高中数学不等式证明的常用方法经典例题
高中不等式经典例题
高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
高三数学不等式解法15个典型例题doc
高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
高中不等式证明练习题及参考答案
高中不等式证明练习题及参考答案高中不等式证明练习题及参考答案不等式证明是可以作文练习题经常出现的,这类的练习题是的呢?下面就是店铺给大家整理的不等式证明练习题内容,希望大家喜欢。
不等式证明练习题解答(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。
1.实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是(0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
不等式证明三法例析
不等式证明“三法”例析不等式是高中数学的重要内容,而不等式的证明是不等式内容的重要组成部分,因此,同学们需要熟练掌握不等式证明的常用方法。
本文总结了常见的不等式证明的三种方法,并用具体的例题加以说明,希望对同学们的学习有所帮助。
一、综合法综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点“由因导果”,即从“已知”看“可知”,逐步推向“未知”。
例1 已知a ,b ,c>0,1c b a =++,求证18c4b 2a 1≥++。
证明:∵a+b+c=1, ∴18abc 3abc83)c b a )(c 4b 2a 1(c 4b 2a 133=⋅≥++++=++ ∴18c4b 2a 1≥++。
点评:①用综合法证明不等式时,要注意应用重要不等式和不等式的性质,要注意公式应用的条件及等号成立的条件;②原题实际上可以加强,改为证明18c4b 2a 1>++,因为在上述证明过程中当且仅当c 4b 2a 1==,且a=b=c=31时,等号成立,而当a=b=c=31时c4b 2a 1≠≠,所以等号取不到。
二、分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件进而判定这些条件是否具备。
其思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
例2 已知a>1,λ>0,求证)2a (log )a (log a a λλλ+>++。
证明:∵a>1,λ>0∴0a lg >,0)a lg (>+λ,0)2a lg (>+λ)2a lg(a lg )]a [lg()a lg()2a lg(a lg )a lg()2a (log )a (log 2a a λλλλλλλλ+⋅>+⇔++>+⇔+>++)2a lg(a lg )a lg(λλ+⋅>+⇔ ∵)2a lg(a lg 2)2a lg(a lg λλ+⋅>++ ∴若能证明2)2a lg(a lg )a lg(λλ++>+,即可证明结论∵0)2a (a )a (22>=+-+λλλ∴)2a (a )a (2λλ+>+∴)2a lg (a lg )a lg (2λλ++>+,2)2a lg(a lg )a lg(λλ++>+综上所述,可得)2a (a lg )a (log a λλλ++>+三、比较法 比较法有求差比较法(也叫比差法)和求商比较法(也叫比商法)两种,它们的理论依据分别是:①0b a b a >-⇔>,0b a b a <-⇔<;②当a>0,b>0时,1ba b a >⇔>,1b a b a <⇔<。
高中不等式证明例题(一题多解)
多种方法证明高中不等式例1证明不等式n n2131211<++++(n ∈N *)证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立.综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值. 解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.例3 已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα例4.已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6证明:(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ]=31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.例5.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]例6 .证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zyx y x z x z y +++++≥2(z y x 111++))()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z yx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.例7.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA in>n iA i m (1<i ≤m ),而C i m=!A C ,!A i i i ni n i m =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.例8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1. 证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0 ① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-② 将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3=(a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。
不等式的证明方法经典例题
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
不等式证明19个典型例题
