第9讲 解三角形与平面向量 答案版

合集下载

向量的知识点总结和解三角形

向量的知识点总结和解三角形

平面向量复习基本知识点结论总结一、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);例题 已知向量,则与其共线的单位向量为__________.(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量是-。

例题下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______ 二、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法。

三,平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

例题(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =( )a +( )b ;(2)下列向量组中,能作为平面内所有向量基底的是( )A. 12(0,0),(1,2)e e ==-B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=- (3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___四、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

高考数学 平面向量、解三角形

高考数学  平面向量、解三角形

高考数学平面向量、解三角形第二节解三角形第一部分六年高考荟萃一、选择题1.(上海文)18.若△ABC的三个内角满足sin:sin:sin5:11:13A B C=,则△ABC (A)一定是锐角三角形. (B)一定是直角三角形.(C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 【答案】C解析:由sin:sin:sin5:11:13A B C=及正弦定理得a:b:c=5:11:13由余弦定理得0115213 115 cos222<⨯⨯-+=c,所以角C为钝角2.(湖南文)7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则A.a>bB.a<bC. a=bD.a与b的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。

3.(江西理)7.E,F是等腰直角△ABC斜边AB上的三等分点,则tan ECF∠=()A. 1627 B.23 C.3D.34【答案】D【解析】考查三角函数的计算、解析化应用意识。

解法1:约定AB=6,AC=BC=32由余弦定理10再由余弦定理得4cos 5ECF ∠=, 解得3tan 4ECF ∠=解法2:坐标化。

约定AB=6,AC=BC=32(0,3)利用向量的夹角公式得4cos 5ECF ∠=,解得3tan 4ECF ∠=。

4.(北京文)(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 33αα+ (C )3sin 31αα-+; (D )2sin cos 1αα-+ 【答案】A5.(天津理)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23C B =,则A=(A )030 (B )060 (C )0120 (D )0150 【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。

平面向量、解三角形

平面向量、解三角形

黄冈中学第一部分 平面向量8.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++=答案 B(2009全国卷Ⅱ文)已知向量a = (2,1), a ·b = 10,︱a + b ︱= 52,则︱b ︱= A.5 B.10 C.5 D.25答案 C10.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为 ( ) A.2- B.22- C.1- D.12-答案 D(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的 ( )A.重心 外心 垂心B.重心 外心 内心C.外心 重心 垂心D.外心 重心 内心 答案 C28.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是________.答案 2(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________答案 4/3 (2005江苏)在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(OC OB OA +⋅的最小值是________。

答案 -2 (2007广东)已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、.(1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.(湖北省八校2009届高三第二次联考文)已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:()A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ= 答案 D (沈阳二中)已知向量OC OA BC OB OA 与则),sin 2,cos 2(),0,2(),2,0(αα===夹角的取值范围是( )A .]4,0[πB .]32,3[ππC .]43,4[ππD .]65,6[ππ 答案 C 14.(山东省乐陵一中)已知向量m =(3sin 4x ,1),n =(cos 4x ,2cos 4x )。

数学专题2__三角函数_平面向量与解三角形

数学专题2__三角函数_平面向量与解三角形

三角函数,平面向量与解三角形1.【答案】C2.若tan α=3,则αα2cos 2sin 的值等于 A .2 B .3 C .4 D .6【答案】D 3.若2a =,则10[cos()]______3a π-=.【答案】81-4.已知θ是三角形中的最小角,则)3sin(πθ+的取值范围是( )A .⎥⎦⎤ ⎝⎛1,23B .⎥⎦⎤⎢⎣⎡1,23 C .⎥⎦⎤⎝⎛1,21D .⎥⎦⎤⎢⎣⎡1,21【答案】B5.已知奇函数f (x )在[-1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是 A .f (cos α)> f (cos β) B .f (sin α)> f (sin β)C .f (sin α)> f (cos β)D .f (sin α)<f (cos β)【答案】D6.【答案】 A7.已知sin cos θθ+=,则7cos(2)2πθ-的值为( ) A.49 B.29 C.29- D.49-【答案】A8.已知53sin =α,且α为第二象限角,则αtan 的值为 .【答案】34-9.设全集U =R ,A ={y |y =tan x ,x ∈B },B ={x ||x |≤4π},则图中阴影部分表示的集合是 A .[-1,1] B .[-4π,4π] C .[-1,-4π)∪(4π,1] D .[-1,-4π]∪[4π,1]【答案】C10.函数π()3sin(2)3f x x =-的图象为C ,如下结论中正确的是(写出所有正确结论的编号).①图象C 关于直线11π12x =对称; ②图象C 的所有对称中心都可以表示为(0)()6k k Z ππ+∈,;③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3cos 2y x =-的图象向左平移12π个单位长度可以得到图象C . ⑤函数()f x 在[0,]2π上的最小值是3-.【答案】①③④11.(2013·江西省南昌市调研)右图是函数y=sin (ωx+ϕ)(x ∈R )在区间[-π6,5π6]上的图像,为了得到这个函数的图像,只要将y=sinx (x ∈R )的图像上所有点A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变。

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

提优专题(2.2)——平面向量和解三角形(解答题)(含答案)

提优专题(2.2)——平面向量和解三角形(解答题)(含答案)

