13. 故答案为:12或13.3.已知2sin 24cos 2αα=-.(1)若α在第二象限,求cos2sin αα+的值;(2)已知0,2πβ⎛⎫∈ ⎪⎝⎭,且23tan 2tan 30ββ+-=,求()tan 2αβ+的值.【答案】(1)2535- (2)17【解析】 【分析】(1)根据题意,结合半角公式得tan 2α,故25sin α=5cos α=公式计算即可.(2)由题知tan 23β=,再结合正切的和角公式求解即可. (1)解: 2sin 212cos 2cos 2ααα⎛⎫=-=- ⎪⎝⎭,∴tan 2α∴α在第二象限,∴25sin α=5cos α=,∴2253cos 2sin 2cos 1sin αααα-+=-+=(2)解:()2222tan 3tan 2tan 302tan 31tan 31tan ββββββ+-=⇒=-⇒=-∴tan 23β=,()tan tan 2231tan 21tan tan 21237αβαβαβ+-++===-+⨯。
高中数学必修一三角恒等变换概念知识点总结及练习题
高中数学必修一三角恒等变换概念知识点总结及练习题本文将总结高中数学必修一中与三角恒等变换相关的概念知识点,并提供一些相关练题供学生练。
三角恒等变换的概念三角恒等变换是指对三角函数中的角度进行等价变换,得到相等的结果。
常见的三角恒等变换有以下几种:1. 反函数关系:正弦和余弦的反函数关系为:$$\sin(\theta) = \cos(\frac{\pi}{2}-\theta)\quad \cos(\theta) =\sin(\frac{\pi}{2}-\theta)$$正切和余切的反函数关系为:$$\tan(\theta) = \cot(\frac{\pi}{2}-\theta)\quad \cot(\theta) =\tan(\frac{\pi}{2}-\theta)$$2. 二倍角公式:正弦和余弦的二倍角公式为:$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$正切的二倍角公式为:$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$3. 半角公式:正弦和余弦的半角公式为:$$\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1-\cos(\theta)}{2}}$$ $$\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1+\cos(\theta)}{2}}$$ 正切的半角公式为:$$\tan(\frac{\theta}{2}) = \frac{1-\cos(\theta)}{\sin(\theta)}$$练题1. 已知 $\sin(\alpha) = \frac{3}{5}$,求 $\cos(\alpha)$ 的值。
2. 求证 $\cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)$。
三角函数恒等变换知识点和习题(含答案)教师版
三角函数恒等变换知识点和习题(含详解答案)一.要点精讲1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.半角公式2cos 12sinαα-±=2cos 12cosαα+±=αααcos 1cos 12tan+-±=(αααααsin cos 1cos 1sin 2tan-=+=)4.(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。
(αα2cos 1sin22-= αα2cos 1cos 22+=)(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中5.三角函数式的化简、求值、证明(1)三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
(2)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(3)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
二.典例解析题型1:巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),例1:(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____(答:322); (2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729);(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)题型2:三角函数名互化(切化弦)例2(1)求值sin 50(1)o o(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)题型3:公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文档2两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β): cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C (α+β): cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β): sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β): sin(α-β)=sin_αcos_β-cos_αsin_β;tan α+tan β(5) T (α+β):tan(α+β)=1-tan αtanβ; tan α-tan β(6) T (α-β):tan(α-β)=1+tan αtan β. 2.二倍角的正弦、余弦、正切公式(1) S 2α:sin 2α=2sin_αcos_α;(2) C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;2tan α(3) T 2α:tan 2α=1-tan2α. 3.有关公式的逆用、变形等(1) tan α±tan β=tan(α±β)(1∓tan_αtan_β);1+cos 2α 1-cos 2α (2) cos 2α= 2 ,sin 2α= 2 ;(3) 1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,π(α±)sin α±cos α= sin 4 .4.函数 f (α)=a cosα+b sinα(a ,b 为常数),可以化为 f (α)= a 2+b 2sin(α+φ)或 f (α)= a 2+b 2cos(α-φ),其中 φ 可由 a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=实用标准文档α+β α-β α-β (α+β) (α+β)2 - 2; 2 =2 - 2 .(2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦” 、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测11.