材料力学动载荷ppt课件
合集下载
第十三章动载荷
2. 计算梁内最大静应力 最大弯矩和弯曲正应力发生在跨中截面上
1 M st max = FN st × 4 qst × 6 2 = 6qst = 6 × 165.62 = 993.7 N m 2
σ st max =
M st max 993.7 N m = = 61.7 MPa Wz 16.1×106 m 3
d(l d ) = ε d ( x)dx =
于是, 于是,杆的总伸长量为
σ d ( x)
E
2
dx
l d = ∫ d (l d ) = ∫
0
l
l
γω 2
2 Eg
0
(l x )dx =
2
γω 2 l 3
3Eg
材料力学
中南大学土木建筑学院
20
§13.3 杆件受冲击时的应力和变形
一,冲击现象
下落重物冲击梁
Vεd = V +T
材料力学
1 应变能 Vε d = F d d 2 1 Fd d = W d + T 2
中南大学土木建筑学院 23
线弹性 范围内
F d d σd = = = Kd W st σst
冲击动荷系数
F = KdW, d = Kd st d
2 d
1 F d = Wd +T d 2
2T =0 K 2Kd Wst
Fd = KdW, d = Kd st
v
W
线弹性 范围内 水平冲击 动荷系数
冲击点
v2 Kd = gst
冲击点作用大小等于W st ——冲击点作用大小等于 的水平 冲击点作用大小等于 静载荷时引起该点的静变形. 静载荷时引起该点的静变形.
材料力学 中南大学土木建筑学院 27
1 M st max = FN st × 4 qst × 6 2 = 6qst = 6 × 165.62 = 993.7 N m 2
σ st max =
M st max 993.7 N m = = 61.7 MPa Wz 16.1×106 m 3
d(l d ) = ε d ( x)dx =
于是, 于是,杆的总伸长量为
σ d ( x)
E
2
dx
l d = ∫ d (l d ) = ∫
0
l
l
γω 2
2 Eg
0
(l x )dx =
2
γω 2 l 3
3Eg
材料力学
中南大学土木建筑学院
20
§13.3 杆件受冲击时的应力和变形
一,冲击现象
下落重物冲击梁
Vεd = V +T
材料力学
1 应变能 Vε d = F d d 2 1 Fd d = W d + T 2
中南大学土木建筑学院 23
线弹性 范围内
F d d σd = = = Kd W st σst
冲击动荷系数
F = KdW, d = Kd st d
2 d
1 F d = Wd +T d 2
2T =0 K 2Kd Wst
Fd = KdW, d = Kd st
v
W
线弹性 范围内 水平冲击 动荷系数
冲击点
v2 Kd = gst
冲击点作用大小等于W st ——冲击点作用大小等于 的水平 冲击点作用大小等于 静载荷时引起该点的静变形. 静载荷时引起该点的静变形.
材料力学 中南大学土木建筑学院 27
动载荷
材料力学
§2
惯性力问题
动载荷
2、等角速度旋转的构件
•旋转圆环的应力计算 一平均直径为D的薄壁圆环绕通过其圆心且垂直于圆环平面 的轴作等角速度转动。已知转速为,截面积为A,比重为,壁 厚为t。 解:等角速度转动时,环内各
qd
an
D o
t
o
点具有向心加速度,且D>>t 可近似地认为环内各点向心 an 2 D / 2 。 加速度相同, 沿圆环轴线均匀分布的惯性 力集度 q d 为:
圆环横截面上的应力:
式中 v D 是圆环轴线上各点的线速度。强度条件为:
2
d
材料力学
v 2
g
[ ]
§2
惯性力问题
动载荷
•旋转圆环的变形计算
D , 在惯性力集度的作用下,圆环将胀大。令变形后的直径为 则其直径变化 D D D ,径向应变为
t D ( D D) r t D D E d v 2 D
式中 k d 为冲击时的动荷系数,
2
kd st
2H kd 1 1 st
其中 st 是结构中冲击受力点在静载荷(大小为冲击物重量) 作用下的垂直位移。
材料力学
§3
冲击问题
动载荷
因为
Pd d d kd Q st st
所以冲击应力为
d k d st
2H 当 110 时,可近似取 k d st
2 H ,误差<5%。 st 2 H ,误差<10%。 st
4、 k d 不仅与冲击物的动能有关,与载荷、构件截面尺寸有关, 更与 st 有关。这也是与静应力的根本不同点。构件越易变 形,刚度越小,即“柔能克刚”。
【材料力学】10-动载荷
(1)
1.水平冲击 v
V0(1)
(b)
v
Δd
Δd
Pd
(c)
Δst
Q=mg
(d) (a)
特点:是冲击物仅有动能变化而没有位能的改 变( T0(1)≠0 , V0(1)=0 )
v Pd
Ut(2)=T0(1) + (1)
V0(1)
Δd
冲击开始时冲击物的动能为: (V0(1)=0.)