平面向量与解三角形(解答题)1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC 的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米); (2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE ,设3S 为图③中DEF 的面积,求3S 的取值范围.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若u v u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式;(2)求证:()()()22222a b c d ac bd +++;(3)+的最大值,并求其取得最大值时x 的值.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ;(),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围.11.对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n 维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅=12.已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQ Q 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由; (2)用n t 表示1.n t +13.射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CA CB x DADB=叫做这四个有序点的交比,记作().ABCD (1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A14.如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O (1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S的取值范围.15.如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy 中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值.16.法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形; (2)若123O O O ABCSmS= ,求m 的最小值.平面向量与解三角形1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.【答案】(1)因为8a =,3A π=,所以sin sin sin b c a B C A ===所以b B =,)8cos c C A B B B =+=,则216.cos c b B −== (2)由222222cos a b c bc A b c bc =+−=+−, 得2264.b c bc +=+因为222b c bc +,所以22642b c bc bc +=+, 所以64bc ,当且仅当8b c ==时,取等号, 2||()AB AC AB AC +=+222AB AC AB AC ++⋅22b c bc =++=,12AB AC bc ⋅=,令t 883t <,则21322bc t =−,则2211||16(2)1744AB AC AB AC t tt +−⋅=−+=−−+,因为883t <,所以2132(2)1784t −−−+<,所以||AB AC AB AC +−⋅的最小值为32.【解析】本题考查利用正弦定理解三角形,利用余弦定理解决范围问题.(1)先利用正弦定理分别求出b ,c ,再根据三角形内角和定理将C 用B 表示,再将所求化简即可得解;(2)利用余弦定理结合可得2264b c bc +=+,结合基本不等式求出bc的范围,计算可得1||64.2AB AC AB AC bc +−⋅=令t =.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围. 【答案】证明:(1)原式化简得:21sin cos sin sin sin cos cos 2cos 2sin cos A AB A B A B B B B+=⇔+=,即sin cos()B A B =+,cos()cos()2B A B π∴−=+,(0,)2A B π+∈,(0,)22B ππ−∈, 2B A B π∴−=+,即2.2A B π+=(2)由22222A B A B A B C C B ππππ⎧=−⎧⎪+=⎪⎪⇒⎨⎨⎪⎪++==+⎩⎪⎩且04B π<<,由余弦定理,2223a c b ac +−变为223cos 22a cb B ac+−=, 62B ππ∴<, 又04B π<<,;64B ππ∴<由正弦定理,sin sin sin sin sin a c A CB B b B++⋅=⋅ 2219sin sin cos 2cos 2cos cos 12(cos )48A C B B B B B =+=+==+−=+−,cos (2B ∈∴由二次函数值域,可得sina c B b+⋅的范围为【解析】本题考查利用正余弦定理解三角形,三角恒等变换的应用,余弦型函数的值域,二次函数的性质等知识点,属于较难题.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE,设3S 为图③中DEF 的面积,求3S 的取值范围.【答案】(1)解:因为点 P 是等腰三角形 PBC 的顶点,且 23CPB π∠= , 1BC = , 所以 6PCB π∠=,PC PB =,由余弦定理可得, 222cos C 2PB PC BC PB PB PC +−∠=⋅ ,解得PC = , 又因为 2ACB π∠=,故 3ACP π∠=, 在 Rt ACB 中, 2AB = , 1BC = ,所以AC == ,在 ACP 中,由余弦定理可得, 2222cos3AP AC PC AC PC π=+−⋅⋅ ,解得3AP =, 故AP PC PB ++=+=, 所以连廊 AP PC PB ++ 的长为百米. (2)解:设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<< ,则 sin CF a α= ,sin AF a α=− , 设 1EDB ∠=∠ , 则 213B DEB DEB ππ∠=−∠−∠=−∠ , 233DEB DEB ππαπ=−−∠=−∠ ,所以 2133ADF πππα∠=−−∠=− , 在 ADF 中,由正弦定理可得,sin sin DF AFA ADF=∠∠ ,即sin 2sinsin()63aa αππα−=− , 即21sin()sin 32a a παα−=−, 即32177a ===(其中 θ 为锐角,且tan θ= ,所以 222133sin 60247Sa =︒⨯=, 即 ()2min S = ; 图③中,设 BE x = , (0,1)x ∈ , 因为 //EF AB ,且 EF DE ⊥ ,所以 3FEC π∠= , 6DEB π∠= , 2EDB π∠= ,所以 cos 62DE x x π== ,222cos3CE EF CE xπ===− ,所以22111(22)))222DEFSEF DE x x x x =⋅⋅=⋅−=−+=−+, 所以当 12x = 时, DEF S 取得最大值8 ,无最小值,即DEF S ⎛∈ ⎝⎦, 故3.S ⎛∈ ⎝⎦【解析】本题考查利用正弦定理、余弦定理解决距离问题、利用正弦定理解决范围与最值问题,属于较难题.(1)先由 PBC 中的余弦定理求出 PC ,再由 APC 中的余弦定理求出 AP ,即可得到答案;(2)设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<<,图③中,设 BE x = , (0,1)x ∈ ,分别表示出方案②和方案③中的面积,利用三角函数的性质以及二次函数的性质求解最值即可.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠【答案】解:(1)由题意,不妨设BC 边上的中点为点D ,所以23AP AD =,又1()2AD AB AC =+,所以,11.33AP AB AC =+(2)证明:令A B C S S S S =++,则B CS S AP AD S +=||||||||C B B C B C S S DC DB AD AB AC AB AC S S S S BC BC =+=+++()()C B S SAP AP PB AP PC S S=+++,则0B C A S PB S PC S AP +−=,所以0A B C S PA S PB S PC ++=;(3)因为P 是ABC 的垂心,230PA PB PC ++=, 所以由(2)易知,::1:2:3.A B C S S S =记ABC 的三个内角分别为A ,B ,C ,则1tan 2:1tan 2A B FC PC BFBF A AF S S FC AF B PC AF BF⋅====⋅,同理:tan :tan B C S S B C =,所以,tan :tan :tan 1:2:3A B C =,又tan tan tan tan()1tan tan A B C A B A B −−=−+=−,所以,2tan 2tan 3tan 12tan A AA A−−=−, 即tan 1A =或1−,又tan A ,tan B ,tan C 同号,所以tan 1A =,所以tan 3C = 又四边形CDPE 中,因为P 是ABC 的垂心,所以90CDP CEP ∠=∠=︒, 所以,180DPE C ∠+∠=︒,又DPE APB ∠=∠,所以,180APB C ∠+∠=︒,所以,tan tan 3APB C ∠=−=−,即cos 10APB ∠=−【解析】本题考查向量的线性运算,向量的几何应用,属于难题. (1)根据向量的线性运算化简即可;(2)利用面积与边长的比例关系化简整理即可;(3)利用(2)的结论得出A ,B ,C 的关系,结合正切的和差角公式计算即可. 5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若uv u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式; (2)求证:()()()22222a b c d ac bd +++;(3)23x −的最大值,并求其取得最大值时x 的值. 【答案】解:(1)由向量(),u a b =,(),v c d =,得2222,,u v ac bd u a b v c d ⋅=+=+=+, 因为u v u v ⋅=,所以()()()22222ac bd a b c d +=++,即2222222222222a c abcd b d a c a d b c b d ++=+++,所以22222abcd a d b c =+,即()20ad bc −=, 所以0ad bc −=;(2)因为cos ,u v ac bd u v u v ⋅=+=, 而cos ,1u v,所以()222222,ac bd u v cos u vu v +=,当且仅当cos ,1u v =,即//u v 时取等号,所以()()()22222a b c d ac bd +++;(3)由413030x x +⎧⎨−⎩可得1334x −,当3x =5==,当134x =−5+==, 当1334x −<<时,由(2)可得,()11x=+=⎡⎣,,即18x =−时,取等号,+的最大值为1.8x =−【解析】本题考查向量数量积的坐标运算,向量模的坐标表示,利用向量的数量积证明等式. (1)根据数量积得坐标运算及平面向量的模的坐标公式计算即可得出结论; (2)根据cos ,u v ac bd u v u v ⋅=+=,结合余弦函数的值域即可得证;(3)利用(2)中的结论即可得出答案.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】解:(1)法一:在ABD 中,由余弦定理得222cos 2AD AB BD A AD AB+−=⋅,即222cosA =2168BD A −=①,同理,在BCD 中,22222cos 222BD C +−=⨯⨯,即28cos 8BD C −=②,①-cos 1A C −=,所以当BD cos A C −为定值,定值为1;法二:在ABD 中,由余弦定理得2222cos BD AD AB AD AB A =+−⋅即222222cos BD A =+−⨯⨯,即216BD A =−, 同理,在BCD 中,2222cos 88cos BD CD CB CD CB C C =+−⋅=−,所以1688cos A C −=−,1cos A C −=,即cos 1A C −=,所以当BD cos A C −为定值,定值为1;222222221211(2)44S S AB AD sin A BC CD sin C +=⋅⋅+⋅⋅ 22221241244sin A sin C sin A cos C =+=+−221241)sin A A =+−−22412cos A A =−++, 令)cos ,1,1A t t =∈−,所以2224122414y t t ⎛=−++=−+ ⎝⎭,所以6t =,即cos A =时,2212S S +有最大值为14.【解析】本题考查余弦定理,考查三角形面积公式,属于较难题.(1)法一:在ABD 2168BD A −=,在BCD 中由余弦定理得28cos 8BD C −=,两式相减可得答案;法二:在ABD 中由余弦定理得216BD A =−,在BCD 中由余弦定理得288cos BD C =−,两式相减可得答案;(2)由三角形面积公式可得222122412S S cos A A +=−++,令()cos ,1,1A t t =∈−转化为二次函数配方求最值即可.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ; (),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠ 【答案】解:(1)()i 设D 是BC 中点,则1()2AD a b =+,重心是中线靠近边的三等分点,21()33AG AD a b ∴==+;1111()3333ii AG AB AC AM AN m n=+=+,M ,G ,N 三点共线,G 在线段MN 上,则111(0,0)33m n m n+=>>, 1111414(4)()(5)(523333m n m n m n m n n m ∴+=++=+++=,当且仅当21n m ==时取等号,4m n ∴+的最小值为3; (2)由1143AO AB AC =+可知点O 在ABC 的内部,如图所示,取AB 的中点P ,AC 的中点Q ,由外心性质可知OP AB ⊥,OQ AC ⊥,从而212AO AB AP AB c ⋅=⋅=,即2111()432AB AC AB c +⋅=,所以22111cos 432c bc BAC c +⋅∠=,故11cos 34b BACc ⋅∠=, 同理,由212AO AC AQ AC b ⋅=⋅=可得11cos 46c BAC b ⋅∠=,联立11cos ,3411cos ,46b BAC c c BAC b ⎧⋅∠=⎪⎪⎨⎪⋅∠=⎪⎩得cos 2BAC ∠=【解析】本题考查了平面向量基本定理,余弦定理,基本不等式的应用,属于综合题. (1)()i 根据重心的定义以及平面向量基本定理可表示AG ;()ii 平面向量基本定理结合基本不等式可得结果;(2)由外心性质可得关于cos BAC ∠的方程,解方程可得cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.【答案】解:3(1)cos cos cos cos cos b c a aB C A B C+=+, ()()cos cos cos cos cos 3cos .b C c B A a B C A ∴+=+由正弦定理得(sin cos cos sin )cos sin (cos cos 3cos ).B C B C A A B C A +=+ ()()sin cos sin cos cos 3cos .B C A A B C A ∴+=+ 因为0A π<<,则sin 0A >,A B C π++=,()sin sin B C A ∴+=,则()cos cos sin sin cos cos A B C B C B C =−+=−,所以,cos cos cos 3cos A B C A =+,即2cos cos cos 0A B C +=, 所以,()2sin sin cos cos cos cos 0B C B C B C −+=,2sin sin cos cos B C B C ∴=,即1tan tan .2B C =(2)由(1)得1tan tan .2B C =若tan 0tan 0B C <⎧⎨<⎩,则B 、C 均为钝角,则B C π+>,矛盾, 所以,tan 0B >,tan 0C >,此时B 、C 均为锐角,合乎题意,tan tan tan tan ()2(tan tan )4tan tan tan1B CA B C B C B C +∴=−+==−+−−=−当且仅当tan tan 2B C ==时,等号成立,且A 为钝角. tan 22A −,则()tan 22A π−,且A π−为锐角,由()()()()()()()22sin tan 22cos 1cos 0sin 0A A A sin A cos A A A πππππππ−⎧−=⎪−⎪⎪−+−=⎨⎪−>⎪⎪−>⎩,解得()22sin 3A π−,即22sin 3A ,当且仅当tan tan 2B C ==时,等号成立, 3bc =,13322sin sin 2223S bc A A ∴==⨯=因此,ABC【解析】本题主要考查正弦定理,两角和与差的三角函数公式,三角形面积公式,属于较难题. (1)利用正弦定理结合两角和的余弦公式化简可得出2sin sin cos cos B C B C =,即可求得tan tan B C 的值;(2)分析可知B 、C 均为锐角,利用两角和的正切公式结合基本不等式可得出tan 22A −,求出sin A 的最小值,即可求得S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.【答案】解:(1)如图1,12BD BC CD BC BA =+=+1111111()()2525252BF BE EF BC EA BC EB BA BC BC BA =+=+=++=+−+2155BC BA =+25BF BD ∴=又点B 是公共点,B ∴,F ,D 三点共线.(2)如图1,2222211||()422cos601724BD BD BC BA BC BC BA BA ︒==+=+⋅+=+⨯⨯+= ||7BD ∴=12AE AB BE BC BA =+=− 2222211||()122cos604324AE AE BC BA BC BC BA BA ︒∴==−=−⋅+=−⨯⨯+=||3AE ∴=2211113()()22224AE BD BC BA BC BA BC BA BC BA ⋅=−⋅+=−−⋅11334422cos602242︒=⨯−⨯−⨯⨯⨯=− cos AE ∴<,3||||37AE BD BD AE BD −⋅>===⋅⨯(3)如图2,PA BA BP =−,PC BC BP =−2()()()PA PC BA BP BC BP BA BC BP BA BP BC BP ∴⋅=−⋅−=⋅+−⋅+⋅ 设ABP θ∠=,[0,]3πθ∈,则3CBPπθ∠=−,22cos 422cos 22cos()33PA PC ππθθ⋅=⨯⨯+−⨯⨯−⨯⨯− 64cos 4(coscos sinsin )6)333πππθθθθ=−−+=−+[0,]3πθ∈,∴当6πθ=时,min ()6PA PC ⋅=−【解析】本题考查平面向量和三角函数的综合应用,属于拔高题.(1)利用平面向量的线性运算求得25BF BD =,即可求证三点共线;(2)求出||BD 、||AE 和AE BD ⋅,由夹角公式即可求解;(3)设ABP θ∠=,[0,]3πθ∈,求出6)3PA PC πθ⋅=−+,利用三角函数的性质即可求解.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围. 【答案】解:(1)由22(1cos )(1cos )cos cos 222222C B b C c B b c b C c B bsincsin −−+++=+=− 22222212222222b c a b c a c b b c a b c aa a⎛⎫++−+−++−=−+=−= ⎪⎝⎭, 所以322()b c a bcb c a +−=++,可得22()3b c a bc +−=, 则222b c a bc +−=,由余弦定理得2221cos 222b c a bc A bc bc +−===,又(0,)A π∈,解得3A π=;(2)由正弦定理得21sin ()cos sin sin sin 23222sin sin sin C C C A B m C C Cπ+−+++===2cos )1111222sin 22222sin cos 2sin2tan 2222C C C C C C C C +=+=+=+=+,因为c a >,所以3C π>,又23B C π+=,所以233C ππ<<,所以623C ππ<<tan 2C<<1tan2C<<, 所以12m <<,则a bm c+=的取值范围为(1,2).【解析】本题,考查利用余弦定理解三角形,利用正弦定理解决范围问题,三角恒等变换,考查了运算能力,属于中档题.(1)利用降幂公式化简,再根据余弦定理即可求解;(2)根据正弦定理及三角恒等变换将a b m c +=可化为122tan 2m C =+,结合233C ππ<<即可求出m 的取值范围. 11.(本小题12分)对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅= 【答案】(Ⅰ)解:对于①,设120k k αβ+=,则可得1220k k +=,所以,αβ线性相关; 对于②,设1230k k k αβγ++=,则可得{12312312325020240k k k k k k k k k ++=++=++=,所以1220k k +=,30k =,所以,,αβγ线性相关;对于③,设12340k k k k αβγδ+++=,则可得{124134234000k k k k k k k k k ++=++=++=,解得123412k k k k ===−,所以,,,αβγδ线性相关;(Ⅱ)解:设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,因为向量α,β,γ线性无关,所以{131223000k k k k k k +=+=+=,解得1230k k k ===, 所以向量αβ+,βγ+,αγ+线性无关,(Ⅲ)证明:(ⅰ1122)0m m k k k ααα++⋅⋅⋅+=,如果某个0i k =,1i =,2,⋯,m ,则112211110i i i i m m k k k k k ααααα−−+++++++⋅⋅⋅+=,因为任意1m −个都线性无关,所以1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0, 所以这些系数1k ,2k ,⋅⋅⋅,m k 或者全为零,或者全不为零,(ⅱ)因为10l ≠,所以1l ,2l ,⋅⋅⋅,m l 全不为零,所以由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l l l l ααα=−−⋅⋅⋅−,代入11220m m k k k ααα++⋅⋅⋅+=可得2122211()0m m m m l l k k k l l αααα−−⋅⋅⋅−++⋅⋅⋅+=,所以2122111()()0m m m l l k k k k l l αα−++⋅⋅⋅+−+=, 所以21210l k k l −+=,⋯,110m m l k k l −+=,所以1212.m mk k k l l l ==⋅⋅⋅= 【解析】本题主要考查平面向量的综合运用,新定义概念的理解与应用等知识,属于较难题. (Ⅰ)根据定义逐一判断即可;(Ⅱ)设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,然后由条件得到1230k k k ===即可;(Ⅲ)(ⅰ)如果某个0i k =,1i =,2,⋯,m ,然后证明1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0即可;(ⅱ)由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l ll l ααα=−−⋅⋅⋅−,然后代入11220m m k k k ααα++⋅⋅⋅+=证明即可.12.(本小题12分)已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQQ 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由;(2)用n t 表示1.n t +【答案】解:(1)该同学的结论正确,证明如下:由已知,得||3AB =,||3OB =,||2OA =,由余弦定理知222||||||2cos 32||||2OB AB OA ABO OB AB+−∠===, 又111||||3AP t b a t =−=,则111||||||33BP AB AP t =−=−,11112||||cos )(1)||3BQ BP ABO t t b ∴=⋅∠=−=−, 即112(1)3BQ tb =−−⋅;(2)由已知1cos ||||2a b AOB a b ⋅∠===⋅⨯,||||3OB AB ==,cos BAO ∴∠=1||||cos (2||)n n nAP AR BAO OR +∴=⋅∠=−|cosn OQ AOB =⋅∠1||)6n BQ =−⋅1||cos 66n BP ABO =+⋅∠1||)69n AP =+⋅ 1||9n AP =⋅, 即151||3||189n n t b at b a +−=−−1n +=, 115.918n n t t +∴=−+【解析】本题考查了向量的数量积、向量的夹角,涉及余弦定理及数列的递推关系,属于较难题. (1)由余弦定理结合向量条件求出cos ABO ∠即可证得.(2)由向量的夹角先求出cos AOB ∠,再求出151||3||189n n AP AP +=−⋅,即可解答.13.(本小题12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CACB x DA DB=叫做这四个有序点的交比,记作().ABCD(1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD 的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A【答案】解:(1)由题意,在AOC ,AOD ,BOC ,BOD 中,1sin sin 21sin sin 2AOC BOC OA OC AOCS CA OA AOCCB S OB BOCOB OC BOC ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2AOD BOD OA OD AODS DA OA AODDB S OB BODOB OD BOD ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠,则sin sin sin sin ()sin sin sin sin OA AOC OB BOD AOC BODCB ABCD DA OB BOC OA AOD BOC AOD DB⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠①又,在EOG ,EOH ,FOG ,FOH 中,1sin sin 21sin sin 2EOG FOG OE OG EOGS GE OE EOGGF S OF FOGOF OG FOG ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2EOH FOH OE OH EOHS HE OE EOHHF S OF FOHOF OH FOH ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 则sin sin sin sin ()sin sin sin sin GEOE EOG OF FOH EOG FOHGF EFGH HE OF FOG OE EOH FOG EOH HF⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠②,又EOG AOC ∠=∠,FOH BOD ∠=∠,FOG BOC ∠=∠,EOH AOD ∠=∠,由①②可得,sin sin sin sin sin sin sin sin AOC BOD EOG FOHBOC AOD FOG EOH∠⋅∠∠⋅∠=∠⋅∠∠⋅∠,即()()EFGH ABCD =(2)由题意3()2EFGH =,由(1)可知,3()2ABCD =,则32CACB DA DB =,即3.2CA DB CB DA =,又点B 为线段AD 的中点,即12DB DA =, 故3CACB=,又3AC =,则2AB =,1BC =, 设OA x =,OC y =,且OB =,由ABO CBO π∠=−∠可知,coscos 0ABO CBO ∠+∠=, 2222220=,解得22215x y +=③,又在AOB 中,利用正弦定理可知,sin sin AB xAOB ABO =∠∠④,在BOC 中,利用正弦定理可知,sin sin OByBCO CBO=∠∠⑤,且sin sin ABO CBO ∠=∠,则④⑤可得,sin 3sin 2x AB BCOy AOB OB ∠=⋅==∠,即x =⑥, 由③⑥解得,3x=,y =,即3OA =,OC =,则222222325cos .22326OA AB OB A OA AB +−+−===⋅⨯⨯【解析】本题考查新定义问题,正,余弦定理的综合应用,三角形面积公式,属于较难题.(1)由题意,结合新定义可得sin sin ()sin sin CAAOC BODCB ABCD DA BOC AOD DB∠⋅∠==∠⋅∠①,同理sin sin ()sin sin EOG FOHGF EFGH HE FOG EOH HF∠⋅∠==∠⋅∠②,再利用角相等,即可证明;(2)结合(1)中的结论,利用正余弦定理,逐步分析求解即可. 14.(本小题12分)如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O(1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S 的取值范围. 【答案】解:(1)依题意,因为2BD DC =,所以1121()3333AD AB BD AB BC AB BA AC AB AC =+=+=++=+,因为G 、O 、C 三点共线所以存在实数m 使得GO mOC =,所以111m AO AC AG m m=+++, 因为32AG GB =,所以11211115m m AO AC AG AC AB m m m m =+=+⨯++++, 又因为AO t AD =,所以22135(1)31mt t m m ⎧==⎨++⎩,解得:12t =,15m =综上所述,1.2t =(2)证明:()i 根据题意(1)AB AE EB AE AE AE λλ=+=+=+,同理可得:(1)AC AF μ=+,由(1)可知,111236AO AD AB AC ==+,所以1136AO AE AF λμ++=+, 因为E ,O ,F 三点共线,所以存在实数n ,使得EO nEF =所以(1)AO n AE nAF =−+ 所以11136n n λμ++⎧−==⎨⎩, 化简得23λμ+=, 又因为0λ>,0μ>所以21129(2)()2228λμλμλμ+==,当且仅当322λμ==,即34λ=,32μ=时等号成立. ()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以2111(1)||(1)||sin ||||sin 22(1)(1)11||||sin 2AE AF BAC AE AF BAC S S AE AF BAC λμλμ++∠−∠==++−∠, 由()i 可知23λμ+=,则320μλ=−>,所以302λ<<,所以2221172232()22S S λλλ=−++=−−+,易知,当12λ=时,21S S 有最大值7.2则2137(,].22S S ∈ 【解析】本题主要考查平面向量的基本定理,考查三角形的面积,考查二次函数的最值,利用基本不等式求最值,属于较难题.(1)由题知2133AD AB AC =+,12115m AO AC AB m m =+⨯++,根据AO t AD =,化简即可;(2)()i 根据题意(1)AB AE λ=+,(1)AC AF μ=+,根据E ,O ,F 三点共线,存在实数n ,使得EO nEF =,有(1)AO n AE nAF =−+,化简可得23λμ+=,利用基本不等式即可得解;()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以221172()22S S λ=−−+,利用二次函数的最值即可得解. 15.(本小题12分)如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值. 【答案】解:(1)由题知,22OA e =,122OB e e =−,则22121222(2)424cos6020;OAOB e e e e e e ︒⋅=⋅−=⋅−=−=(2)①由题知,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,由(1)知OA OB ⊥,又||2OA =,212||(2)4OB e e =−==则ABC 面积为1322ABCS=⨯⨯=②由①知,2,1OC OA OB =−−=<−−>,则2,3BA OA OB =−=<−>,4,0BC OC OB =−=<−>,2,3AC OC OA =−=<−−>,则212||(23)4BA e e =−+==||4BC =,212||(23)4AC e e =−−=设AB c =,AC b =,BC a =, 则由11tan tan tan mA B C+=,结合正弦、余弦定理化简得: 11sin cos cos tan ()()tan tan cos sin sin C A Bm C A B C A B=+=+ sin cos sin cos sin sin sin()cos sin sin cos sin sin C A B B A C A B C A B C A B ++=⋅=⋅ 22222sin 12sin sin cos C c ab A B C ab a b c =⋅=⋅+− 22222271161972c a b c ⨯===+−+−, 故1.2m =【解析】本题考查了余弦定理、三角形面积公式和向量的数量积,属于较难题.(1)先得出OA =⟨0,2⟩22e =,OB =⟨2,1−⟩122e e =−,由向量的数量积计算可得结果;(2)①OA =⟨0,2⟩,OB =⟨2,1−⟩,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,计算面积即可;②易得11()tan tan tan m C A B=+⋅,由三角恒等变换和余弦定理化简可得结果. 16.(本小题12分)法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形;(2)若123O O O ABCSmS= ,求m 的最小值.【答案】解:(1)如图,连接 1AO , 3AO ,则13AO =,33AO =, 133O AO A π∠=+在 13O AO 中,由余弦定理得: 222131313132cos O O AO AO AO AO O AO =+−⋅⋅∠ , 即22222132cos 32cos 33333b c bc A b c bc O O A ππ⎛⎫+−+ ⎪⎛⎫⎝⎭=+−⋅⋅+= ⎪⎝⎭2212cos 23b c bc A A ⎛⎫+−⨯ ⎪ ⎪⎝⎭==22222222sin 2sin 363b c a b c Aa b c A+−+−+++==+ 同理可得222212sin 6a b c O O B ++= ,sin sin a bA B= , sin sin a B b A ∴= , 1213O O O O ∴= .同理: 1223O O O O = ,即 123O O O为等边三角形.12322213cos sin (2)sin 4432O O O b c bc A A m SO O bc A +−+=⨯=⨯=)()21sin cos sin b c m A A A c bϕ∴+−+=+,(其中sin ϕ=,cos ϕ=,22b c b c c b cb+⨯= , )max21sin cos m A A ⎤−+=⎦, 12 ,解得: 1m当且仅当 3A π=, b c = 时 m 取到最小值1.【解析】本题考查利用正弦定理、余弦定理判定三角形的形状,考查三角形的面积公式,属于难题.(1)连接 1AO , 3AO ,在 13O AO 中,由余弦定理可求出 13O O,同理可得 12O O ,再结合正弦定理即可证明 1213O O O O = ,同理可得 1223OO O O = ;(2)由 123O O O ABCSmS= 化简可得 ()sin b c A c b ϕ+=+ ,再由基本不等式求出 b c c b+ 的最小值,即可求出m 的最小值.。