不等式证明19个典型例题典型例题一例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明.解法1 (1)当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---=0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a +--=[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a,所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab b a b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:ba ab ba ab b aba baba b a ---=⋅=)(∵0>>b a ,∴.0,1>->b a ba∴1)(>-ba ba. ∴abb aba b a .1>又∵0>ab b a , ∴.abbab a b a >.说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a ba b ++≥(当且仅当a b =时取等号)分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。
(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。
证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。
∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。
各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。
∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。
∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。
不等式证明的基本方法 经典例题透析
经典例题透析类型一:比较法证明不等式1、用作差比较法证明下列不等式:(1);(2)(a,b均为正数,且a≠b)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式分解。
证明:(1)当且仅当a=b=c时等号成立,(当且仅当a=b=c取等号).(2)∵a>0, b>0, a≠b,∴a+b>0, (a-b)2>0,∴,∴.总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。
举一反三:【变式1】证明下列不等式:(1)a2+b2+2≥2(a+b)(2)a2+b2+c2+3≥2(a+b+c)(3)a2+b2≥ab+a+b-1【答案】(1)(a2+b2+2)-2(a+b)=(a2-2a+1)+(b2-2b+1)=(a-1)2+(b-1)2≥0∴a2+b2+2≥2(a+b)(2)证法同(1)(3)2(a2+b2)-2(ab+a+b-1)=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)=( a-b)2+(a-1)2+(b-1)2≥0 ∴2(a2+b2)≥2(ab+a+b-1),即a2+b2≥ab+a+b-1【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)2【答案】ax2+by2-(ax+by)2=ax2+by2-a2x2-b2y2-2abxy=a(1-a)x2+b(1-b)y2-2abxy=abx2+aby2-2abxy=ab(x-y)2≥0∴ax2+by2≥(ax+by)22、用作商比较法证明下列不等式:(1)(a,b均为正实数,且a≠b)(2)(a,b,c∈,且a,b,c互不相等)证明:(1)∵a3+b3>0, a2b+ab2>0.∴,∵a, b为不等正数,∴,∴∴(2)证明:不妨设a>b>c,则∴所以,总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形判定商式大于1或等于1或小于1结论。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。
证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。
∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。
证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。
证明:左边-右边=2(ab+bc-ac)。
∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。
∴a+c—b 〉0。
∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。
高中数学解解不等式的常用技巧和方法
高中数学解解不等式的常用技巧和方法在高中数学学习中,不等式是一个重要的知识点,也是考试中常常出现的题型。
解不等式需要我们掌握一些常用的技巧和方法,本文将介绍一些常见的解不等式的技巧,并通过具体的例题加以说明。
一、一元一次不等式一元一次不等式是最简单的不等式形式,其解法与一元一次方程类似。
我们以以下例题为例:例题1:解不等式2x + 1 > 5。
解法:首先将不等式转化为等价的形式:2x + 1 - 5 > 0,化简得2x - 4 > 0。
然后解这个一元一次方程,得到x > 2。
所以不等式2x + 1 > 5的解集为x > 2。
这个例题中的关键是将不等式转化为等价的形式,然后通过解方程的方法得到解集。
这是解一元一次不等式的常用技巧。
二、一元二次不等式一元二次不等式是高中数学中较为复杂的不等式形式,我们需要通过一些特殊的方法来解决。
以下是一个例题:例题2:解不等式x^2 - 4x + 3 > 0。
解法:首先我们需要求出不等式的零点,即将不等式转化为等式x^2 - 4x + 3 = 0。
通过因式分解或配方法,我们得到(x - 1)(x - 3) > 0。
然后我们需要绘制函数图像来确定不等式的解集。
绘制函数y = x^2 - 4x + 3的图像,我们可以发现函数的零点为x = 1和x = 3,这两个点将实数轴分成了三个区间:(-∞, 1),(1, 3),(3, +∞)。
然后我们取每个区间内的一个测试点,例如选取x = 0,2,4。
将这些测试点代入原不等式,我们可以得到以下结果:当x = 0时,左边为3,右边为0,不满足不等式;当x = 2时,左边为-1,右边为0,不满足不等式;当x = 4时,左边为3,右边为0,满足不等式。
根据测试点的结果,我们可以得到不等式的解集为x < 1或x > 3。
