离散数学17平面图及图着色共69页文档
合集下载
离散数学图论基础知识文稿演示
图的定义
定义8.1 一个图是一个序偶<V,E>,记为 G=<V,E>,其中: 1) V={v1,v2,v3,…,vn}是一个有限的非空集合,
vi(i=1,2,3,…,n)称为结点,简称点,V为结 点集; 2) E={e1,e2,e3,…,em}是一个有限的集合, ei(i=1,2,,…,m)称为边,E为边集,E中的 每个元素都有V中的结点对与之对应。即对任 意e∈E,都有e与<u,v>∈VV或者(u,v)∈ V&V相对应。
图论
▪ 一个图就是一个离散的拓扑结构,经常用于描 述和研究许多领域中的各种问题。
▪ 随着计算机科学的飞速发展,图论组合和算法 的研究在近代也成为计算机科学和数学中发 展最快的基础学科之一,也受到国际上的学术 界和高新技术企业方面特别重视。
图论
▪ 理论计算机科学中的算法理论经典问题(图中点对之 间最短路,货郎担问题,图重抅问题,HAMILTON 问 题,P-NP问题等),通信网络通讯(网络设计, 通讯速度 和容量, 网络可靠性和容错性等) ;
图论本身是应用数学的一部份,因此,历史上图论曾经 被好多位数学家各自独立地建立过。关于图论的文字 记载最早出现在欧拉1736年的论着中,他所考虑的原 始问题有很强的实际背景
图论
图论起源于著名的哥尼斯堡七桥 问题。
欧拉证明了这个问题没有解,并 且推广了这个问题,给出了对于 一个给定的图可以某种方式走遍 的判定法则。 这项工作使欧拉成为图论〔及拓 扑学〕的创始人。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学 的两台不同的电子计算机上,用了1200个小时,作了 100亿判断,终于完成了四色定理的证明。
不过不少数学家并不满足于计算机取得的成就,他们认 为应该有一种简捷明快的书面证明方法。
离散数学 平面图与着色
G2,…,Gm=G,使得Gk是恰含有k(k=1, 2, …, k)条边的连通图。构造方法如下: (1)任意选择Gk-1中的一条边来获得Gk :任意 的添加一条与Gk-1边中某个顶点相关联的边,若 与这条边关联的另一个顶点不在Gk-1里,则添加 这个顶点。
这样的构造是可能的,因为G是联通的。在 添加m条边之后就获得G。设rk,mk,nk和 分别为Gk的面数、边数和顶点数。 现在用归纳法来进行证明。对G1来说关系 r1=m1-n1 +2为真,因为m1=1,n1=2 而r1=1。 现在假定 rk=mk-nk +2,我们来考虑Gk+1。 设Gk+1= Gk +(ak+1,bk+1),此时分两 种情况来讨论。
【定理12.3】若G的每个面的边界至少含k kr k 条边,则 m (n 2)
2 k 2
【例12.4】 证明K5是不可平面图 。 【例12.5】 证明K3, 3是不可平面图。
略
【定义12.3】在图G的边(u, v)上添加k个 顶点v1,v2,…,vk,从而使得边(u, v)变为 (k+1)条边(u,v),(v1, v2), …,( vk, v), 则称为对边(u, v)的加细。两个图称为同 胚的,其中一个图是另一个图的加细图。 【定理12.4】一个图G是可平面图的充要条 件是G没有同胚于K5或K3, 3的子图。
Theorem If every vertex of G has degree d(v) < k, then G is k-colorable. Proof: Use induction on n (number of vertices). 1.If n = 1 or n = 2, the assertion is easily seen to be true. Suppose n > 2, and assume that the proposition is valid for all graphs with fewer than n vertices. 2.Choose any vertex v of G and delete it and all the edges incident to v. This leaves a subgraph H of G with n - 1 vertices satisfying the given hypothesis (i.e. that every vertex has degree less than k). By the inductive hypothesis, (H) k. Now, consider any particular k-coloring of H. Since d(v) < k, the vertices of H that were adjacent to v in G are colored with at most k 1 different colors. Thus, there’s at least one color left with which we may color v, so that it is of a different color to each of its neighbors. This gives a coloring of G using the same colors as H. Therefore, G is k-colorable.