第二部分 考前第9天 三角函数、平面向量

第二部分  考前第9天 三角函数、平面向量
[尝试 [尝试 3] π y=sin(-2x+ )的递减区间是 的递减区间是____________. 函数 y=sin(-2x+3)的递减区间是____________.
π 5π [kπ-12,kπ+12](k∈Z) - + ∈
[答案 答案] 答案
❹三角函数左右平移变换时,一是要注意平移方向:按 三角函数左右平移变换时,一是要注意平移方向: “左加右减 ,如由 左加右减”,如由f(x)的图像变为 +a)(a>0)的图像, 的图像变为f(x+ 的图像, 左加右减 的图像变为 的图像 是由“x”变为 +a”,所以是左移 个单位;二是要注意 变为“x+ ,所以是左移a个单位 个单位; 是由 变为 x前面的系数是不是 ,如果不是 ,左右平移时,要先 前面的系数是不是1,如果不是1,左右平移时, 前面的系数是不是 化为1,再来计算. 化为 ,再来计算.
[答案 120° 答案] 答案 °
向量a在向量 上的投影 是一个实数, 向量 在向量b上的投影 在向量 上的投影|a|cosθ是一个实数,可以是正数, 是一个实数 可以是正数, 可以是负数,也可以是零. 可以是负数,也可以是零. [尝试 尝试12] 尝试 已知向量a, 满足 满足|b|= , 与 的夹角为 的夹角为60° 已知向量 ,b满足 =2,a与b的夹角为 °,
[尝试 尝试10] 下列各命题: 下列各命题: 尝试 中至少有一个为0; ①若a·b=0,则a、b中至少有一个为 ;②若a≠0,a·b=a·c, = , 、 中至少有一个为 , = , 则b=c;③对任意向量 、b、c,有(a·b)c≠a(b·c);④对任 = ; 对任意向量a、 、 , ; 一向量a, 一向量 ,有a2=|a|2.其中正确命题的个数有 其中正确命题的个数有 A.0 . C.2 . [答案 B 答案] 答案 B.1 . D.3 . ( )

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。

平面向量与解三角形基础知识

平面向量与解三角形基础知识
在得到解之后,需要进行检验 ,确保解的合理性,如角度的 范围应在$0^circ$到 $180^circ$之间。
04
平面向量与解三角形的结合应用
向量在解三角形中的应用
力的合成与分解
在物理和工程中,向量可以表示 力和速度,通过向量的合成与分 解可以解决与力相关的问题,如 力的平衡、加速度等。
速度和加速度分析
01 02
答案解析1
首先计算向量$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$的模长,然后利用向量的夹角公式计算 夹角。
答案解析2
利用向量的坐标运算求出边AB上的高所在的直线斜率,然后利用点斜 式求出直线方程。
03
答案解析3
利用向量的夹角公式计算夹角的余弦值。
平面向量与解三角形基础知识

CONTENCT

• 平面向量基本概念 • 平面向量的数量积和向量积 • 解三角形基础知识 • 平面向量与解三角形的结合应用 • 练习题与答案解析
01
平面向量基本概念
向量的表示与定义
总结词
平面向量通常用有向线段表示,包括 起点、方向和长度。
详细描述
平面向量是一种既有大小又有方向的 量,通常用有向线段表示,包括起点 、方向和长度。向量的大小称为模, 表示为向量的长度。
解三角形的步骤和注意事项
01
02
03
04
确定解的类型
根据题目条件和要求,确定解 的类型是角度、边长还是角度 和边长都需要求解。
选择合适的公式
根据解的类型,选择合适的公 式进行计算,如正弦定理、余 弦定理等。
计算过程需谨慎
在计算过程中,需要注意单位 的统一和计算的准确性,避免 出现误差。

第五章 平面向量、解三角形

第五章  平面向量、解三角形

第五章 平面向量、解三角形第二节 解三角形第一部分 五年高考荟萃 2009年高考题1.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==+且75A ∠=o,则b =( )A.2 B .4+23 C .4—23 D .62- 答案 A解析 026sin sin 75sin(3045)sin 30cos 45sin 45cos304A +==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得261sin 2sin 2264ab B A+=⋅=⨯=+,故选A2.(2009全国卷Ⅱ文)已知△ABC 中,12cot 5A =-,则cos A =( )A .1213 B.513 C. 513- D. 1213-答案 D解析 本题考查同角三角函数关系应用能力,先由cotA=125-知A 为钝角,cosA<0排 除A 和B ,再由1312cos 1cos sin ,512sin cos cot 22-==+-==A A A A A A 求得和.3.(2009全国卷Ⅱ理)已知ABC ∆中,12cot 5A =-, 则cos A = ( )A. 1213B.513C.513-D. 1213-答案 D解析 已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈.221112cos 1351tan 1()12A A=-=-=-++-故选D. 4.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 , AC 的取值范围为 .答案 2)3,2(解析 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈5.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222a c b -=左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2)sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.解法一:在ABC ∆中sin cos 3cos sin ,A C A C = 则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc +-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠. 所以2cos 2b c A =+①又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin bB C c=,故4cos b c A = ②由①,②解得4b =.评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练。

平面向量与三角形中的范围与最值问题

平面向量与三角形中的范围与最值问题

第01讲平面向量与三角形中的范围与最值问题【学习目标】1.掌握求平面向量范围与最值问题的基本方法2.掌握求解三角形中范围与最值问题的基本方法和常见的模型【基础知识】知识点一.平面向量范围与最值问题常用方法:1.定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论2.坐标法第一步: 根据题意建立适当的直角坐标系并写出相应点的坐标第二步: 将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解3.基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论4.几何意义法第一步: 先确定向量所表达的点的轨迹第二步: 根据直线与曲线位置关系列式第三步:解得结果知识点二.极化恒等式1.平行四边形平行四边形对角线的平方和等于四边的平方和:()22222==+=+⋅+(1)C2AC A a b a a b b()22222==-=-⋅+(2)DB DB a b a a b b2(1)(2)两式相加得:2.极化恒等式: 上面两式相减,得:()()2214a b a b ⎡⎤+--⎢⎥⎣⎦————极化恒等式 (1)平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦ 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41。

(2)三角形模式:2214a b AM DB ⋅=-(M 为BD 的中点)AB CM知识点三.在解三角形专题中,求其“范围与最值”的问题,一直都是这部分内容的重点、难点。