T0(1)
1 mv 2 2
水平冲击的动荷系数:
竖直冲击的动荷系数:
Kd
v2
g st (4)
2H
Kd 1
1 st
小实验:用体重秤体验一下动载 荷;
讨论如何减小冲击。
Q=mg=20.0 N
l
(5)
Pd=98.6 N, Kd=4.93
Pd=58.2 N, Kd=2.91
59282802.0.0206..0.00
水平冲击的动荷系数:
端为 x 处的 m-m 截面上的应力.
mm
a
x
G
mm
a
x
A
a
A a
g
a
G
G
绳索的重力集度为 A 物体的惯性力为
绳索每单位长度的惯性力 A a
g
Ga g
G
Ga g
FNd
(1
a )(G g
Ax)
FNst G Ax
FNd KdFNst
绳索中的动应力为
FNst
mm
A
x
d
FNd A
Kd
FNst A
转 轴
最大的惯性力发生在叶根截面上
顶
FNmax
材料力学课件PPT
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一
试
件
和
实
常
验
温
条
、
件
静
载
材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r
—
抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob
《材料力学》第十章 动载荷
第十章 动 载 荷
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd
动荷载
13/63
动载荷
10-4 构件受冲击时的应力和变形
动载荷
动载荷
动能改变:T=T 势能改变:V=Q d 弹簧应变能: Vεd 机械能守恒定律
动能 T
Q
Q
d
动能 0
T V Vεd
1 Vεd Fd d 2
Fd
d
动载荷
若Q以静载的方式作用在构件上,构件有静变形和静应力为st 、△ st 在动载Fd作用在构件上,构件有动变形和动应力为d、△ d 在线弹性范围内:
Fd d d Q st st P d d Q d Fd P st , st st
1 Vεd Fd d 2
1 Q Vεd P 2 st
2 d
动载荷
T=T V=Q d
1 Vεd P Q 2 st
2 d
T V Vεd
2T st d 2 st d 0 d st (1 Q P
2
1
2T ) P st Q
冲击动荷因素
动载荷
Q
自由落体冲击问题
h
=Qh
v
or
19/63
动载荷
动载荷
动载荷
若无弹簧,许可高度 为多少?
9.56mm
动载荷 例题10 图示分别为不同支承的钢梁,承受相同的重物冲
动载荷
Fd 2 D 2 d A 4g
y
qd ( D d ) 2
D v 2
圆环轴线上点的 线速度
FNd Rd
qd d
d
2
g
o
FNd
强度条件 d
v
g
2
[ ]
动载荷
10-4 构件受冲击时的应力和变形
动载荷
动载荷
动能改变:T=T 势能改变:V=Q d 弹簧应变能: Vεd 机械能守恒定律
动能 T
Q
Q
d
动能 0
T V Vεd
1 Vεd Fd d 2
Fd
d
动载荷
若Q以静载的方式作用在构件上,构件有静变形和静应力为st 、△ st 在动载Fd作用在构件上,构件有动变形和动应力为d、△ d 在线弹性范围内:
Fd d d Q st st P d d Q d Fd P st , st st
1 Vεd Fd d 2
1 Q Vεd P 2 st
2 d
动载荷
T=T V=Q d
1 Vεd P Q 2 st
2 d
T V Vεd
2T st d 2 st d 0 d st (1 Q P
2
1
2T ) P st Q
冲击动荷因素
动载荷
Q
自由落体冲击问题
h
=Qh
v
or
19/63
动载荷
动载荷
动载荷
若无弹簧,许可高度 为多少?