这样的构造是可能的,因为G是联通的。在 添加m条边之后就获得G。设rk,mk,nk和 分别为Gk的面数、边数和顶点数。 现在用归纳法来进行证明。对G1来说关系 r1=m1-n1 +2为真,因为m1=1,n1=2 而r1=1。 现在假定 rk=mk-nk +2,我们来考虑Gk+1。 设Gk+1= Gk +(ak+1,bk+1),此时分两 种情况来讨论。
【定理12.3】若G的每个面的边界至少含k kr k 条边,则 m (n 2)
2 k 2
【例12.4】 证明K5是不可平面图 。 【例12.5】 证明K3, 3是不可平面图。
略
【定义12.3】在图G的边(u, v)上添加k个 顶点v1,v2,…,vk,从而使得边(u, v)变为 (k+1)条边(u,v),(v1, v2), …,( vk, v), 则称为对边(u, v)的加细。两个图称为同 胚的,其中一个图是另一个图的加细图。 【定理12.4】一个图G是可平面图的充要条 件是G没有同胚于K5或K3, 3的子图。
Theorem If every vertex of G has degree d(v) < k, then G is k-colorable. Proof: Use induction on n (number of vertices). 1.If n = 1 or n = 2, the assertion is easily seen to be true. Suppose n > 2, and assume that the proposition is valid for all graphs with fewer than n vertices. 2.Choose any vertex v of G and delete it and all the edges incident to v. This leaves a subgraph H of G with n - 1 vertices satisfying the given hypothesis (i.e. that every vertex has degree less than k). By the inductive hypothesis, (H) k. Now, consider any particular k-coloring of H. Since d(v) < k, the vertices of H that were adjacent to v in G are colored with at most k 1 different colors. Thus, there’s at least one color left with which we may color v, so that it is of a different color to each of its neighbors. This gives a coloring of G using the same colors as H. Therefore, G is k-colorable.
离散数学平面图课件ppt
i 1
i 1
i 1
i 1
经整理得 n-m+r = k+1。
2、 与欧拉公式有关的定理
定理17.8 设G为连通的平面图,且每个面的次数至少为 l(l3),则 G的边数与顶点数有如下关系:
m l (n 2) l2
证明
由定理17.3(面的次数之和等于边数的2倍)及欧拉公式得
r
2m deg(Ri ) l r l(2 m n)
由于n3, 又G必为简单平面图,可知,G每个面的次数均3。
因为G为平面图,又为极大平面图。可证G不可能存在次数>3 的面。
假设存在面Ri的次数deg(Ri)=s≥4, 如图所示。
s
S-1
在G中,若v1与v3不相邻,在Ri内加边(v1,v3)不破坏平面性,这 与G是极大平面图矛盾,因而v1与v3必相邻,由于Ri的存在, 边(v1,v3)必在Ri外。
Microsoft Office PowerPoint,是微 软公司的演示文稿软件。用户可以在投影仪 或者计算机上进行演示,也可以将演示文稿 打印出来,制作成胶片,以便应用到更广泛 的领域中。利用Microsoft Office PowerPoint不仅可以创建演示文稿,还可 以在互联网上召开面对面会议、远程会议或 在网上给观众展示演示文稿。 Microsoft Office PowerPoint做出来的东西 叫演示文稿,其格式后缀名为:ppt、pptx ;或者也可以保存为:pdf、图片格式等
(u,v),称为在G中消去2度顶点w。
2、图之间的同胚 若两个图G1与G2同构,或通过反复插入或消去2度顶点后
是同构的,则称G1与G2是同胚的。
上面两个图分别与K3,3, K5同胚 。
离散数学 第四章平面图与图【完全免费,强烈推荐】.ppt
定理4.6.6
f (Tn , t ) t (t 1)n1.
这由 (Tn ) 2即可得证。当 t 2时,f (Tn ,t) 2.
色数与色数多项式
定理 4.6.7
设i,j是G的不相邻结点,则
_
0
—0
f (G, t) f (Gij , t) f (Gij , t). 其中Gij ,Gij 由定义4.6.3给出
d0
,因此
(G' ) d0
1.即
d0
1 种颜
色可以对G '的结点着色,放回结点 vi 恢复成G,由
于d (vi ) d0 ,所以比有一种与 vi邻点都不同的颜色可
对vi 着色.
色数与色数Байду номын сангаас项式
定理 4.6.3 对于任意一个图G. γ(G) <= 1 + maxδ(G’) 其中δ(G’)是G的导出子图G’中结点的最小度, 极大是对所有的G’而言.
定理 4.5.4 若任何一个3-正则平面图的域可四着色,则任何 一个平面的域也可以四着色.
4.6 色数与色数多项式
定义 4.6.1 给定图G,满足相邻点结点着以不同颜色的最少 颜色数为G的色数,记为γ(G).