解决这类问题,通常有下列五种解题技巧:(1)利用基本不等式求范围或最值;(2)利用三角函数求范围或最值;(3)利用三角形中的不等关系求范围或最值;(4)根据三角形解的个数求范围或最值;(5)利用二次函数求范围或最值.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.【考点剖析】考点一:定义法例1.若ABC 中,2AB =,其重心G 满足条件:0BG AG ⋅=,则()22+CA CB AB BC ⋅取值范围为() A .()80,160-B .()80,40-C .()40,80-D .()160,80-考点二:坐标法例2.在矩形ABCD 中,2AB =,1BC =,点E 为边AB 的中点,点F 为边BC 上的动点,则DE DF ⋅的取值范围是()A .[]2,4B .[]2,3C .[]3,4D .[]1,4考点三:基底法例3.如图,已知点(2,0)P ,正方形ABCD 内接于⊙22:2O x y +=,M 、N 分别为边AB 、BC 的中点,当正方形ABCD 绕圆心O 旋转时,PM ON ⋅的取值范围是()A .[]1,1-B .2,2⎡⎣C .[]2,2-D .22⎡⎢⎣⎦考点四:几何意义法例4.在ABC 中,3AB =,4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12考点五:极化恒等式例5.已知圆C 的半径为2,点A 满足4AC =,E ,F 分别是C 上两个动点,且23EF =则AE AF⋅的取值范围是()A .[6,24]B .[4,22]C .[6,22]D .[4,24]【真题演练】1.在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-2.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是()A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-3.已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( ) A .2-12+1⎤⎦,B .2-12+2⎡⎤⎣⎦,C .12+1⎡⎤⎣⎦,D .12+2⎡⎤⎣⎦,4.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .3 5.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-6.已知AB AC ⊥,1AB t =,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP AB AC =+,则·PB PC 的最大值等于().A .13B .15C .19D .217.已知向量,a b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______. 8.设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______. 9.已知a 是平面内的单位向量,若向量b 满足()0b a b ⋅-=, 则||b 的取值范围是___________.10.如图,已知点O (0,0),A (1,0),B (0,−1),P 是曲线y OP BA ⋅的取值范围是______.11.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ== 则AE AF ⋅的最小值为_____________________. 12.已知向量12a b a b ==,,||,||,若对任意单位向量e ,均有6a e b e ⋅+⋅≤||||,则a b ⋅的最大值是. 13.已知平面向量a ,b ,||1,||2,1a b a b ==⋅=.若e 为平面单位向量,则||||a e b e ⋅+⋅的最大值是______.【过关检测】1.在ABCD 中,2,1,60AB BC DAB ==∠=︒,若E 为ABCD 内一动点(含边界),则AE BC ⋅的最大值是()A .1B .2CD .22.已知点P 是边长为2的正三角形ABC 的边BC 上的动点,则()AP AB AC ⋅+=()A .最大值为6B .为定值6C .最小值为3D .为定值33.已为向量a 、b 的夹角为3π,||2||2b a ==,向量c xa yb =+且x ,[1,2]y ∈.则向量a 、c 夹角的余弦值的最大值为()A B C 4.已知正方形ABCD 的边长为2,M 为正方形ABCD 的内部或边界上任一点,则MC MD ⋅的最大值是(). A .1B .2C .3D .45.在△ABC 中,3cos 4A =,O 为△ABC 的内心,若(),R AO xAB yAC x y =+∈,则x +y 的最大值为()A .23B 6.在矩形ABCD 中,1AB =,2AD =,动点P 在以点A 为圆心的单位圆上.若(),R AP AB AD λμλμ=+∈,则λμ+的最大值为()A .3B D .2 7.已知单位向量a ,b 满足0a b ⋅=,若()()0a c b c -⋅-=,并且c a b λμ=+,那么λμ+的最大值为()A .2B .D .32 8.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅=,则c 的最小值为() A .2B .4C D .17 9.已知P 是等边三角形ABC 所在平面内一点,且AB =1BP =,则AP CP ⋅的最小值是() A.1BC .210.如图所示,点C 在以O 为圆心2为半径的圆弧AB 上运动,且AOB 120∠=,则CB CA 的最小值为() A .4-B .2-C .0D .211.飞镖运动于十五世纪兴起于英格兰,二十世纪初,成为人们在酒吧日常休闲的必备活动.某热爱飞镖的小朋友用纸片折出如图所示的十字飞镖,该十字飞镖由四个全等的四边形拼成.在四边形ABCO 中,OA OC ⊥,4OA OC ==,AC BC ⊥,AC BC =,点P 是八边形ABCDEFGH 内(不含边界)一点,则OA AP ⋅的取值范围是()A .(16,48)-B .(48,16)-C .(-D .(-12.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦ 13.如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是()A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦第01讲平面向量与三角形中的范围与最值问题【学习目标】1.掌握求平面向量范围与最值问题的基本方法2.掌握求解三角形中范围与最值问题的基本方法和常见的模型【基础知识】知识点一.平面向量范围与最值问题常用方法:1.定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论2.坐标法第一步: 根据题意建立适当的直角坐标系并写出相应点的坐标第二步: 将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解3.基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论4.几何意义法第一步: 先确定向量所表达的点的轨迹第二步: 根据直线与曲线位置关系列式第三步:解得结果知识点二.极化恒等式1.平行四边形平行四边形对角线的平方和等于四边的平方和:()22222==+=+⋅+(1)AC A a b a a b bC2()22222==-=-⋅+(2)2DB DB a b a a b b(1)(2)两式相加得:2.极化恒等式: 上面两式相减,得:()()2214a b a b ⎡⎤+--⎢⎥⎣⎦————极化恒等式 (1)平行四边形模式:2214a b AC DB ⎡⎤⋅=-⎣⎦ 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的41。

专题:平面向量[答案版]

专题:平面向量[答案版]

高考专题复习:平面向量【专题要点】向量的概念、向量的表示方法、零向量、单位向量、平行向量、相等向量、向量的加法和减法、实数与向量的积、向量共线定理、平面向量基本定理、向量的数量积、两向量平行、垂直的充要条件.【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,也常会与三角函数相结合,以解答题的形式出现。

例1、(湖北)设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=( )A.(-15,12)B.0C.-3D.-11例2、(广东)已知平面向量),2(),2,1(m -==,且∥,则32+=( )A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10)例3、(海南)已知平面向量a =(1,-3),b =(4,-2),a b λ+ 与a垂直,则λ是( )A. -1B. 1C. -2D. 2点评:向量的模、向量的数量积的运算是经常考查的内容,难度不大,只要细心,运算不要出现错误即可。

题型一:向量的加、减法、向量数乘运算及其几何意义1. (09广东)已知向量a=(1,2),b=(1,0),c=(3,4)。

λ为实数, ()a b λ+∥c ,则λ=( )A . 14B .12C .1D .2 2.(12广东)若向量(1,2),(3,4)AB BC == ,则AC = ( ) ()A (4,6) ()B (4,6)-- ()C (,)-2-2 ()D (,)22 题型二:平面向量的坐标表示与运算3.已知()12a = ,,()32b =- ,,当ka b + 与3a b - 平行,k 为何值( )A 14B -14C -31D 31 题型三:数量积运算、向量求模4. 已知向量(1sin )a θ= ,,)b θ= ,则a b - 的最大值为 . 5.已知7a = ,2b = ,a 与b 的夹角为60 ,求(3)(5)a b a b -+ = .6.已知2,1,a b == a 与b 的夹角为π3,那么4a b - 等于( ) A .2 B..6 D .127.(07广东)若向量,a b 满足||||1a b == ,a 与b 的夹角为60︒,则a a a b ⋅+⋅= ( )A .12B .32C.12+ D .2 题型四:向量平行与垂直性质的应用8.(05广东)已知向量,//),6,(),3,2(x 且==则x = .9. 已知平面向量()1,2a = , ()2,b m =- , 且//a b , 则b = ( )10. 平面向量(2,6)a = , (,1)b m =- , 且a b ⊥ , 则m = .题型五:平面向量在平面几何11. (09广东)已知平面向量a =,1x (),b =2,x x (-), 则向量+a b ( ) A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线 12.(06广东)如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD = (A.12BC BA -+B. 12BC BA --C. 12BC BA -D. 12BC BA + 点评:用三角形法则或平行四边形法则进行向量的加减法运算是向量运算的一个难点,体现数形结合的数学思想。

高中数学课件-第9讲 向量法求空间距离、折叠及探索性问题

高中数学课件-第9讲 向量法求空间距离、折叠及探索性问题

第9讲 向量法求空间距离、折叠及探索性问题1.会求空间中点到直线、点到平面的距离.2.会用向量法探考试要求究空间几何体中线、面的位置关系、角的存在条件与折叠问题.01聚焦必备知识知识梳理3.线面距离、面面距离都可以转化为点到平面的距离.1.思考辨析(在括号内打“ √”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( )(2)点到直线的距离也就是该点到直线上任一点连线的长度.( )(3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( )(4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( )夯基诊断××√×2.回源教材(1)已知平面ABC的一个法向量为n=(1,2,1),向量=(0,,0),则点F到平面ABC的距离为________.(3)已知棱长为1的正方体ABCD -A1B1C1D1,则平面AB1C与平面A1C1D 之间的距离为________.02突破核心命题考 点 一利用空间向量求距离考向 1点到直线的距离例1 如图,在棱长为1的正方体ABCD -A1B1C1D1中,O为平面A1ABB1的中心,E为BC的中点,求点O 到直线A1E的距离.用向量法求点到直线的距离的一般步骤(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.反思感悟例2 如图,已知四边形ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,CG 垂直于正方形ABCD 所在的平面,且CG =2,则点B 到平面EFG的距离为________.2点到平面的距离用向量法求点面距离的步骤(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.反思感悟训练1 如图,在正三棱柱ABC -A1B1C1中,各棱长均为4,N是CC1的中点.(1)求点N到直线AB的距离;(2)求点C1到平面ABN的距离.考 点 二折叠问题(1)当AB∥平面PCD时,求PD的长;(2)当三棱锥P -COD的体积最大时,求平面OPD与平面CPD夹角的余弦值.反思感悟翻折问题中的解题关键是要结合图形弄清翻折前后变与不变的关系,尤其是隐含的垂直关系.一般地翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.训练2 (2024·泉州模拟)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,以CD为折痕把△ACD折起,使点A到达点P的位置,且∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点(如图②).图① 图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.(2)因为CD⊥DB,CD⊥DP,DB∩DP=D,所以CD⊥平面DBP.如图,过点D作直线垂直平面BDC,作空间直角坐标系,设PD=DB=DC=2,例4 (2024·山东省实验中学月考)如图,在三棱柱ABC -A 1B 1C 1中,△AB 1C 为等边三角形,四边形AA 1B 1B 为菱形,AC ⊥BC ,AC =4,BC=3.考 点 三探索性问题图①解:(1)证明:连接A 1B 与AB 1相交于点F ,连接CF ,如图①所示.∵四边形AA 1B 1B 为菱形,∴F 为AB 1的中点,BF ⊥AB 1.∵△AB 1C 为等边三角形,∴CF ⊥AB 1,又BF ,CF ⊂平面BFC ,BF ∩CF =F ,∴AB 1⊥平面BFC .又A 1C ⊂平面BFC ,∴AB 1⊥A 1C .(2)设O,G分别为AC,AB的中点,连接B1O,OG,由(1)可知AB1⊥BC,又AC⊥BC,AB1,AC⊂平面AB1C,AB1∩AC=A,∴BC⊥平面AB1C.又OG∥BC,∴OG⊥平面AB1C.∵△AB1C为等边三角形,∴B1O⊥AC,故OG,OC,OB1两两垂直.图②1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.反思感悟又AC⊥PB,PB∩AB=B,且PB,AB⊂平面PAB,所以AC⊥平面PAB.又AC⊂平面ABCD,所以平面PAB⊥平面ABCD.(2)假设存在Q,使得平面BEQF⊥平面PAD.取AB的中点为H,连接PH,则PH⊥AB,因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,所以PH⊥以A为坐标原点,AB,AC所在直线分别为x,y轴,建立如图所示的空间直角坐标系.03限时规范训练(五十五)(1)求PD的长;(2)求点C到平面PEB的距离.解:(1)由题意知DP,DA,DC三线两两垂直.如图所示,以D为坐标原点,DA,DC,DP分别为x轴、y轴、z轴建立空间直角坐标系,则D(0,0,0),B(2,2,0),E(1,0,0).。