9.56mm
动载荷 例题10 图示分别为不同支承的钢梁,承受相同的重物冲
动载荷
Fd 2 D 2 d A 4g
y
qd ( D d ) 2
D v 2
圆环轴线上点的 线速度
FNd Rd
qd d
d
2
g
o
FNd
强度条件 d
v
g
2
[ ]
材料力学课件-第十三章---动荷载
解:①
j Qh1 / E1A1 QL / EA
50.024 81030.152
514 10106 0.32
71.5105 m
Kd 1
1 53.4 210.02 71.5105
②
QL / EA 514
j
10106 0.32
0.707 105 m
Kd 1
1 533 21 0.707105
33
34
1 2
mv
2
mg 2
K
2 d
j
冲击前:
动能T1mv2 /2 势能V10 变形能U10
冲击后:
动能T2 0 势能V2 0 变形能U 2 Pd d /2
动荷系数 Kd
2
g j
17
三、冲击响应计算 等于静响应与动荷系数之积.
[例5 ] 直径0.3m旳木桩受自由落锤冲击,落锤重5kN, 求:桩旳最大动应力。E=10GPa Wv
25
解:⒈ 求冲击点C处旳静位移用能量法可求得冲击点C处旳
静位移
st
Wl13 3EI
Wl 3
3EI
BAl1
W
l13 l 3 3EI
Wl1l GI P
l1
100N 0.3m3 0.8m3
3 200 109 Pa π (0.06m)4
100N (0.3m)2 0.8m 80 109 Pa π (0.06m)4
加速度提起重50kN 旳物体,试校核钢丝绳旳强度。
解:①受力分析如图:
Nd
a Nd (GqL)(1 g )
②动应力
L q(1+a/g) G(1+a/g)
d
Nd A
1 (GqL)(1 A
17材料力学动载荷
厢的加速度 a 。
11
解: 选单摆的摆锤为研究对象。 虚加惯性力
Qm a (Qm)a
由动静法, 有
X 0 ,m sg i Q n co 0 s
解得
agtg
角随着加速度 a的变化而变化,当 a不变时, 角也不 变。只要测出 角,就能知道列车的加速度 a 。摆式加速计
转半径为,轮与轨道间摩擦系数为f , 试求在车轮滚动而不滑
动的条件下,驱动力偶矩M 之最大值。
解: 取轮为研究对象
虚加惯性力系:
RQmaC mR
MQCICm2
由动静法,得:
O
30
X0, FTRQ0
(1)
Y0, NPS0
(2)
mC(F)0,MFRMQC0(3)
Mmax的值为
把(5)代入(4)得:M f(PS) (R 2R)TR 2 上式右端的值。
31
§17.2 考虑惯性力时的应力计算
方法原理:D’Alembert’s principle ( 动静法 )
达朗伯原理认为:处于不平衡状态的物体,存在惯性力, 惯性力的方向与加速度方向相反,惯性力的数值等于加速度 与质量的乘积。只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法。
由(2)得: RAn mgsin0 ;
由( 3)得:
3g 2l
cos0
;
代入(1)得:
RA
mg 4
c
os0
。
28
用动量矩定理+质心运动定理再求解此题:
解:选AB为研究对象
由 IAmgcos2l 得:
mg2l cos 3gcos
13ml2
11
解: 选单摆的摆锤为研究对象。 虚加惯性力
Qm a (Qm)a
由动静法, 有
X 0 ,m sg i Q n co 0 s
解得
agtg
角随着加速度 a的变化而变化,当 a不变时, 角也不 变。只要测出 角,就能知道列车的加速度 a 。摆式加速计
转半径为,轮与轨道间摩擦系数为f , 试求在车轮滚动而不滑
动的条件下,驱动力偶矩M 之最大值。
解: 取轮为研究对象
虚加惯性力系:
RQmaC mR
MQCICm2
由动静法,得:
O
30
X0, FTRQ0
(1)
Y0, NPS0
(2)
mC(F)0,MFRMQC0(3)
Mmax的值为
把(5)代入(4)得:M f(PS) (R 2R)TR 2 上式右端的值。
31
§17.2 考虑惯性力时的应力计算
