八年级数学上册期末试卷培优测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册期末试卷培优测试卷
一、八年级数学全等三角形解答题压轴题(难)
1.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.
(1)求证:BMD ∆为等腰直角三角形;
(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;
(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.
【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.
【解析】
【分析】
()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,
90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出
22290BMD BCM ACM BCA ∠∠∠∠=+==即可.
()2延长ED 交AC 于F ,求出12
DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.
()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出
BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.
【详解】
()1证明:ABC 和ADE 都是等腰直角三角形,
45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===
点M 为EC 的中点,
12BM EC ∴=,12
DM EC =, BM DM ∴=,BM CM =,DM CM =,
BCM MBC ∠∠∴=,DCM MDC ∠∠=,
2BME BCM MBC BCE ∠∠∠∠∴=+=,
同理2
DME ACM
∠∠
=,
22224590 BMD BCM ACM BCA
∠∠∠∠
∴=+==⨯= BMD
∴是等腰直角三角形.
()2解:如图2,BDM是等腰直角三角形,
理由是:延长ED交AC于F,
ADE和ABC
△是等腰直角三角形,
45
BAC EAD
∠∠
∴==,
AD ED
⊥,
ED DF
∴=,
M为EC中点,
EM MC
∴=,
1
2
DM FC
∴=,//
DM FC,
45
BDN BND BAC
∠∠∠
∴===,
ED AB
⊥,BC AB
⊥,
//
ED BC
∴,
DEM NCM
∠
∴=,
在EDM和CNM中
DEM NCM
EM CM
EMD CMN
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
EDM
∴≌()
CNM ASA,
DM MN
∴=,
BM DN
∴⊥,
BMD
∴是等腰直角三角形.
()3BDM是等腰直角三角形,
理由是:过点C作//
CF ED,与DM的延长线交于点F,连接BF,
可证得MDE ≌MFC ,
DM FM ∴=,DE FC =,
AD ED FC ∴==,
作AN EC ⊥于点N ,
由已知90ADE ∠=,90ABC ∠=,
可证得DEN DAN ∠∠=,NAB BCM ∠∠=,
//CF ED ,
DEN FCM ∠∠∴=,
BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,
BF BD ∴=,DBA CBF ∠∠=,
90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,
DBF ∴是等腰直角三角形,
点M 是DF 的中点,
则BMD 是等腰直角三角形,
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.
2.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .
(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;
(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.
【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩
【解析】