定义 4.6.2 给定图G,满足相邻边着以不同颜色的最少颜色 数目称为G的边色数,记为β(G).
色数与色数多项式
定理 4.6.1 一个非空图,γ(G) = 2,当且仅当它没有奇回路.
证明:充分性:在G中确定一个林 T ',其每个连通子
图都是树T, (T ) 2.由于每个回路都是偶回路.所
以加入每一条余树边都不会使结点着色发生变化,因
此 (G) 2.
必要性:如果G中有奇回路,则 (G) 3 .矛盾.
f (Tn , t ) t (t 1)n1.
这由 (Tn ) 2即可得证。当 t 2时,f (Tn ,t) 2.
色数与色数多项式
定理 4.6.7
设i,j是G的不相邻结点,则
_
0
—0
f (G, t) f (Gij , t) f (Gij , t). 其中Gij ,Gij 由定义4.6.3给出
d0
,因此
(G' ) d0
1.即
d0
1 种颜
色可以对G '的结点着色,放回结点 vi 恢复成G,由
于d (vi ) d0 ,所以比有一种与 vi邻点都不同的颜色可
对vi 着色.
色数与色数Байду номын сангаас项式
定理 4.6.3 对于任意一个图G. γ(G) <= 1 + maxδ(G’) 其中δ(G’)是G的导出子图G’中结点的最小度, 极大是对所有的G’而言.
定理 4.5.4 若任何一个3-正则平面图的域可四着色,则任何 一个平面的域也可以四着色.
4.6 色数与色数多项式
定义 4.6.1 给定图G,满足相邻点结点着以不同颜色的最少 颜色数为G的色数,记为γ(G).
定义 4.6.2 给定图G,满足相邻边着以不同颜色的最少颜色 数目称为G的边色数,记为β(G).
色数与色数多项式
定理 4.6.1 一个非空图,γ(G) = 2,当且仅当它没有奇回路.
证明:充分性:在G中确定一个林 T ',其每个连通子
图都是树T, (T ) 2.由于每个回路都是偶回路.所
以加入每一条余树边都不会使结点着色发生变化,因
此 (G) 2.
必要性:如果G中有奇回路,则 (G) 3 .矛盾.
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
复旦大学计算机科学与工程系 吴永辉 离散数学 平面图
情形2. 当h=4时,因为-8=(h-4)Fh+(k-
4)Vk,所以8=(4-k)Vk,则k=3,V3=8, F4=6,因此P是立方体。 情形3. 当h=5时,因为-8=(h-4)Fh+(k4)Vk,且hFh=2E= kVk,所以20=(10-3k)Vk。 则k=3,V3=20,F5=12,因此P是立方体。
证明:设G有(1)个连通分支。 若G是森林,则e=n- 3n-6(n3)。 若G不是森林,则G中存在圈;由于G 是简单图,所以圈的长度大于等于3,因而 各面的次数至少为l(l3), l /(l-2)在 l=3时达到最大值,因此
l ( n 1) 3( n 1) l 2 3( n 2) 3n 6 e
6.1
平面图与欧拉公式
(5)定理6.2 在平面简单图G中至少存在一个顶点v0, d(v0)5 证明方法:反证法,假设所有顶点度数 大于5,由推论6.1,导致矛盾。
6.1
平面图与欧拉公式
三 平面图的特征 1 剖分 在G的边上插入有限个点便得到G的一个剖 分。 例:
2 定理6.3(库拉托斯基定理) 图G是平面图 它的任何子图都不 是K5和K3,3的剖分。
6.1
平面图与欧拉公式
一、平面图 定义6.1(平面图) 若一个图能画在平面上使它的边互不 相交(除在顶点处),则称该图为平面图, 或称该图能嵌入平面的。
图6.1(a),(b) 图6.1(a)平面图G, (b) 所示的Ğ是G的平面嵌入。
图6.2:并不是所有的图都是平面图。(K5和 K3,3)
6.1
平面图与欧拉公式
离散数学课件17平面图共48页
本章说明
本章的主要内容
–平面图的基本概念 –欧拉公式 –平面图的判断 –平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
17.2 欧拉公式
17.3 平面图的判断
17.4 平面图的对偶图
本章小结
习题
作业
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上,
类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的
每个面为3条边所围,也就是各面次数均为3。
只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。
K5和K3,3都不是平面图。 定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。
定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。 无限面(外部面)——面积无限的面,记作R0。 有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。 面Ri的边界——包围面Ri的所有边组成的回路组。 面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、极大平面图的主要性质