用平面向量解三角形问题

用平面向量解三角形问题

第五编 平面向量、解三角形§5.1 平面向量的概念及线性运算基础自测 1.下列等式正确的是 (填序号).①a +0=a ②a +b =b +a ③+≠0 ④=++答案 ①②④2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0答案 ①②④3.(2008²广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 32a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -21a 5.设四边形ABCD 中,有=21,且||=||,则这个四边形是 . 答案 等腰梯形例1 给出下列命题①向量的长度与向量的长度相等;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③两个有共同起点并且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量;⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为 .答案 4例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a ,=b,=c,试用a 、b 、c 表示,,+.C D∵MN =MD ++AN ,∴=-21,=-,=21, ∴MN =21a -b -21c . +CN =+MN +CM +MN =2MN =a -2b -c .例3 设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵=a +b ,=2a +8b ,=3(a -b ),∴=+=2a +8b +3(a -b )=2a +8b +3a -3b=5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.例4 (14分)如图所示,在△ABO 中,=41, =21,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量.解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b .=-=21-=-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得=t ,即(m -1)a +n b =t (-a +21b ). 4分 ∴(m -1)a +n b =-t a +21t b . ⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分∴又∵CM =-=m a +n b -41a =(m -41)a +n b . =-=b -41a =-41a +b . 又∵C 、M 、B 三点共线,∴与共线. 10分∴存在实数t 1,使得=t 1,∴(m -41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m ,消去t 1得,4m +n =1 ② 12分由①②得m =71,n =73, ∴OM =71a +73b . 14分1.下列命题中真命题的个数为 .①若|a |=|b |,则a =b 或a =-b ;②若=,则A 、B 、C 、D 是一个平行四边形的四个顶点;③若a =b ,b =c ,则a =c ;④若a ∥b ,b ∥c ,则a ∥c . 答案 12.在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =31OB .DC 与OA 交于E ,设=a ,=b ,用a , b 表示向量,. 解 因为A 是BC 的中点,所以=21(+),即=2-=2a -b ; =-=-32=2a -b -32b =2a -35b . 3.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,31(a +b )三向量的终点在同一条直线上? 解 设=a ,=t b ,=31(a +b ), ∴=-=-32a +31b ,=-=t b -a . 要使A 、B 、C 三点共线,只需AC =λ即-32a +31b =λt b -λa a b∴有 ⎪⎪⎩⎪⎪⎨⎧=-=-t λλ3132,∴⎪⎪⎩⎪⎪⎨⎧==2132t λ ∴当t =21时,三向量终点在同一直线上. 4.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解 方法一 设e 1=BM ,e 2=, 则=+CM =-3e 2-e 1,=+=2e 1+e 2.=λ=-3λe 2-λe 1,因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使=μ=2μe 1+μe 2,∴=-=(λ+2μ)e 1+(3λ+μ)e 2, 另外=+=2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴=54,=53,∴AP ∶PM =4∶1. 方法二 设=λAM , ∵=21(+)=21+43, ∴=2λ+43λ. ∵B 、P 、N 三点共线,∴-=t (-),∴=(1+t )-t ∴⎪⎪⎩⎪⎪⎨⎧-=+=t t λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM =4∶1.一、填空题1.下列算式中正确的是 (填序号).①++=0 ②-= ③0²=0 ④λ(μa )=λ²μ²a 答案 ①③④2.(2008²全国Ⅰ理)在△ABC 中,=c ,=b ,若点D 满足=2,则= (用b ,c 表示). 答案 32b +31c11是 .答案 等腰梯形4.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a 1+b 2,且点P 落在第Ⅲ部分,则实数a ,b 满足a 0,b 0.(用“>”,“<”或“=”填空)答案 > <5.设=x +y ,且A 、B 、C 三点共线(该直线不过端点O ),则x +y = .答案 16.已知平面内有一点P 及一个△ABC ,若++=,则点P 在线段 上.答案 AC7.在△ABC 中,=a ,=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则可用a 、b 表示为 . 答案 -32a +31b 8.在△ABC 中,已知D 是AB 边上一点,若=2,=31+λ,则λ= . 答案 32 二、解答题9.如图所示,△ABC 中,=32,DE ∥BC 交AC 于E ,AM 是BC 边上中线,交DE 于N .设=a ,=b ,用a ,b 分别表示向量,,,,,. 解 ⎪⎭⎪⎬⎫=BC DE 32//⇒=32=32b . BC =AC -=b -a .由△ADE ∽△ABC ,得=32=32(b -a ). 由AM 是△ABC 的中线,DE ∥BC ,得=21DE =31(b -a ). 而且=+=a +21=a +21(b -a ) =21(a +b ). ⎪⎭⎪⎬⎫=∆∆ABM ADN 32⇒=32=31(a +b ). 10.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,=32,=a ,=b . (1)用a 、b 表示向量、、、、;(2)求证:B 、E 、F 三点共线.(1)解 延长AD 到G ,使=21, 连接BG 、CG ,得到 ABGC , ∽AD =21=21(a +b ), =32=31(a +b ). =21=21b , =-=31(a +b )-a =31(b -2a ). =-=21b -a =21(b -2a ). (2)证明 由(1)可知=32BF ,所以B 、E 、F 三点共线. 11.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:=21(+). 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴+=0,FB +=0,又∵+++=0, ∴=++ ① 同理=++ ② 由①+②得,2=++(+)+(+)=+.∴=21(+). 方法二 连结,,则=+DC ,=+AB ,∴=21(+) =21(+++) =21(+). 12.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且=x ,=y , 求x 1+y1的值. 解 根据题意G 为三角形的重心,故AG =31(+AC ), =-=31(+)-x=(31-x )+31, =-=y - =y -31(+) =(y -31)-31, 由于MG 与GN 共线,根据共线向量基本定理知=λ⇒(31-x )+31 =λ⎥⎦⎤⎢⎣⎡--AB AC y 31)31(, ⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131y x λλ⇒3131--x =3131-y ⇒x +y -3xy =0两边同除以xy 得x 1+y1=3. §5.2 平面向量基本定理及坐标表示基础自测 1.已知平面向量a =(1,1),b =(1,-1),则向量21a -23b = . 答案 (-1,2) 2.(2008² 安徽理)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则= . 答案 (-3,-5)3.若向量a =(1,1),b =(1,-1),c =(-2,1),则c = (用a ,b 表示).答案 -21a -23b 4.已知向量a =⎪⎭⎫ ⎝⎛x 2`1,8,b =(x ,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为 . 答案 45.设a =⎪⎭⎫ ⎝⎛43,sin x ,b =⎪⎭⎫ ⎝⎛x ,cos 2131,且a ∥b ,则锐角x 为 . 答案4π例1 设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e1+2e 2,=-8e 1-2e 2,求证:A 、C 、D 三点共线;121212(1)证明 =e 1-e 2,BC =3e 1+2e 2, CD =-8e 1-2e 2,=+=4e 1+e 2=-21(-8e 1-2e 2)=-21, ∴与共线, 又∵与有公共点C , ∴A 、C 、D 三点共线.(2)解 =+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-k e 2),由平面向量的基本定理,得⎩⎨⎧-=-=kλλ223,解之得λ=32,k =34. 例2 已知点A (1,0)、B (0,2)、C (-1,-2),求以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.解 设D 的坐标为(x ,y ).(1)若是 ,则由=DC 得(0,2)-(1,0)=(-1,-2)-(x ,y ),即(-1,2)=(-1-x ,-2-y ),∴⎩⎨⎧=---=--2211y x , ∴x =0,y =-4.∴D 点的坐标为(0,-4)(如图中的D 1).(2,则由=CB 得(x ,y )-(1,0)=(0,2)-(-1,-2),即(x -1,y )=(1,4).解得x =2,y =4.∴D 点坐标为(2,4)(如图中的D 2).(3,则由=得(0,2-(1,0)=(x ,y )-(-1,-2),即(-1,2)=(x +1,y +2).解得x =-2,y =0.∴D 点的坐标为(-2,0)(如图中的D 3).综上所述,以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(0,-4)或(2,4)或(-2,0). 例3 (14分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k ;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解 (1)∵(a +k c )∥(2b -a ),又a +k c =(3+4k ,2+k ),2b -a =(-5,2), 2分 ∴2³(3+4k )-(-5)³(2+k )=0, 4分 ∴k =-1316. 6分 (2)∵d -c =(x -4,y -1),a +b =(2,4),又(d -c )∥(a +b )且|d -c |=1,∴()()()()⎪⎩⎪⎨⎧=-+-=---1140124422y x y x , 10分 解得⎪⎪⎩⎪⎪⎨⎧+=+=5521554y x 或⎪⎪⎩⎪⎪⎨⎧-=-=5521554y x . 12分∴d =⎪⎪⎭⎫ ⎝⎛++55255520,或d =⎪⎪⎭⎫ ⎝⎛--55255520,. 14分1.如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM =c ,=d ,试用c ,d 表示,AD . 解 方法一 设AB =a ,AD =b ,则a =+=d +⎪⎭⎫ ⎝⎛-b 21 b =+=c +⎪⎭⎫ ⎝⎛-a 21 将②代入①得a =d +⎪⎭⎫ ⎝⎛-21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+a c 21 ⇒a =d 34-32c ,代入② 得b =c+⎪⎭⎫ ⎝⎛-21=⎪⎭⎫ ⎝⎛-c d 323434c -32d 即=34d-32c ,=34c -32d 方法二 设=a ,=b .因M ,N 分别为CD ,BC 的中点,所以=21b ,=21a , 因而⇒⎪⎪⎩⎪⎪⎨⎧+=+=b a d a b c 2121⎪⎪⎩⎪⎪⎨⎧-=-=)2(32)2(32d c b c d a , 即AB =32(2d -c ), AD =32(2c -d ). 2.已知A (-2,4)、B (3,-1)、C (-3,-4)且CM =3,=2,求点M 、N 及的坐标. 解 ∵A (-2,4)、B (3,-1)、C (-3,-4), ∴=(1,8),=(6,3),∴CM =3=(3,24),=2=(12,6). 设M (x ,y ),则有CM =(x +3,y +4),∴⎩⎨⎧=+=+24433y x ,∴⎩⎨⎧==200y x , ∴M 点的坐标为(0,20).同理可求得N 点坐标为(9,2),因此=(9,-18),故所求点M 、N 的坐标分别为(0,20)、(9,2),的坐标为(9,-18).3.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31. 求证:∥. 证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得=(2,2),=(-2,3), =(4,-1).AE =31=⎪⎭⎫ ⎝⎛32,32,BF =31=⎪⎭⎫ ⎝⎛-1,32 =(x 1,y 1)-(-1,0)= ⎪⎭⎫ ⎝⎛32,32, =(x 2,y 2)-(3,-1)= ⎪⎭⎫ ⎝⎛-1,32.一、填空题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则n m = . 答案 -21 2.设a 、b 是不共线的两个非零向量,已知=2a +p b ,BC =a +b ,CD =a -2b .若A 、B 、D 三点共线,则 p 的值为 .答案 -13.已知向量=(3,-2),=(-5,-1),则21= . 答案 ⎪⎭⎫ ⎝⎛-214, 4.(2007²北京文)已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λb ),则实数λ的值是. 答案 -3EF EF .AB AB的坐标为 .答案 ⎪⎭⎫ ⎝⎛272, 6.设0≤θ<2π,已知两个向量1=(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . 答案 327.(2008²全国Ⅱ文)设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ= .答案 28.(2008²菏泽模拟)已知向量m =(a -2,-2),n =(-2,b -2),m ∥n (a >0,b >0),则ab 的最小值是 .答案 16二、解答题9.已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,=c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎨⎧-=+-=+-58356n m n m ,解得⎩⎨⎧-=-=11n m . 10.若a ,b 为非零向量且a ∥b ,λ1,λ2∈R ,且λ1λ2≠0.求证:λ1a +λ2b 与λ1a -λ2b 为共线向量.证明 设a =(x 1,y 1),b =(x 2,y 2).∵a ∥b ,b ≠0,a ≠0,∴存在实数m ,使得a =m b ,即a =(x 1,y 1)=(mx 2,my 2),∴λ1a +λ2b =((m λ1+λ2)x 2,(m λ1+λ2)y 2)=(m λ1+λ2)(x 2,y 2)同理λ1a -λ2b =(m λ1-λ2)(x 2,y 2),∴(λ1a +λ2b )∥(λ1a -λ2b )∥b , 而b ≠0,∴(λ1a +λ2b )∥(λ1a -λ2b ). 11.中,A (1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若=(3,5),求点C 的坐标;(2)当||=||时,求点P 的轨迹.解 (1)设点C 坐标为(x 0,y 0),又=+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)由三角形相似,不难得出=2MP设P (x ,y ),则BP =-=(x -1,y -1)-(6,0)=(x -7,y -1),=AM +MC =21+3MP=21+3(-21) =3-=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3),∵||=||为菱形,∴AC ⊥BD ,∴⊥BP ,即(x -7,y -1)²(3x -9,3y -3)=0.(x -7)(3x -9)+(y -1)(3y -3)=0,∴x 2+y 2-10x -2y +22=0(y ≠1).∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.12.A (2,3),B (5,4),C (7,10),=+λ.当λ为何值时,(1)点P 在第一、三象限的角平分线上;(2)点P 到两坐标轴的距离相等?解 (1)由已知=(3,1),AC =(5,7),则+λ=(3,1)+λ(5,7)=(3+5λ,1+7λ).设P (x ,y ),则=(x -2,y -3),∴⎩⎨⎧+=-+=-λλ713532y x ,∴⎩⎨⎧+=+=λλ7455y x .∵点P 在第一、三象限的角平分线上,∴x =y ,即5+5λ=4+7λ,∴λ=21. (2)若点P 到两坐标轴的距离相等,则|x |=|y |,即|5+5λ|=|4+7λ|,∴λ=21或λ=-43.1.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 .答案 565 2.在边长为1的正三角形ABC 中,设=a ,=c ,=b ,则a ²b +b ²c +c ²a = . 答案21 3.向量a =(cos15°,sin15°),b =(-sin15°,-cos15°),则|a -b |的值是 .答案 34.(2009²常州市武进区四校高三联考)已知向量a =(2,1),b =(3,λ) (λ>0),若(2a -b )⊥b ,则λ= .答案 35.(2008²浙江理)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值是 . 答案 2例1 已知向量a =⎪⎭⎫ ⎝⎛x x 23sin ,23cos b =⎪⎭⎫ ⎝⎛-2sin ,2cos x x 且x ∈⎥⎦⎤⎢⎣⎡-4,3ππ. (1)求a ²b 及|a +b |; (2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.解 (1)a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , a +b =⎪⎭⎫ ⎝⎛-+2sin 23sin 2cos 23cos x x ,x x(2)由(1)可得f (x )=cos2x -2cos x =2cos 2x -2cos x -1∴当cos x =21时,f (x )取得最小值为-23; 当cos x =1时,f (x )取得最大值为-1.例2 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 (a +b )²(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β), b a +k =,1)cos(22+-+αβk kb a k -=.)cos(212k k +--αβb a +k =b a k -,).cos(2)cos(2αβαβ--=-∴k k又k ≠0,∴cos(αβ-)=0.而0<α<β<π,∴β-α=2π. 例3 (14分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π,若向量2t e 1+7e 2与e 1+t e 2的夹 角为钝角,求实数t 的范围.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()2121212·72·72e e e e e e e ++++<0, 3分 即(2t e 1+7e 2)²(e 1+t e 2)<0, 化简即得:2t 2+15t +7<0,t e 1 t t t解得-7<t <-21, 7分 当夹角为π时,也有(2te 1+7e 2)²(e 1+t e 2)<0,但此时夹角不是钝角,2t e 1+7e 2与e 1+t e 2反向. 9分设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可求得⎪⎩⎪⎨⎧<==072λλλt t ,∴⎪⎩⎪⎨⎧-=-=21414t λ 12分∴所求实数t 的范围是⎪⎪⎭⎫ ⎝⎛--2147, ⎪⎪⎭⎫ ⎝⎛--21,214. 14分1.向量a =(cos23°,cos67°),向量b =(cos68°,cos22°).(1)求a ²b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.解 (1)a ²b =cos23°²cos68°+cos67°²cos22°=cos23°²sin22°+sin23°²cos22°=sin45°=22. (2)由向量b 与向量m 共线,得m =λb (λ∈R ),u =a +m =a +λb=(cos23°+λcos68°,cos67°+λcos22°)=(cos23°+λsin22°,sin23°+λcos22°),|u |2=(cos23°+λsin22°)2+(sin23°+λcos22°)2 =λ2+2λ+1=222⎪⎪⎭⎫ ⎝⎛+λ +21, ∴当λ=-22时,|u |有最小值为22. 2.已知平面向量a =⎪⎪⎭⎫ ⎝⎛-23,21,b =(-3,-1). (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 、t ,使x =a +(t 2-2)b ,y =-k a +t 2b ,且x ⊥y ,试把k 表示为t 的函数.(1)证明 a ²b =⎪⎪⎭⎫ ⎝⎛-23,21²()1,3-- =⎪⎭⎫ ⎝⎛-21³(-3)+23³(-1)=0, ∴a ⊥b .(2)解 ∵x ⊥y ,∴x ²y =0,即[a +(t 2-2)b ]²(-k a +t 2b )=0.展开得-k a 2+[t 2-k (t 2-2)]a ²b +t 2(t 2-2)b 2=0,∵a ²b =0,a 2=|a |2=1,b 2=|b |2=4,∴-k +4t 2(t 2-2)=0,∴k =f (t )=4t 2 (t 2-2).3.设a =(cos α,sin α),b =(cos β,sin β),且a 与b 具有关系|k a +b |=3|a -k b |(k >0).(1)用k 表示a ²b ;(2)求a ²b 的最小值,并求此时a 与b 的夹角.解 (1)∵|k a +b |=3|a -k b |,∴(k a +b )2=3(a -k b )2,且|a |=|b |=1,即k 2+1+2k a ²b =3(1+k 2-2k a ²b ),∴4k a ²b =k 2+1.∴a ²b =kk 412+(k >0). (2)由(1)知:∵k >0∴a ²b =kk k k 1··2·41414≥+ =21. ∴a ²b 的最小值为21(当且仅当k =1时等号成立) 设a 、b 的夹角为θ,此时cos θ=b a b a ·=21. 0≤θ≤π,∴θ=3π. 故a ²b 的最小值为21,此时向量a 与b 的夹角为3π.一、填空题 1.点O 是三角形ABC 所在平面内的一点,满足OA ²OB =OB ² OC =OC ²OA ,则点O 是△ABC 的 心.答案 垂2.若向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a ²b +b ²b 的值为 .答案 53.已知向量a ,b 满足|a |=1,|b |=4,且a ²b =2,则a 与b 的夹角为 .