方法原理:D’Alembert’s principle ( 动静法 )
达朗伯原理认为:处于不平衡状态的物体,存在惯性力, 惯性力的方向与加速度方向相反,惯性力的数值等于加速度 与质量的乘积。只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法。
由(2)得: RAn mgsin0 ;
由( 3)得:
3g 2l
cos0
;
代入(1)得:
RA
mg 4
c
os0
。
28
用动量矩定理+质心运动定理再求解此题:
解:选AB为研究对象
由 IAmgcos2l 得:
mg2l cos 3gcos
13ml2
材料力学课件第10章 动载荷zym
FNd
qd D Aρ D 2 2 = = ω 2 4
(3)截面应力: )截面应力: FNd ρ D 2ω 2 σd = = = ρv2 A 4 (4)强度条件: )强度条件:
σ d = ρ v 2 ≤ [σ ]
2、问题特点: 、问题特点: •截面应力与截面面积 无关。 截面应力与截面面积A无关 截面应力与截面面积 无关。 (三)扭转问题
2)强度计算: )强度计算: (1)确定危险截面: )确定危险截面: 为跨中截面。 为跨中截面。
l 1 l M = F −b − q 2 2 2 a l 1 = Aρ g 1 + − b l 2 g 4
2
(2)建立强度条件: )建立强度条件: M d Aρ g a l σd = = 1 + − b l ≤ [σ ] W 2W g 4 2、问题特点: 、问题特点: 设加速度为零时的应力为σst 则: 设加速度为零时的应力为σ 1 l Aρ g − b l M 2 4 = Aρ g l − b l σ st = st = W W 2W 4 a σ d = σ st 1 + = σ st K d g
P
v
∆d P 即:Fd = ∆ st
代入得: 代入得: 1P 2 1 1 ∆2 d v = ∆ d Fd = P 2g 2 2 ∆ st
∆d =
Kd =
P
∆ st
v2 ∆ st g ∆ st
v2 g ∆ st (10.9)
∆ d = K d ∆ st ,
Fd = K d P,
σ d = K dσ st
= 1057 ×106 Pa
§10 – 5
材料力学:第14章 动荷载
等加速运动状况—惯性力是个定值
变加速运动状况—惯性力是时间的函数 (是变荷载)
这里讨论等加速运动状态
2.等加速直线运动构件的应力计算
等加速直线运动:
a
FD
FD
a
W
W g
a
1
a g
W
D
W A
W Ag
a
1
a g
st
惯性力
W 静荷载
W a 动荷载
g
D kD st
k D
1
a g
动荷系数
2.等加速直线运动构件的应力计算
max j
M max j Wy
36.7MPa
dk d max j 59.1MPa
第十四章 动荷载/二、等加速运动构件的应力计算
3 圆环等角度转动时构件的应力与变形计算:
(1)圆环横截面上的应力
图示匀质等截面圆环,绕着通过环中心且
an
t
Do
垂直于圆环平面的轴以等角速度旋转, 已知横截面面积为A,材料的容重为γ,壁厚 为t,求圆环横截面上的应力。
b=1m。
q
F 运动方向
o
qL qb 2 qb 2 2
qL qb 2 qb 2
2
b
L
b a vt v0 6 m s2
+
t
q 22.639.8 222kN m
qd
qst
a g
qL2 qb2 g2
Wy 24.2106 m3
qst 22.63kg m
kd
1
a g
1.61
q
qst qst g
转动惯量为 Ix 0.5KNMS2 。轴的直径 d 100mm
刹车时使轴在10秒内均匀减速停止。求轴内最大动应力。
变加速运动状况—惯性力是时间的函数 (是变荷载)
这里讨论等加速运动状态
2.等加速直线运动构件的应力计算
等加速直线运动:
a
FD
FD
a
W
W g
a
1
a g
W
D
W A
W Ag
a
1
a g
st
惯性力
W 静荷载
W a 动荷载
g
D kD st
k D
1
a g
动荷系数
2.等加速直线运动构件的应力计算
max j
M max j Wy