定理17.4 极大平面图是连通的,并且n(n3)阶极大平面图 中不可能有割点和桥。
本章的主要内容
–平面图的基本概念 –欧拉公式 –平面图的判断 –平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
17.2 欧拉公式
17.3 平面图的判断
17.4 平面图的对偶图
本章小结
习题
作业
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上,
类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的
每个面为3条边所围,也就是各面次数均为3。
只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。
K5和K3,3都不是平面图。 定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。
定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。 无限面(外部面)——面积无限的面,记作R0。 有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。 面Ri的边界——包围面Ri的所有边组成的回路组。 面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、极大平面图的主要性质
定理17.4 极大平面图是连通的,并且n(n3)阶极大平面图 中不可能有割点和桥。
离散数学教学图论【共58张PPT】
一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
逻辑运算符“析取”, 与汉语中“或”含义 相当,但有细微的区 别
1.1 命题及联结词
运算符“析取” 与汉语的“或”几乎一致但有 区别:哪些老师讲离散数学?有人回答如下:
(16)“讲离散数学的老师是杨老师或吴老师”, 分解为
“讲离散数学的老师是杨老师”或 “讲离散数学的老师是吴老师”, 这两个原子命题有可能都是对的, 这种“或”称为“可同时为真的或”, 或简称为“可兼或”。 这种“或”表示可表 示为“析取”
1.1 命题及联结词
定义1.4条件:当p是1 ,q是0时,pq为0,即10 为0,其他情况为1。
逻辑运算符“如果…那么”, 如老妈说:“如果期终考了年级前10 名,那么奖励1000元”。 p:期终考了年级前10名 q:奖励1000元 则上面的语句表示为pq。 先考虑值为0即假的情况: 当p为1即“期终考了年级前10”, 且q为0即“没有奖励1000元” 这时老妈的话是假话空话,
这个例题有点不正点! “郎才当且仅当女貌”,
可以表示为“郎才女貌”
1.2命题公式
对错明确的陈述语句称为命题,其真值t/f 0/1 C运算:加+、减-、乘x、除/、余数%, 命题逻辑:合、析、否定、条件、双条件(版) C语言中用变量x表示某些数,如x*x+x+10是表达式,
命题逻辑中用变量p,q,r表示任意命题,由命题常元与 此类变量所构成表达式,称为“命题公式”。
无论p/q取何值,这两个公式的值,与前面各例 不同,此表是将运算结果写在联结词的下方!
1.3 等值式
定义1.3.1等值: 对于合法的命题公式A、B, 若无论其中的命题变元取何值,A 、B值总相等, 称为两个公式等值,记为AB (边播边板)
目的:
1.掌握离散数学五大核心内容(集合论、数 理逻辑、代数结构、图论、组合数学)的基本概 念、基本理论、基本方法,训练提高学生的概括 抽象能力、逻辑思维能力、归纳构造能力,培养 学生严谨、完整、规范的科学态度和学习思维习 惯。
1.1 命题及联结词
运算符“析取” 与汉语的“或”几乎一致但有 区别:哪些老师讲离散数学?有人回答如下:
(16)“讲离散数学的老师是杨老师或吴老师”, 分解为
“讲离散数学的老师是杨老师”或 “讲离散数学的老师是吴老师”, 这两个原子命题有可能都是对的, 这种“或”称为“可同时为真的或”, 或简称为“可兼或”。 这种“或”表示可表 示为“析取”
1.1 命题及联结词
定义1.4条件:当p是1 ,q是0时,pq为0,即10 为0,其他情况为1。
逻辑运算符“如果…那么”, 如老妈说:“如果期终考了年级前10 名,那么奖励1000元”。 p:期终考了年级前10名 q:奖励1000元 则上面的语句表示为pq。 先考虑值为0即假的情况: 当p为1即“期终考了年级前10”, 且q为0即“没有奖励1000元” 这时老妈的话是假话空话,
这个例题有点不正点! “郎才当且仅当女貌”,
可以表示为“郎才女貌”
1.2命题公式
对错明确的陈述语句称为命题,其真值t/f 0/1 C运算:加+、减-、乘x、除/、余数%, 命题逻辑:合、析、否定、条件、双条件(版) C语言中用变量x表示某些数,如x*x+x+10是表达式,
命题逻辑中用变量p,q,r表示任意命题,由命题常元与 此类变量所构成表达式,称为“命题公式”。
无论p/q取何值,这两个公式的值,与前面各例 不同,此表是将运算结果写在联结词的下方!