答案 3π 4.若a 与b -c 都是非零向量,则“a ²b =a ²c ”是“a ⊥(b -c )”的 条件.答案 充要5.已知a ,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .答案 3π 6.(2009²成化高级中学高三期中)已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ²(b +c )= .答案 53- 7.(2008²天津理,14)如图所示,在平行四边形ABCD 中,=(1,2),=(-3,2),则²= .答案 38.(2008² 江西理,13)直角坐标平面内三点A (1,2)、B (3,-2)、C (9,7),若E 、F 为线段BC 的三等分点,则²= . 答案 22二、解答题9.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1 (k ∈R ),求k 的取值范围.(1)证明 ∵(a -b )²c =a ²c -b ²c=|a |²|c |²cos120°-|b |²|c |²cos120°=0,∴(a -b )⊥c .(2)解 |k a +b +c |>1⇔|k a +b +c |2>1, ⇔k 2a 2+b 2+c 2+2k a ²b +2k a ²c +2b ²c >1. ∵|a |=|b |=|c |=1,且a 、b 、c 的夹角均为120°, ∴a 2=b 2=c 2=1,a ²b =b ²c =a ²c =-21, ∴k 2+1-2k >1,即k 2-2k >0,∴k >2或k <0.10.已知a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛32cos ,32sin ,34cos ,34sin θθθθb ,且θ∈⎥⎦⎤⎢⎣⎡π30,. (1)求ba b a +·的最值; (2)若|k a +b |=3|a -k b | (k ∈R ),求k 的取值范围.解 (1)a ²b =-sin34θ²sin 32θ+cos 34θ²cos 32θ=cos2θ, |a +b |2=|a |2+|b |2+2a ²b =2+2cos2θ=4cos 2θ.∵θ∈⎥⎦⎤⎢⎣⎡3,0π,∴cos θ∈⎥⎦⎤⎢⎣⎡1,21,∴|a +b |=2cos θ. ∴ba b a +·= θθcos 22cos =cos θ-θcos 21. 令t =cos θ,则21≤t ≤1,⎪⎭⎫ ⎝⎛-t t 21′=1+221t >0, ∴t -t 21在t ∈⎥⎦⎤⎢⎣⎡121,上为增函数. ∴-21≤t -t21≤21, 即所求式子的最大值为21,最小值为-21. (2)由题设可得|k a +b |2=3|a -k b |2,∴(k a +b )2=3(a -k b )2又|a |=|b |=1,a ²b =cos2θ,∴cos2θ=kk 412+. 由θ∈⎥⎦⎤⎢⎣⎡π30,,得-21≤cos2θ≤1. ∴-21≤kk 412+≤1.解得k ∈[2-3,2+3] {-1}. 11.设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.解 由|m |=1,|n |=1,夹角为60°,得m ²n =21. 则有|a |=|2m +n |=2)2(n m +=2244n n ·m m ++=7.|b |=2)32(m n -=229124m n m n +⋅-=7.而a ²b =(2m +n )²(2n -3m )=m ²n -6m 2+2n 2=-27, 设a 与b 的夹角为θ, 则cos θ=b a b a ··=727-=-21.故a ,b 夹角为120°. 12.已知向量a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-222323x sin ,x cos ,x sin ,x cos b ,x ∈⎥⎦⎤⎢⎣⎡20π,.若函数f (x )=a ²b -21λ|a +b |的最小值为-23,求实数λ的值. 解 ∵|a |=1,|b |=1,x ∈⎥⎦⎤⎢⎣⎡20π,, ∴a ²b =cos 23x cos 2x -sin 23x sin 2x =cos2x , |a +b |=2)(b a +=222b b a a +⋅+=x 2cos 22+=2x cos =2cos x .∴f (x )=cos2x -λcos x =2cos 2x -λcos x -1 =224cos ⎪⎭⎫ ⎝⎛-λx -82λ-1,cos x ∈[0,1]. ①当λ<0时,取cos x =0,此时f (x )取得最小值,并且f (x )min =-1≠-23,不合题意. ②当0≤λ≤4时,取cos x =4λ, 此时f (x )取得最小值,并且f (x )min =-82λ-1=-23,解得λ=2. ③当λ>4时,取cos x =1,此时f (x )取得最小值,并且f (x )min =1-λ=-23, 解得λ=25,不符合λ>4舍去,∴λ=2. §5.4 正弦定理和余弦定理1.(2008²陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a = .答案 22.(2008²福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 3π或32π 3.下列判断中不正确的结论的序号是 .①△ABC 中,a =7,b =14,A =30°,有两解②△ABC 中,a =30,b =25,A =150°,有一解③△ABC 中,a =6,b =9,A =45°,有两解④△ABC 中,b =9,c =10,B =60°,无解答案 ①③④4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 .答案 1035.(2008²浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案 33例1 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c .解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解.由正弦定理得sin A =b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°,c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+. ②当A =120°时,C =180°-(A +B )=15°,c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A =60°,C =75°,c =226+或 A =120°,C =15°,c =226-. 例2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =acb c a 2222-+, cos C =abc b a 2222-+.将上式代入C B cos cos =-ca b +2得: ac b c a 2222-+²2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cos B =ac b c a 2222-+=ac ac 2- =-21 ∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入 b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac =3. ∴S △ABC =21ac sin B =433. 例3 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc =0. (1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求cb C a --︒)30sin(的值. 解 (1)∵cos A =bca cb 2222-+=bc bc 2-=-21, 2分 又∵A ∈(0°,180°),∴A =120°. 4分(2)由a =3,得b 2+c 2=3-bc ,又∵b 2+c 2≥2bc (当且仅当c =b 时取等号),∴3-bc ≥2bc (当且仅当c =b 时取等号). 6分 即当且仅当c =b =1时,bc 取得最大值为1. 8分 (3)由正弦定理得:===C c B b A a sin sin sin 2R , ∴C R B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒ 10分 =CB C A sin sin )30sin(sin --︒ 11分 =CC C C sin )60sin()sin 23cos 21(23--︒- 12分 =C C C C sin 23cos 23)sin 43cos 43-- 13分 =21. 14分 例4 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a ac b c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.1.(1)△ABC 中,a =8,B =60°,C =75°,求b ;(2)△ABC 中,B =30°,b =4,c =8,求C 、A 、a .解 (1)由正弦定理得B b A a sin sin =. ∵B =60°,C =75°,∴A =45°, ∴b =︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sin C =430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C =90°.∴A =180°-(B +C )=60°,a =22b c -=43.2.已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C .所以,ab sin C =2ab (1+cos C ), 即sin C =2+2cos C ,所以2sin 2C cos 2C =4cos 22C 化简得:tan2C =2.从而tan C =2tan 12tan22C C-=-34. 3.(2008²辽宁理,17)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =3π. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以21ab sin C =3,所以ab =4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a . (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,A =2π,B =6π,a =334,b =332. 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a 所以△ABC 的面积S =21ab sin C =332. 4.已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21. ∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acb c a 2222-+=ac c a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去). ∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫ ⎝⎛-A 32π=3, ∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π, ∴C =3π,∴△ABC 为等边三角形.一、填空题1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是 三角形.答案 等腰 2.在△ABC 中,A =120°,AB =5,BC =7,则C B sin sin 的值为 . 答案 53 3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =41(b 2+c 2-a 2),则A = . 答案 45°4.在△ABC 中,BC =2,B =3π,若△ABC 的面积为23,则tan C 为 . 答案 33 5.在△ABC 中,a 2-c 2+b 2=ab ,则C = .答案 60°6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C = .答案 45°或135° 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = .答案 65π 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .答案 3或23二、解答题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.(1)证明 因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得, cos B =ac b c a 2222-+=ac bc c 22+=a c b 2+ =ab a 22=b a 2=BA sin 2sin , 所以sin A =sin2B ,故A =2B . (2)解 因为a =3b ,所以ba =3, 由a 2=b (b +c )可得c =2b , cos B =ac b c a 2222-+=22223443bb b b -+=23, 所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.10.(2008²全国Ⅱ理,17)在△ABC 中,cos B =-135,cos C =54. (1)求sin A 的值;(2)△ABC 的面积S △ABC =233,求BC 的长. 解 (1)由cos B =-135,得sin B =1312, 由cos C =54,得sin C =53. 所以sin A =sin(B +C )=sin B cos C +cos B sin C =6533. (2)由S △ABC =233,得21³AB ³AC ³sin A =233. 由(1)知sin A =6533,故AB ³AC =65. 又AC =C B AB sin sin ⨯=1320AB , 故1320AB 2=65,AB =213. 所以BC =C A AB sin sin ⨯=211. 11.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x -b =0 (a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ;(2)求a ,b 的值.解 (1)设x 1、x 2为方程ax 2-222b c -x -b =0的两根, 则x 1+x 2=a b c 222-,x 1²x 2=-ab . ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab 4=4. ∴a 2+b 2-c 2=ab . 又cos C =abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C =60°.(2)由S =21ab sin C =103,∴ab =40. ① 由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2³40³⎪⎭⎫ ⎝⎛+211. ∴a +b =13.又∵a >b ②∴由①②,得a =8,b =5.12.(2008²广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin22B A +-cos2C =27, 得4cos 22C -cos2C =27, ∴4²2cos 1C +-(2cos 2C -1)=27, 整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21³6³23=233.§5.5 正弦定理、余弦定理的应用1.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角为70°,则∠BAC = . 答案 130°2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的大小关系为 .答案 α=β3.在△ABC 中,若(a +b +c )(a +b -c )=3ab ,且sin C =2sin A cos B ,则△ABC 是 三角形.答案 等边4.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 km.答案 1075.线段AB 外有一点C ,∠ABC =60°,AB =200 km,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始 h 后,两车的距离最小.答案4370例1 要测量对岸A 、B 两点之间的距离,选取相距3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.解 如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =︒︒60sin 75sin 3=226+. △ABC 中,由余弦定理,得AB 2=(3)2+(226+)2-2³3³226+³cos75° =3+2+3-3=5,∴AB =5(km).∴A 、B 之间的距离为5 km.例2 (14分)沿一条小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50°,距离是3 km ,从B 到C ,方位角是110°,距离是3 km ,从C 到D ,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A 到D 的方位角和距离(结果保留根号).解 示意图如图所示, 3分连接AC ,在△ABC 中,∠ABC =50°+(180°-110°)=120°,又AB =BC =3,∴∠BAC =∠BCA =30°. 5分由余弦定理可得AC =︒⋅-+120cos 222BC AB BC AB = )21(33299-⨯⨯⨯-+ =27=33(km). 8分在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =︒⋅-+120222cos CD AC CD AC= )21()933(332)933(272-⨯+⨯⨯-++ =2629)(+(km). 10分 由正弦定理得sin ∠CAD =AD ACD sin CD ∠⋅ =2692923)933(+⨯+=22. 12分 ∴∠CAD =45°,于是AD 的方位角为50°+30°+45°=125°,所以,从A 到D 的方位角是125°,距离为2)62(9+km. 14分 例3 如图所示,已知半圆的直径AB =2,点C 在AB的延长线上,BC =1,点P 为半圆上的一个动点,以DC 为边作等边△PCD ,且点D 与圆心O 分别在PC的两侧,求四边形OPDC 面积的最大值.解 设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得PC 2=OP 2+OC 2-2OP ²OC cos θ=5-4cos θ.∴y =S △OPC +S △PCD =21³1³2sin θ+43(5-4cos θ) =2sin(θ-3π)+435. ∴当θ-3π=2π,即θ=65π时,y max =2+435. 所以四边形OPDC 面积的最大值为2+435.1.某观测站C 在A 城的南偏西20°的方向.由A 城出发的一条公路,走向是南偏东40°,在C 处测得公路上B 处有一人距C 为31千米正沿公路向A 城走去,走了20千米后到达D 处,此时CD 间的距离为21千米,问这人还要走多少千米才能到达A 城?解 设∠ACD =α,∠CDB =β.在△BCD 中,由余弦定理得cos β=CD BD CB CD BD ⋅-+2222 =21202312120222⨯⨯-+=-71, 则sin β=734, 而sin α=sin(β-60°)=sin βcos60°-cos βsin60°=734³21+23³71=1435, 在△ACD 中,由正弦定理得︒60sin 21=αsin AD , ∴AD =︒60sin sin 21α=23143521⨯=15(千米). 答 这个人再走15千米就可到达A 城.2.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β由正弦定理得BDC BC ∠sin =CBD CD ∠sin , 所以BC =CBD BDC CD ∠∠sin sin =)sin(sin s β+αβ⋅ 在Rt △ABC 中,AB =BC tan ∠ACB =)sin(sin tan βαβθ+s . 3.为了竖一块广告牌,要制造三角形支架.三角形支架如图所示,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米.为了使广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解 设BC =a (a >1),AB =c ,AC =b ,b -c =21. c 2=a 2+b 2-2ab cos60°,将c =b -21代入得(b -21)2=a 2+b 2-ab , 化简得b (a -1)=a 2-41.由a >1,知a -1>0. b =1412--a a =14322)1(2-+-+-a a a =(a -1)+)1(43-a +2≥3+2, 当且仅当a -1=)1(43-a 时,取“=”号,即a =1+23时,b 有最小值2+3. 答 AC 最短为(2+3)米,此时,BC 长为(1+23)米.一、填空题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 的距离是 海里.答案 562.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 m.答案 20(1+33) 3.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.答案 3a4.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为 海里/小时.答案 2617 5.如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是 (填序号).①c 和α ②c 和b ③c 和β ④b 和α答案 ④6.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2) 7.在△ABC 中,若∠C =60°,则c b a ++ac b += . 答案 18.(2008²苏州模拟)在△ABC 中,边a ,b ,c 所对角分别为A ,B ,C ,且a A sin =b B cos =c C cos ,则∠A = . 答案 2π 二、解答题 9.在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)f (1)=0且B -C =3π,求角C 的大小; (2)若f (2)=0,求角C 的取值范围. 解 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0,∴b 2=4c 2,∴b =2c ,∴sin B =2sin C ,又B -C =3π.∴sin(C +3π)=2sin C , ∴sin C ²cos3π+cos C ²sin 3π=2sin C , ∴23sin C -23cos C =0,∴sin(C -6π)=0, 又∵-6π<C -6π<65π,∴C =6π. (2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0,∴a 2+b 2=2c 2,∴cos C =ab c b a 2222-+=ab c 22, 又2c 2=a 2+b 2≥2ab ,∴ab ≤c 2,∴cos C ≥21, 又∵C ∈(0,π),∴0<C ≤3π. 10.(2008²泰安模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a =1,b =2,cos C =43. (1)求边c 的值;(2)求sin(C -A )的值.解(1)c 2=a 2+b 2-2ab cos C=12+22-2³1³2³43=2, ∴c =2.(2)∵cos C =43,∴sin C =47. 在△ABC 中,A a sin =C c sin ,即A sin 1=472.∴sin A =814,∵a <b ,∴A 为锐角,cos A =825. ∴sin(C -A )=sin C cos A -cos C sin A=47³825-43³814=1614. 11.如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧 AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,。