(人教 A 版教材习题改编)下列各式的值为4的是().π A .2cos 212-1B .1-2sin 275°2tan 22.5°C.1-tan222.5° D .sin 15°cos 15°sin 2α2.(2011·福建)若 tan α=3,则 cos2α 的值等于( ).23.已知 sin α=3,则 cos(π-2α)等于().π 14.(2011·辽宁)设 sin ( 4+θ)=3,则 sin 2θ=().5.tan 20°+tan 40°+ 3tan 20° tan 40°=.考向一 三角函数式的化简12cos4x -2cos2x +π π2 【例 1】►化简2tan ( 4 -x )sin2( 4 +x ).[审题视点] 切化弦,合理使用倍角公式.β 1 α 2三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.sin α+cos α-1sin α-cos α+1【训练 1】 化简:sin 2α.考向二 三角函数式的求值π【例 2】►已知 0<β< 2 <α<π,且(α- ) (-β)cos2 =-9,sin 2 =3,求 cos(α+β)的值.【训练 2】 已知 α,β∈( )三角函数的给值求值,关键是把待求角用已知角表示:(1) 已知角为两个时,待求角一般表示为已知角的和或差.(2) 已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.π4 1(0,2 ),sin α=5,tan(α-β)=-3,求 cosβ 的值.考向三 三角函数的求角问题1 13 π【例 3】►已知 cos α=7,cos(α-β)=14,且 0<β<α< 2 ,求 β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;0, π若角的范围是 2 ,选正、余弦皆可;若角的范围是(0,π),选余弦较好;π π (- 2 ,2 )若角的范围为 ,选正弦较好. π π(- ,)【训练3】 已知 α,β∈ 2 2 ,且tanα,tan β 是方程x 2+3 3x +4=0 的两个根,求 α+β 的值.π考向四三角函数的综合应用【例 4】►(2010·北京)已知函数f(x)=2cos 2x+sin2x.( 3)(1)求f的值;(2)求f(x)的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y=A sin(ωx+φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练 4】已知函数f(x)=2sin(π-x)cos x. (1)求f(x)的最小正周期;[6 ] 2(2)求f(x)在区间ππ-,上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法.一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.(x+π)tan x【示例】►(2011·江苏)已知tan 4 =2,则tan 2x的值为.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.1 1 【示例】►(2011·南昌月考)已知tan(α-β)=2,tan β=-7,且α,β∈(0,π),求2α-β的值.( 互相垂直,其中 θ∈ 2 )▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容, 常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量 a =(sin θ,-2)与 b =(1,cos θ)π 0,.(1) 求 sin θ 和 cos θ 的值;π(2) 若 5cos(θ-φ)=3 5cos φ,0<φ< 2 ,求 cos φ 的值.【课后训练】A 组 专项基础训练 (时间:35 分钟,满分:57 分)一、选择题(每小题 5 分,共 20 分)22π ( )3 3tan 12°-311. (2012·江西)若 tan θ+tan θ=4,则 sin 2θ 等于( )1A.51B.4 1C.3 1D.22. (2012·大纲全国)已知 α 为第二象限角,sin α+cos α= 3 ,则 cos 2α 等于()55 5 5 A .- 3B .- 9C. 9D. 35103. , 则 α+β 等于C. 4 和 4(0, )D .- 4 和-414. (2011·福建)若 α∈()A. 22 ,且 sin 2α+cos 2α=4,则 tan α 的值等于B. 3C.D.二、填空题(每小题 5 分,共 15 分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于.6.4cos212°-2sin 12°=.3 3 0,π7.sin α=5,cos β=5,其中 α,β∈ 2 ,则 α+β=.三、解答题(共 22 分)1+sin α 1-sin α 8. (10 分)已知集合.1-sin α- 1+sin α=-2tan α,试确定使等式成立的 α 的取值3 3已知 α,β 都是锐角,若 sin ()α= 5 , s in β= 10 π 3πA.4 π 3πB. 4π3π3π αα( ,π) 69. (12 分)已知 α∈ 2,且 sin 2 +cos 2 = 2. (1) 求 cos α 的值; (π)(2)若 s in(α-β)=-5,β∈4 1 (-3)2,π ,求 cos β 的值. 4 3+3 =- 2 ×5+2× 5 =- 10 .B 组 专项能力提升 (时间:25 分钟,满分:43 分)一、选择题(每小题 5 分,共 15 分)3( ) 5[π,π]1. (2012·山东)若 θ∈ 4 ( )3A.5 2 ,sin 2θ=4B.5 3 8 ,则 sin θ 等于C. 4D.42 (β-π)1(α+π)2. 已知 tan(α+β)=5,tan ()4 =4,那么 tan 4 等 于1313 A.18 3 B.22 1 C.22ππD.63. 当- 2 ≤x ≤ 2 时,函数 f (x )=sin x + A. 最大值是 1,最小值是-11B. 最大值是 1,最小值是-2C. 最大值是 2,最小值是-2D. 最大值是 2,最小值是-13cos x 的( )二、填空题(每小题 5 分,共 15 分)(π-α)4. 已知锐角 α 满足 cos 2α=cos 4 ,则 sin 2α=. cos 2απ12(0,π) sin (π+α)5. 已知 cos ( 4 -α)=13,α∈4 ,则 4 =.0,π 2sin2x +1 6. 设 x ∈ 2 ,则函数 y = sin 2x 的最小值为 .三、解答题7. (13 分)(2012·广东)已知函数 f (x )=2cos为 10π.(ωx +π) 6 (其中 ω>0,x ∈R )的最小正周期(1) 求 ω 的值;π 56[0, ] (5α+ π) (5β- π) (2)设 α,β∈2 ,f3 =-5,f63 7 7实用标准文档16=17,求 cos(α+β)的值.文案大全“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。