这个例题中的关键是通过绘制函数图像和选取测试点的方法确定不等式的解集。
关于证明不等式的高考题
1、已知a, b ∈ R,且a + b = 1。
求证:3a + 3b < 4。
以下哪个选项是正确的推导步骤?A. 利用均值不等式,得到3a + 3b ≥ 2√(3a * 3b)B. 直接计算3a + 3b的值C. 利用指数函数的性质,得到3a + 3b > 4D. 通过代入a + b = 1,化简得到3a + 3b < 4(答案:A,后续需进一步推导至D的结论)2、设x, y > 0,且x + y = 4。
下列不等式中正确的是:A. x2 + y2 ≥ 8B. √(xy) ≥ 2C. 1/(x + 1) + 1/(y + 1) ≤ 1/2D. x3 + y3 ≥ 64(答案:A)3、若a, b, c > 0,且a + b + c = 1,则下列不等式成立的是:A. a2 + b2 + c2 ≥ 1/3B. abc ≥ (1/3)3C. 1/(a + b) + 1/c ≥ 4D. √a + √b + √c ≤ 1(答案:A)4、设x > 1,y > 1,且xy = 4。
下列不等式正确的是:A. x + y ≥ 4B. x + y ≤ 4C. 1/x + 1/y ≥ 1D. 1/x + 1/y ≤ 1/2(答案:C)5、已知a, b > 0,且a + b = 2。
下列不等式中正确的是:A. a3 + b3 ≥ 8B. ab ≥ 1C. 1/a + 1/b ≤ 2D. √(a2 + b2) ≤ 2(答案:D)6、设x, y ∈ R,且xy ≠ 0。
若|x| + |y| = 2,则下列不等式恒成立的是:A. x2 + y2 ≥ 2B. 1/x2 + 1/y2 ≥ 1C. |x + y| ≥ 2D. |x - y| ≤ 2(答案:A)7、已知a, b, c ∈ R,且a - b = b - c = 1/2。
则下列不等式中正确的是:A. a2 + b2 + c2 ≥ 3/2B. ab + bc + ca ≥ -1/4C. a + b + c ≤ 3/2D. |a| + |b| + |c| ≥ 3/2(答案:B,注意此题需利用平方和与平方差公式进行推导)8、设x > 0,y > 0,且x + y = 5。
高中数学证明不等式的九种常用方法
ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1
①
∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
八种方法解决高中数学不等式问题
八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。
【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。
建议从数形结合角度理解。
【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。
【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。
【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。
【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。
高中数学证明不等式之泰勒展式和拉格朗日中值定理
证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x .(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的3阶泰勒展开式为:1+x +12x 2+16x 3,∴e x ≥1+x +12x 2+16x 3,①由(2)知:当x ≥0时,sin x ≥x -16x 3,∴当x ≥0时,e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②由(2)知:当x <0时,sin x <x -16x 3,∴e x +sin x +cos x ≥2+x +16x 3+sin x >2+2sin x ,令m x =sin x -x x <0 ,则m x =cos x -1≤0,∴m x 在-∞,0 上单调递减,∴m x >m 0 =0,即当x <0时,sin x >x ,∴2+2sin x >2+2x ,∴e x +sin x +cos x >2+2x ;综上所述:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π26【解析】(1)①由题意得:f x =ln a 1-x e -x +a cos x ,因为x =0为函数f x 的极值点,所以,f 0 =ln a +a =0,令g x =ln x +x x >0 ,则g x =1x+1>0,g x 在(0,+∞)上单调递增.因为g 1 =1>0,g 12=ln 12+12=ln e 2<0,所以g x =ln x +x 在12,2上有唯一的零点a ,所以12<a <1;②由①知:ln a =-a ,f x =a sin x -xe -x ,f x =a cos x -1-x e -x ,(i )当x ∈-∞,0 时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1,得f x <0,所以f x 在-∞,0 上单调递减,f x >f 0 =0,所以f x 在区间-∞,0 上不存在零点;(ii )当x ∈0,π 时,设h x =cos x -1-x e -x ,则h x =2-x e -x -sin x .(a )若x ∈0,π2,令m x =2-x e -x -sin x ,则m x =x -3 e -x-cos x <0,所以m x 在0,π2上单调递减,因为m 0 =2>0,m π2 =2-π2 e -π2-1<0,所以存在a ∈0,π2,满足m a =0,当x ∈0,a 时,m x =h x >0,h x 在0,a 上单调递增;当x ∈a ,π2时,m x =hx <0,h x 在a ,π2 上单调递减;(b )若x ∈π2,2,令φx =2-x e -x ,x ∈π2,2 ,则φ x =x -3 e -x <0,所以φx 在区间π2,2上单调递减,所以φx <φπ2=2-π2 e -π2<1e,又因为sin x ≥sin2=sin π-2 >sin π6=12,所以h x =2-x e -x -sin x <0,h x 在π2,2上单调递减;(c )若x ∈2,π ,则h x =2-x e -x -sin x <0,h x 在2,π 上单调递减.