36.7MPa
dk d max j 59.1MPa
第十四章 动荷载/二、等加速运动构件的应力计算
3 圆环等角度转动时构件的应力与变形计算:
(1)圆环横截面上的应力
图示匀质等截面圆环,绕着通过环中心且
an
t
Do
垂直于圆环平面的轴以等角速度旋转, 已知横截面面积为A,材料的容重为γ,壁厚 为t,求圆环横截面上的应力。
b=1m。
q
F 运动方向
o
qL qb 2 qb 2 2
qL qb 2 qb 2
2
b
L
b a vt v0 6 m s2
+
t
q 22.639.8 222kN m
qd
qst
a g
qL2 qb2 g2
Wy 24.2106 m3
qst 22.63kg m
kd
1
a g
1.61
q
qst qst g
转动惯量为 Ix 0.5KNMS2 。轴的直径 d 100mm
刹车时使轴在10秒内均匀减速停止。求轴内最大动应力。
材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
材料力学第10章 动载荷
Kd = 1 + 1 + 2H
∆st
P
Pl 3 + P ∆st = 48EI 4C
σ st max = Pl / 4 = Pl
W
4W
MF
Pl/4
σd max = Kdσ st max ≤ [σ ] [H] =
∆st
2 σ st max
[(
[σ ]
−1) −1]
2
等截面刚架,重物P自高度 处自由下落。 、 、 自高度h处自由下落 例:等截面刚架,重物 自高度 处自由下落。 E、I、 W已知 。 试求截面的最大竖直位移和刚架内的最大 已知。 已知 冲击正应力( 刚架的质量可略去不计, 冲击正应力 ( 刚架的质量可略去不计 , 且不计轴力 对刚架变形的影响) 对刚架变形的影响)。
第十章 动载荷
§10.1 概述 §10.2 动静法的应用 §10.3 强迫振动的应力计算 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
§10.1 概述
1)动载荷问题的特点: )动载荷问题的特点: 静载荷问题:载荷平稳地增加, 静载荷问题:载荷平稳地增加,不引起构件 的加速度——准静态。 准静态。 的加速度 准静态 动载荷问题:载荷急剧变化, 动载荷问题:载荷急剧变化,构件速度发生 急剧变化。 急剧变化。
2FNd = qd (2R)
qd FNd FNd
qd
σd =
FNd = ρR2ω2 = ρv2 A
注意: 无关! 注意:与A无关! 无关
4)匀减速转动(飞轮刹车) )匀减速转动(飞轮刹车) 例 4 : 飞 轮 转 速 n=100r/min , 转 动 惯 量 为 Ix=0.5kNms2 , 轴 直 径 d=100mm , 10 秒停转,求最大动应力。 秒停转,求最大动应力。 解:角速度: ω0 = nπ 角速度: 30 角加速度: 角加速度:α = −ω0 / t
材料力学第八章动载荷PPT课件
第1页/共23页
§8-2 惯性力问题
一、 匀加速直线运动构件的动应力计算
如图所示,一起重机绳索以等加速度 a 提升一等截面直杆,直杆单位体积 的重量(比重、重度)为γ,横截面面积为 A,杆长为L,不计绳索的重量。求: 杆内任意横截面的动应力、最大动应力。
解:1、动轴力的确定
F
FNd
Ax
ma
Ax
g
解:(1)求柱的动载荷
H
L
L
st
P(2l)3 48EI
Pa 4E1 A1
4.9mm
a
Kd 1
1 2H 6.05 st
Fd
Kd Fst
6.05 2.88 2
8.71kN
第17页/共23页
(2)柱的稳定性校核
i1
I1 25mm, A1
a
i1
40
P ,
n
Fcr Fd
3.3 nst
Fcr cr A1 28.7 kN
K
W A
G(H0 H1) A
冲击韧度是在冲击试验机上测定的,通常做的是冲击弯曲试验。
冲击韧度 K的单位为焦耳/毫米2,是材料的性能指标之一
K 越大表示材料抗冲击能力越强。一般说来,塑性越好的材料 K
越高,抗冲击能力越强,脆性材料则较弱,一般不适宜作受冲构件。
第22页/共23页
感谢观看!