平面向量的奔驰定理(解析版)

平面向量的奔驰定理(解析版)

专题九 平面向量的奔驰定理1.奔驰定理如图,已知P 为△ABC 内一点,则有S △PBC ·P A →+S △P AC ·PB →+S △P AB ·PC →=0.证明:如图,延长AP 与BC 边相交于点则D ,BD DC =S △ABD S △ACD =S △BPD S △CPD =S △ABD -S △BPD S △ACD -S △CPD =S △PAB S △PAC, ∵PD →=DC BC PB →+BD BC PC →,∴PD →=S △PAC S △PAC +S △PAB PB →+S △PAB S △PAC +S △PABPC →, ∵PD PA =S △BPD S △BPA =S △CPD S △CPA S △BPD +S △CPD S △BPA +S △CPA =S △PBC S △PAC +S △PAB ,∴PD →=-S △PBC S △PAC +S △PABPA →, 即-S △PBC S △PAC +S △PAB PA →=S △PAC S △PAC +S △PAB PB →+S △PAB S △PAC +S △PABPC →,∴S △PBC ·PA →+S △PAC ·PB →+S △PAB ·PC →=0. AB CP由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.这个定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.奔驰定理是三角形四心向量式的完美统一.推论:已知P 为△ABC 内一点,且xP A →+yPB →+zPC →=0.(x ,y ,z ∈R ,xyz ≠0,x +y +z ≠0).则有(1)S △PBC ∶S △P AC ∶S △P AB =|x |∶|y |∶|z |.(2)S △PBC S △ABC =|x x +y +z |,S △P AC S △ABC =|y x +y +z |,S △P AB S △ABC =|z x +y +z|. 【例题选讲】[例1](1)设点O 在△ABC 的内部,且有OA →+2OB →+3OC →=0,则△ABC 的面积和△AOC 的面积之比为( )A .3B .53C .2D .32答案 A 解析 分别取AC 、BC 的中点D 、 E ,∵OA →+2OB →+3OC →=0,∴OA →+OC →=-2(OB →+OC →),即2OD →=-4OE →,∴O 是DE 的一个三等分点,∴S △ABC S △AOC =3.秒杀 根据奔驰定理得,S △ABC ∶S △AOC =(1+2+3)∶2=3.(2)在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD等于( ) A .16 B .13 C .12 D .23答案 B 解析 如图,由点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎫1-12-13S △ABC =16S △ABC ,所以S △BCD S △ABD =13.秒杀 由AD →=13AB →+12AC →得,DA →+2DB →+3DC →=0,根据奔驰定理得,S △BCD ∶S △ABD =1∶3. (3)已知点A ,B ,C ,P 在同一平面内,PQ →=13P A →,QR →=13QB →,RP →=13RC →,则S △ABC ∶S △PBC 等于( )A .14∶3B .19∶4C .24∶5D .29∶6答案 B 解析 由QR →=13QB →,得PR →-PQ →=13(PB →-PQ →),整理得PR →=13PB →+23PQ →=13PB →+29P A →,由RP →=13RC →,得RP →=13(PC →-PR →),整理得PR →=-12PC →,∴-12PC →=13PB →+29P A →,整理得4P A →+6PB →+9PC →=0,根据奔驰定理得,∴S △ABC ∶S △PBC =(4+6+9)∶4=19∶4.(4)已知点P ,Q 在△ABC 内,P A →+2PB →+3PC →=2QA →+3QB →+5QC →=0,则|PQ →||AB →|等于( )A .130B .131C .132D .133答案 A 解析 根据奔驰定理得,S △PBC ∶S △P AC ∶S △P AB =1∶2∶3,S △QBC ∶S △QAC ∶S △QAB =2∶3∶5,∴S △P AB =S △QAB =12S △ABC ,∴PQ ∥AB ,又∵S △PBC =16S △ABC ,S △QBC =15S △ABC ,∴|PQ →||AB →|=15-16=130. (5)点O 为△ABC 内一点,若S △AOB ∶S △BOC ∶S △AOC =4∶3∶2,设AO →=λAB →+μAC →,则实数λ和μ的值分别为( )A .29,49B .49,29C .19,29D .29,19答案 A 解析 秒杀 根据奔驰定理,得3OA →+2OB →+4OC →=0,即3OA →+2(OA →+AB →)+4(OA →+AC →)=0,整理得AO →=29AB →+49AC →,故选A . (6)设点P 在△ABC 内且为△ABC 的外心,∠BAC =30°,如图.若△PBC ,△PCA ,△P AB 的面积分别为12,x ,y ,则x +y 的最大值是________.答案 33 解析 根据奔驰定理得,12P A →+xPB →+yPC →=0,即AP →=2xPB →+2yPC →,平方得AP →2=4x 2PB →2+4y 2PC →2+8xy | PB →|·|PC →|·cos ∠BPC ,又因为点P 是△ABC 的外心,所以|P A →|=|PB →|=|PC →|,且∠BPC =2∠BAC=60°,所以x 2+y 2+xy =14,(x +y )2=14+xy ≤14+⎝⎛⎭⎫x +y 22,解得0<x +y ≤33,当且仅当x =y =36时取等号.所以(x +y )max =33. 【对点训练】1.设O 是△ABC 内部一点,且OA +OC =-2OB ,则△AOB 与△AOC 的面积之比为________.1.答案 12解析 设D 为AC 的中点,连接OD ,则OA →+OC →=2OD →.又OA →+OC →=-2OB →,所以OD →=- OB →,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为12.秒杀 由OA +OC =-2OB ,得OA +OC +2OB =0,根据奔驰定理得,△AOB 与△AOC 的面积之比为12. 2.设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC →=0,则△ABC 的面积与△AOC 的面积的比值为________.2.答案 4 解析 ∵D 为AB 的中点,则OD →=12(OA →+OB →),又OA →+OB →+2OC →=0,∴OD →=-OC →,∴O 为CD 的中点.又∵D 为AB 的中点,∴S △AOC =12S △ADC =14S △ABC ,则S △ABC S △AOC=4.秒杀 因为OA →+OB →+2OC →=0,根据奔驰定理得,S △ABC S △AOC=4. 3.已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,则S △P AB ∶S △QAB 为_____.3.答案 1∶2 解析 因为3P A →+2PB →+PC →=2(P A →+PB →)+P A →+PC →=0,所以P 在与BC 平行的中位线上,且是该中位线上的一个三等分点,可得S △P AB =16S △ABC ,QA →+QB →+QC →=0,可得Q 是△ABC 的重心,因此S △QAB =13S △ABC ,S △P AB ∶S △QAB =1∶2,故选A . 秒杀 由3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,根据奔驰定理得,S △P AB ∶S △ABC =1∶6,S △QAB ∶S △ABC =1∶3=2∶6,所以S △P AB ∶S △QAB =1∶2,故选A .4.已知D 为△ABC 的边AB 的中点,M 在DC 上满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为( )A .15B .25C .35D .454.答案 C 解析 因为D 是AB 的中点,所以AB →=2AD →,因为5AM →=AB →+3AC →,所以2AM →-2AD →=3AC →-3AM →,即2DM →=3MC →,所以5DM →=3DM →+3MC →=3DC →,所以DM →=35DC →,设h 1,h 2分别是△ABM ,△ABC 的AB 边上的高,所以S △ABM S △ABC =12×AB ×h 112×AB ×h 2=h 1h 2=DM DC =|DM →||DC →|=35.秒杀 由5AM →=AB →+3AC →,得AM →+BM →+3CM →=0,根据奔驰定理得,S △ABM S △ABC =35. 5.若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2 5.答案 A 解析 设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD的中点,于是S △ABM S △ACM =S △ABM 2S △AMD =BM 2MD =12. 秒杀 由BA →+BC →=4BM →,得AM →+2BM →+CM →=0,根据奔驰定理得,S △ABM S △ACM =12. 6.已知O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为__________.6.答案 1 解析 如图,设AC 中点为M ,BC 中点为N .因为OA →+OC →+OB →+OC →=0,所以2OM →+2ON →=0,所以OM →+ON →=0,O 为中位线MN 的中点,所以S △AOC =12S △ANC =12×12S △ABC =14×4=1.秒杀 根据奔驰定理得,S △OBC ∶S △OAC ∶S △OAB =1∶1∶2.因为S △ABC =4,所以S △AOC =1.7.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD 的面积为 ________.7.答案 4 解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →,所以AD →-AB →=4(AC →-AD →),即BD →=4DC →.所以点D 在边BC 上,且|BD →|=4|DC →|,所以S △ABD =4S △ACD =4.秒杀 由AD →=15AB →-45CA →,得8AD →+BD →+4CD →=0,根据奔驰定理得,S △ABD ∶S △ACD =4∶1,所以S △ABD =4.8.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足P A →+xPB →+yPC →=0,设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S =λ2,S 3S=λ3,则λ2λ3取最大值时,3x +y 的值为( )A .12B .32C .1D .2 8.答案 D 解析 由题意可知λ1+λ2+λ3=1.因为P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,所以λ1=12,所以λ2+λ3=12,所以λ2λ3≤⎝⎛⎭⎫λ2+λ322=116,当且仅当λ2=λ3=14时,等号成立,所以λ2λ3取最大值时,P 为EF 的中点.延长AP 交BC 于M ,则M 为BC 的中点,所以P A =PM ,所以P A →=-PM→=-12(PB →+PC →),又因为P A →+xPB →+yPC →=0,所以x =y =12,所以3x +y =2.故选D . 秒杀 根据奔驰定理得,。