由(a )(b )(c )得,h x 在0,a 上单调递增,h x 在a ,π 单调递减,因为h a >h 0 =0,h π =π-1 e -π-1<0,所以存在β∈a ,π 使得h β =0,所以,当x ∈0,β 时,f x =h x >0,f x 在0,β 上单调递增,f x >f 0 =0,当x ∈β,π 时,f x =h x <0,f x 在β,π 上单调递减,因为f β >f 0 =0,f π <0,所以f x 在区间β,π 上有且只有一个零点.综上,f x 在区间-∞,π 上的零点个数为2个;(2)因为sin x x =1-x 2π21-x 24π21-x 232π2 ⋅⋅⋅1-x 2n 2π2,(*)对cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅,两边求导得:-sin x =-x 1!+x 33!-x 55!+⋅⋅⋅+-1 n x 2n -12n -1 !+⋅⋅⋅,sin x =x 1!-x 33!+x 55!+⋅⋅⋅+-1 n -1x 2n -12n -1 !+⋅⋅⋅,所以sin x x =1-x 23!+x 45!+⋅⋅⋅+-1 n -1x 2n -22n -1 !+⋅⋅⋅,(**)比较(*)(**)式中x 2的系数,得-13!=-1π2112+122+132+⋅⋅⋅+1n2+⋅⋅⋅所以112+122+132+⋅⋅⋅+1n2+⋅⋅⋅=π26.11.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.【解析】依题意,用前5项计算,即cos0.3≈1-0.322!+0.344!-0.366!+0.388!≈1-0.045+0.0003375-0.0000010125+0.00000000163≈0.95533648.与用前三项计算cos0.3的结果比较可以发现,用前5项计算的结果精确度更高,同时可知,当取的项数足够多时,可以达到更高的精确度,甚至达到任意精确度的要求.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x0附近的函数值.据此计算f(x)=e x在x0=0处的3次泰勒多项式为T3(x)=_________;f(x)=-1x在x0=-1处的10次泰勒多项式中x3的系数为_________【答案】1+x+x22+x36330【解析】∵f(x)=e x,∴f(n)(x)=e x,f(n)(0)=1,n∈N∗∴T3(x)=f(0)+(x-0)+12!(x-0)2+13!(x-0)3,∴T3(x)=1+x+x22+x36;∵f(x)=-1x,∴f(x)=x-2,f(2)(x)=-2x-3,f(3)(x)=(3!)x-4,⋯,f(9)(x)=(9!)x-10,f(10)(x)=-(10!) x-11,∴f (-1)=1,f(2)(-1)=2,f(3)(-1)=3!,⋯,f(9)(-1)=9!,f(10)(-1)=10!,∴T10(x)=1+(x+1)+(x+1)2+(x+1)3+⋅⋅⋅+(x+1)10.故x3的系数为C03+C14+C25+⋅⋅⋅+C710=C44+C34+C35+⋅⋅⋅+C310=C45+C35+⋅⋅⋅+C310=⋅⋅⋅=C410+C310=C411= 330.故答案为:1+x+x22+x36;330.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因2 不等式证明还有一些常用的方法 换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等 换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性 放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n2131211<++++Λ(n ∈N *)知识依托 本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托 该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)425证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法)巩固练习1 已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足 a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明 x ,y ,z ∈[0,32]6 证明下列不等式(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则c b a y b a c x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(zy x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A i m <m i A i n (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托 二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一 求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立⇔f(x)min ≥M ;f(x)≤M 恒成立⇔f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n ∈N*,求a 的取值范围.【点评】 一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c ∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a ++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --⎛⎫=++≥ ⎪⎝⎭; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号 其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1. 19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =L ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当nm >时总有0n a <.利用导数处理与不等式有关的问题一、 利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式某个区间上导数大于(或小于)0时,则该单调递增(或递减)。