第23页/共23页
零件之间装有橡皮垫圈;以大块玻璃为墙的新型建筑物,把玻璃嵌在弹性约 束之中等等。
以上这些弹性元件不仅起了缓冲作用,而且能吸收一部分冲击动能, 从而明显降低冲击动应力。
另外,把刚性支座改为弹性支座能提高系统的静位移值,不失为一种提 高构件的抗冲击能力的良好措施。值得注意的是,在提高静位移、减小Kd的 同时,应避免提高静应力。
§8-2 惯性力问题
一、 匀加速直线运动构件的动应力计算
如图所示,一起重机绳索以等加速度 a 提升一等截面直杆,直杆单位体积 的重量(比重、重度)为γ,横截面面积为 A,杆长为L,不计绳索的重量。求: 杆内任意横截面的动应力、最大动应力。
解:1、动轴力的确定
F
FNd
Ax
ma
Ax
g
解:(1)求柱的动载荷
H
L
L
st
P(2l)3 48EI
Pa 4E1 A1
4.9mm
a
Kd 1
1 2H 6.05 st
Fd
Kd Fst
6.05 2.88 2
8.71kN
第17页/共23页
(2)柱的稳定性校核
i1
I1 25mm, A1
a
i1
40
P ,
n
Fcr Fd
3.3 nst
Fcr cr A1 28.7 kN
K
W A
G(H0 H1) A
冲击韧度是在冲击试验机上测定的,通常做的是冲击弯曲试验。
冲击韧度 K的单位为焦耳/毫米2,是材料的性能指标之一
K 越大表示材料抗冲击能力越强。一般说来,塑性越好的材料 K
越高,抗冲击能力越强,脆性材料则较弱,一般不适宜作受冲构件。
第22页/共23页
感谢观看!
第23页/共23页
零件之间装有橡皮垫圈;以大块玻璃为墙的新型建筑物,把玻璃嵌在弹性约 束之中等等。
以上这些弹性元件不仅起了缓冲作用,而且能吸收一部分冲击动能, 从而明显降低冲击动应力。
另外,把刚性支座改为弹性支座能提高系统的静位移值,不失为一种提 高构件的抗冲击能力的良好措施。值得注意的是,在提高静位移、减小Kd的 同时,应避免提高静应力。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)静载情况下:
(2)自由落体情况下:
动荷系数:
动应力是: (3)静变形
动荷系数
动应力:
.
7
例2. AB杆的下端固定,长为l。在C点受沿水平运动的物体的冲击,物体的重量为Q,与杆 件接触时的速度为v。设杆件的E、I、和W皆为已知量,试求AB杆同最大应力。
解:(1)求载荷Q作用在C处时, 最大静应力是
动载荷
.
1
概述
1.静载荷: 缓慢加载,忽略各点的加速度;
2.动载荷 载荷随时间明显改变,各点加速度不能忽略;
3.动应力和静应力 用σst和σd表示,当它们小于比例极限时,应力与应变成正比,并且动态和静态的弹性 模量相等; 4.动荷系数:
5.动静法: 加惯性力系,按静力问题求解;用于解变速杆件的动应力问题。
.
5
(3)冲扭 由抗冲击能力的措施
降低动荷系数(增大静变形)。
例1.圆木桩直径d=30cm,长l=6m,下端固定,重锤W=5kN,木材E1=10GPa。 求三种情况下,木桩内的最大应力。 (1)静载方式; (2)重锤离桩顶h=0.5m自由落下; (3)同(2),但在桩顶放一块直径d1=15cm,厚度t=40mm橡皮垫,其弹性模量E=8MPa
C点的静挠度是
(2)冲击的动荷系数
(3)最大动应力
.
8
思考:轴上装一钢质圆盘,盘上有一圆孔。若轴与盘=40 1/s的匀角速度转动,试求轴内 因这一圆孔引起的最大正应力。
acn
Macn
W
.
9
.
2
动静法的应用 水平面内等速旋转的薄壁圆环 动载荷分布集度:
圆环内的动内力
环内的动应力
圆环的强度条件
.
3
能量守恒
冲击应力 冲击物的机械能的减少等于被冲击物的变形能的增量;
(a)重物Q自由落体,
几种常见的冲击问题 动荷系数是
动载荷、动应力和动变形为
当突然加载时(h=0),动荷系数是Kd=2
.
4
(b)重物水平冲击