1.3 等值式
定义1.3.1等值: 对于合法的命题公式A、B, 若无论其中的命题变元取何值,A 、B值总相等, 称为两个公式等值,记为AB (边播边板)
目的:
1.掌握离散数学五大核心内容(集合论、数 理逻辑、代数结构、图论、组合数学)的基本概 念、基本理论、基本方法,训练提高学生的概括 抽象能力、逻辑思维能力、归纳构造能力,培养 学生严谨、完整、规范的科学态度和学习思维习 惯。
离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
离散数学欧拉图.ppt
7
பைடு நூலகம்此,在七桥问题中,其4个顶点都是奇数度点, 所以,七桥图不是欧拉图,也不是半欧拉图。 因此,这个图不可能一笔画成。
8
欧拉图是连通的且若干个边不重的圈之并,见示意图
PLAY
9
如图9.30(a)的每一个结点的度数都是偶数2,所以(a)中 有一个欧拉回路,是欧拉图;在图9.30 (b)中有两个结点的 度数是奇数3,故 (b)中有一个欧拉通路,但没有欧拉回路, 不是欧拉图;在图9.30 (c)中四个结点的度数都是奇数3, (c)中没有欧拉通路,更没有欧拉回路,不是欧拉图。
10
如图中, (1), (4)为欧拉图; (2), (5)为半欧拉图; (3),(6)既不是欧拉图, 也不是半欧拉图. 在(3), (6)中各至少加几条边才能成为欧拉图?
11
思考: 1. 如图所示的街区,试问甲、乙二人以同样的速度分别 从A.B处同时出发走遍所有街道而谁先到达C处?
2. 一只昆虫是否可以从立方体的一个顶点出发,沿着棱 爬行经过每一条棱一次且仅一次,并且最终回到原地.
17
这个问题是我国数学家管梅谷教授于 1960年首先提出解决的,所以国际上常 称为中国邮路问题
18
如果邮递员所走街道的图形是一个欧拉图, 则中国邮路问题可以理解为图中任何一条欧 拉回路都是最优回路。
如果图中有度数为奇数的顶点,如图中各边上 的权为街道的长度。
19
图中有两个度数为奇数的顶点:B和E,可以把构成B到 E的一条通路的各边都增加一条重复边(即平行边)。
(a)
(b)
由于B到E的通路可以有多条,因此邮递员所走的最短路径问题 就归结为求B到E的各通路中重复边的权之和最小的问题,显然 (a)图为最优。
20
பைடு நூலகம்此,在七桥问题中,其4个顶点都是奇数度点, 所以,七桥图不是欧拉图,也不是半欧拉图。 因此,这个图不可能一笔画成。
8
欧拉图是连通的且若干个边不重的圈之并,见示意图
PLAY
9
如图9.30(a)的每一个结点的度数都是偶数2,所以(a)中 有一个欧拉回路,是欧拉图;在图9.30 (b)中有两个结点的 度数是奇数3,故 (b)中有一个欧拉通路,但没有欧拉回路, 不是欧拉图;在图9.30 (c)中四个结点的度数都是奇数3, (c)中没有欧拉通路,更没有欧拉回路,不是欧拉图。
10
如图中, (1), (4)为欧拉图; (2), (5)为半欧拉图; (3),(6)既不是欧拉图, 也不是半欧拉图. 在(3), (6)中各至少加几条边才能成为欧拉图?
11
思考: 1. 如图所示的街区,试问甲、乙二人以同样的速度分别 从A.B处同时出发走遍所有街道而谁先到达C处?
2. 一只昆虫是否可以从立方体的一个顶点出发,沿着棱 爬行经过每一条棱一次且仅一次,并且最终回到原地.
17
这个问题是我国数学家管梅谷教授于 1960年首先提出解决的,所以国际上常 称为中国邮路问题
18
如果邮递员所走街道的图形是一个欧拉图, 则中国邮路问题可以理解为图中任何一条欧 拉回路都是最优回路。
如果图中有度数为奇数的顶点,如图中各边上 的权为街道的长度。
19
图中有两个度数为奇数的顶点:B和E,可以把构成B到 E的一条通路的各边都增加一条重复边(即平行边)。
(a)
(b)
由于B到E的通路可以有多条,因此邮递员所走的最短路径问题 就归结为求B到E的各通路中重复边的权之和最小的问题,显然 (a)图为最优。
20