复习笔记3 三角函数、解三角形、平面向量

复习笔记3  三角函数、解三角形、平面向量
复习笔记 3
三角函数、解三角形、平面 向量
高考专题辅导与测试·数学
[基础知识要记牢] 1.三角函数定义、同角关系与诱导公式 (1)定义: 设 α 是一个任意角, 它的终边与单位圆交于点 P(x, y y),则 sin α=y,cos α=x,tan α=x.各象限角的三角函数值的符 号:一全正,二正弦,三正切,四余弦. sin α (2)同角关系:sin α+cos α=1,cos α=tan α.
π f(x) = 2sin 3-x 的单调递减区间为
高考专题辅导与测试·数学
解析:由
π π f(x)=2sin3-x=-2sinx-3,
π π π 令-2+2kπ≤x-3≤2+2kπ, π 5π 则-6+2kπ≤x≤ 6 +2kπ,k∈Z. ∴函数
高考专题辅导与测试·数学
ቤተ መጻሕፍቲ ባይዱ
(3)若 a=(x1,y1),b=(x2,y2),θ 为 a 与 b 的夹角, x1x2+y1y2 a· b 则 cos θ= = 2 2 2 2 . |a||b| x1+y1 x2+y2 (4)|a· b|≤|a|· |b|.
高考专题辅导与测试·数学
高考专题辅导与测试·数学
2
sin
2
x=sin
12 11 x-2 - . 12
2 x∈-3,1,∴当
又 sin
2 4 sin x=-3时,取最大值9.
4 答案:9
高考专题辅导与测试·数学
3.求 y=Asin(ωx+φ)的单调区间时,要注意 ω,A 的符 号.ω<0 时,应先利用诱导公式将 x 的系数转化为正数后再 求解;在书写单调区间时,不能弧度和角度混用,需加 2kπ 时,不要忘掉 k∈Z,所求区间一般为闭区间. [ 针对练 3] ________. 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在ABC △中, a 、b 、c 分别表示A 、B 、C 的对边,有以下关系: ⑴角与角关系:πA B C ++=;⑵边与边关系:两边之和大于第三边,两边之差小于第三边;⑶边与角关系:正弦定理2sin sin sin a b cR A B C===(R 为外接圆半径); 余弦定理2222cos c a b ab C =+-,2222cos b a c ac B =+-,2222cos a b c bc A =+-; ⑷面积公式:111sin sin sin 222S ab C bc A ac B ===.尖子班学案1【铺1】 (2010山东文15)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2b =,sin cos B B +A 的大小为 . 【解析】 π6考点:正弦定理与余弦定理知识梳理知识结构图经典精讲9.1解三角形第9讲解三角形与平面向量【例1】 ⑴ (2010湖南文7)在ABC △中,角A ,B ,C 所对的边长分别为a ,b ,c .若120C ∠=︒,c =,则( )A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定 ⑵(2010上海文18)若ABC △的三个内角满足sin sin sin 51113A B C =∶∶∶∶.则ABC △( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 ⑶ 在ABC △中,根据下列条件解三角形,则其中有两个解的是( ) A .104570b A B ==︒=︒,, B .7108a b c ===,, C .7580a b A ===︒,, D .141645a b A ===︒,, ⑷ (2010宣武一模文7)在ABC △中,角A B C ,,的对边分别为a b c ,,,若S 表示ABC △的面积,若cos cos a B b A +sin c C =,()22214S b c a =+-,则B ∠的度数为( )A .90︒B .60︒C .45︒D .30︒【解析】 ⑴ A.⑵ C ⑶ D ⑷ C目标班学案1【拓2】 在锐角ABC △中,2B A =,则ba的取值范围为________. 【解析】【备选】 (2010海南理16)在ABC △中,D 为边BC 上一点,12BD DC =,120ADB ∠=︒,2AD =,若ADC △的面积为3,则BAC ∠= .【解析】 60︒尖子班学案2【铺1】 (2010东城二模文15)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a =,4cos 5B =. ⑴ 若3b =,求sin A 的值;⑵ 若ABC △的面积3ABC S =△,求b ,c 的值.【解析】 ⑴ 2sin 5A =.⑵ 5c =;b =考点:正余弦定理的应用 【例2】 (2010辽宁文17)在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++. ⑴ 求A 的大小;⑵ 若sin sin 1B C +=,试判断ABC △的形状.120°CA【解析】 ⑴ 2π3A =. ⑵ ABC △是等腰的钝角三角形.目标班学案2【拓2】 (2010陕西文17)在ABC △中,已知45B =︒,D 是BC 边上的一点,10AD =,14AC =,6DC =,求AB 的长. 【解析】AB =【备选】 (2010西城二模理15)如图,在四边形ABCD 中,3AB =,2AD BC CD ===,60A =︒. ⑴ 求sin ABD ∠的值; ⑵ 求BCD △的面积.【解析】 ⑴ sin ABD ∠=⑵ BCD △的面积S =已知在ABC △中,5cos 13A =,3sin 5B =,则cosC =( ) A .1665 B .5665 C .1665或5665D .1665-或5665-【解析】 A知识结构图9.2 平面向量CBA D一、平面向量的概念:1.向量、向量的模、零向量、单位向量、平行向量(共线向量)、相等向量的概念. 2.向量的运算:⑴向量加法有“三角形法则”、“平行四边形法则”、多边形法则; ⑵向量的减法:()a b a b -=+-.⑶数乘向量a λ,长度为a λ,方向与a 相同(0λ>)或相反(0λ<); 3.向量共线的条件:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b a λ=. 4.平面向量的基本定理:如果12e e ,是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数12a a ,使:1122a a e a e =+.其中不共线的向量12e e ,叫做表示这一平面内所有向量的一组基底.二、平面向量的数量积与坐标运算⑴两个非零向量的夹角:作OA a =,OB b =,则A O B θ∠=(0πθ≤≤)叫a 与b 的夹角,记作a b 〈〉,. ⑵已知两个非零向量a 与b ,它们的夹角为θ,则cos a b a b θ⋅=⋅叫做a 与b 的数量积(或内积). ⑶向量的坐标运算:()12a a a =,,()12b b b =, ()1122a b a b a b ±=±±,;()12a a a λλλ=,;1122a b a b a b ⋅=+; 12210a b a b a b ⇔-=∥;11220a b a b a b ⊥⇔+=; 2a a a a =⋅=+;2cos a b a b a ba ⋅〈〉==+,.<教师备案>向量中两个常用的结论:经典精讲知识梳理60︒45︒EDBCA⑴平面上三点A B C ,,共线⇔对平面上任意一点P ,PA PB PC λμ=+,1λμ+=. (简略推导:(1)()PA PB PC PA PC PB PC CA CB λλλλ=+-⇒-=-⇒=) 利用这个结论可以快速解决一些向量的小题,见例题3⑵⑶; ⑵D 为ABC △的边BC 上的一点,当BD DC λ=时,有111AD AB AC λλλ=+++.这个结论可以看成上一个结论的一个特殊情形. (简略推导:过D 作DE AC DF AB ∥,∥,交AB AC ,于E F ,,如图, 由向量加法的平行四边形法则和平行线段成比例定理可得到:111AD AE AF AE AB AF AC λλλ=+==++,,,于是得证)这个结论的特殊情形的例题:如图,已知AB a =,AC b =,3BD DC =,用,a b 表示AD ,则AD 等于( B )A .34a b + B .1344a b + C .1144a b + D .3144a b +考点:向量运算与平面向量基本定理【例3】 ⑴ 给出下列命题:①若a b =,则a b =;②若0AB DC =≠,则ABCD 为平行四边形; ③a b =的充要条件是a b =且a b ∥; ④若a b =,b c =,则a c =;⑤若a b ∥,b c ∥,则a c ∥; 其中正确的序号是 .⑵(2009安徽文14)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中λ,μ∈R ,则λμ+=_________.⑶(2009湖南文15)如图,两块斜边长相等的直角三角板拼在一起,若AD xAB y AC =+, 则x =______________,y =_____________.【解析】 ⑴ ④⑵ 43⑶ 1x =y =;经典精讲FEDCBAC考点:向量的坐标运算与数量积 【例4】 ⑴(2009全国Ⅰ文8)设非零向量a 、b 、c 满足a b c ==,a b c +=,则,a b 〈〉=( ) A .150︒ B .120︒ C .60︒ D .30︒ ⑵(2010崇文二模文12)向量a ,b 满足1a =,3a b -=,a 与b 的夹角为60︒,则b = .⑶(2010西城二模文13)设,,a b c 为单位向量,,a b 的夹角为60︒,则a c b c ⋅+⋅的最大值为_____. ⑷(2009浙江文5)已知向量()12a =,,()23b =-,.若向量c 满足()c a b +∥,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭, B .7739⎛⎫-- ⎪⎝⎭, C .7739⎛⎫ ⎪⎝⎭, D .7793⎛⎫-- ⎪⎝⎭,【解析】 ⑴ B ;⑵ 12;⑶ ⑷ D ;尖子班学案3【拓1】 (2010西城二模理13)设,,a b c 为单位向量,,a b 的夹角为60,则()a b c c ++⋅的最大值为_____.【解析】1目标班学案3【拓2】 (2009全国Ⅰ理6)设a 、b 、c 是单位向量,且0a b ⋅=,则()()a cbc -⋅-的最小值为( )A .2-B 2C .1-D .1【解析】D ;【备选】 (2009崇文一模理12改编)设集合{}D =平面向量,定义在D 上的映射f ,满足对任意x D ∈,均有()f x x λ= (λ∈R 且0λ≠).若||||a b =且a 、b 不共线,则()()()f a f b a b ⎡⎤-⋅+=⎣⎦________;若(12)A ,,(36)B ,,(4)C μ,,且()f BC AB =,则λμ+=_____.【解析】 0;10考点:向量在三角形中的应用 【例5】 ⑴(2009宁夏海南9)已知点O N P 、、在ABC △所在平面内,且O A O B O C==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O N P 、、依次是ABC △的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心⑵ (2010山东烟台)设O 在ABC △的内部,且20OA OB OC ++=,则ABC △的面积与AOC △ 的面积之比是( )A .3B .4C .5D .6 ⑶(2010南京市高三第二次调研测试)已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12A B A C A B A C ⋅=,则ABC △为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形【解析】 ⑴ C⑵ B ⑶ D ;考点:平面向量与解三角形综合【例6】 设ABC △是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对边长,并且22ππsin sin sin sin 33A B B B ⎛⎫⎛⎫=+-+ ⎪⎪⎝⎭⎝⎭.若12AB AC ⋅=,a =,求b ,c (其中b c <).【解析】 6c =,4b =.1.(2010-2011北师大实验中学高三摸底考试13)已知向量(2)a m =-,,(35)b =-,,且a 与b 的夹角为钝角,则m 的取值范围是_________.【解析】 1066,,355⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭2.在ABC △中,5AC =,3BC =,6AB =,则AB CA ⋅等于( )A .13B .26C .13-D .26-【解析】 D(2011北京文9)在ABC △中.若5b =,π4B ∠=,1sin 3A =,则a =_______. 【解析】(2011北京文11)真题再现已知向量()31a =,,(01)b =-,,(3c k =,.若2a b -与c 共线,则k =_____.【解析】1【演练1】(2010海淀一模文3)已知向量a ,b ,则“a b ∥”是“0a b +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 B ;【演练2】(2010西城一模文11)已知2a =,3b =,,a b 的夹角为60°,则2a b-= .【解析】【演练3】(2010朝阳二模文10)已知向量()1,2a =,()3,2b =-,如果ka b +与b 垂直,那么实数k 的值为 . 【解析】 13-.【演练4】(2009山东文8)设P 是ABC △所在平面内的一点,2BC BA BP +=,则( )A .0PA PB += B .0PC PA += C .0PB PC +=D .0PA PB PC ++=【解析】 B【演练5】在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且1a =,c =3cos 4C =. ⑴求sin()A B +的值;⑵求sin A 的值;⑶求b 的值.【解析】 ⑴sin()A B +. ⑵ sin A =. ⑶ 2b =(2009年北京大学自主招生保送生测试)一个圆的内接四边形边长依次为1,2,3,4,求这个圆的半径.大千世界实战演练【解析】 设边长分别为2,3的边的夹角为α,则边长分别为1,4的边的夹角为180α︒-.由余弦定理得222223223cos 14214cos(180)αα+-⨯⨯=+-⨯⨯︒-,化简得1cos 5α=-.所以sin α==此时角α=故由正弦定理得外接圆半径R ===.。

相关文档
最新文档