八年级数学不等式测试题单元检测题

合集下载

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a > 2.若a b >,则下列各式中一定成立的是( )A .22a b -<-B .11a b +>+C .22a b <D .33a b ->- 3.点P 坐标为(m +1,m -2),则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知实数 a 、b ,若 a b >,则下列结论错误的是( ) A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 5.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b 6.等腰三角形的周长为20cm 且三边均为整数,底边可能的取值有( )个.A .1B .2C .3D .4 7.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 8.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 11.已知a <b ,下列变形正确的是( )A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 12.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x…-2-10123…y…3210-1-2…A.x<1 B.x>1 C.x<0 D.x>0二、填空题13.关于x的不等式组3222553xxxm+⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m的取值范围是_____.14.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.15.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.16.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.关于x的方程231x k+=的解是非负数,则k的取值范围是___________.19.不等式组210322xx x->⎧⎨<+⎩的整数解为_____.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.已知关于x 、y 的二元一次方程组256217x y m x y +=+⎧⎨-=-⎩的解x 、y 都是正数,且x 的值小于y 的值.(1)求该二元一次方程组的解(用含m 的代数式表示)(2)求m 的取值范围.22.计算:(1)()()148632323-++-. (2)()()2249m n m n +--.(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩.(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩.23.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A ,B 两种钢笔作为奖品,已知A ,B 两种每支分别为10元和20元,设购入A 种x 支,B 种y 支. (1)求y 关于x 的函数表达式;(2)若购进A 种的数量不少于B 种的数量,则至少购进A 种多少支?24.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.25.解不等式:431132x x +-->,并把解集在数轴上表示出来.26.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.3.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.4.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a>b,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B、∵a>b,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C、∵a>b,∴-3a<-3b,故本选项符合题意;D、∵a>b,∴5a>5b,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6.D解析:D【分析】设底边为xcm ,根据题意得腰202x -cm 为整数,且x<10,可得出底边的取值. 【详解】设底边为xcm ,根据题意得腰202x -cm 为整数, ∵能构成三角形,∴x<20-x ,x<10,∴x 可取的值为:2、4、6、8,故选:D .【点睛】此题考查三角形的三边关系,利用不等式解决实际问题,设边长时很重要,这腰长的话需要讨论 范围,故设底边较好,根据三角形三边关系就可以解答. 7.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案.【详解】解:根据题意,得:10b a b =⎧⎨+=⎩, 解得a=-1,b=1,则不等式-ax-b <0为x-1<0,解得x <1,故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.17.55【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最大值为:解析:55【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键. 18.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 19.1【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:由①得:x >由②得:x <2∴不等式组的解集为<x <2则不等式组的整数解为1故答案为1【点睛】考查了一元一次不等式组的整数 解析:1【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:210322x x x ->⎧⎨<+⎩①②, 由①得:x >12, 由②得:x <2, ∴不等式组的解集为12<x <2, 则不等式组的整数解为1,故答案为1【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)218x m y m =-⎧⎨=+⎩;(2)192m <<. 【分析】(1)运用加减消元法,即可求得x 和y ;(2)根据x 、y 都是整数,列出不等式组,即可求出m 的取值范围.【详解】解:(1):256217x y m x y +=+⎧⎨-=-⎩①②, 由②得:217x y =-,将217x y =-代入①中,∴()221756y y m -+=+,43456y y m -+=+,5540y m =+,8y m =+,将8y m =+代入217x y =-中,∴()28172161721x m m m =+-=+-=-,∴二元一次方程组的解为:218x m y m =-⎧⎨=+⎩. (2)∵二元一次方程组的解x 、y 是正数,且x 的值小于y 的值,∴21080218x m y m m m =->⎧⎪=+>⎨⎪-<+⎩,∴解得:192m <<, ∴m 的取值范围是:192m <<. 【点睛】本题考查二元一次方程组和不等式的综合,解题的关键是掌握解二元一次方程组的方法.22.(1)1;(2)225265m mn n -+-;(3)373x y =-⎧⎪⎨=-⎪⎩;(4)3x ≥. 【分析】(1)直接用平方差公式,化二次根式为最简,利用运算法则得出答案;(2)直接利用完全平方公式展开合并得出答案.(3)方程组整理后,利用加减消元法求出解即可(4))分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.【详解】(1)22222=-34=-1=.故答案为1(2)()()2249m n m n +-- ()()22224292m mn n m mn n =++--+22224849189m mn n m mn n =++-+-225265m mn n =-+-.故答案为225265m mn n -+-(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩①②将①变形:()()3142y x +=+3348y x +=+,即345y x -=……③,由②+③得:2451x x -=+26x -=3x =-.将3x =-代入231x y -=中,∴()3212317y x =-=⨯--=-, 则73y =-, ∴1243231y x x y ++⎧=⎪⎨⎪-=⎩的解为:373x y =-⎧⎪⎨=-⎪⎩故答案为373x y =-⎧⎪⎨=-⎪⎩(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩①②,解①得:53x ->-2x >,解②得:39x ≥3x ≥,由①②得:3x ≥, 故513841x x x -⎧>-⎪⎨⎪+≤-⎩的解集为:3x ≥.【点睛】本题考察二次根式混合运算,因式分解,解二元一次方程组,解不等式组;熟练掌握化二次根式为最简,平方差公式和完全平方公式;加减消元法;正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键23.(1)y =11202x -+;(2)至少购进A 种钢笔80支(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式;(2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.24.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.25.57x <;数轴见解析根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x的范围,再把所得的x的范围在数轴上表示出来即可.【详解】431132x x+-->,去分母,得()()243316x x+-->,去括号,得28936x x+-+>,移项、合并同类项,得75x->-,系数化为1,得57x<.在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.26.解集为:31x-<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x xx x<+⎧⎪⎨++≥⎪⎩①②,由①得:1x<;由②得:3x≥-,∴不等式组的解集为31x-≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.。

湘教版八年级数学上册《4.1不等式》同步测试题及答案

湘教版八年级数学上册《4.1不等式》同步测试题及答案

湘教版八年级数学上册《4.1不等式》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1下列各式中,是不等式的是() A.x=3 B.x-1C.x+y=1D.4x+5>02下面各数中,是不等式x≥-3的解的是()A.-6B.-5C.-4D.-23用适当的不等号填空(填“<”或“>”):(1)-280;(2)-1.3-2024.4有理数a与b在数轴上的位置如图所示,用“>”或“<”填空:(1)a0;(2)a b;(3)a+b0;(4)a-b0.5如果|x-2|=x-2,那么x的取值范围是.6用不等式表示“a与b的和小于2”.7用不等式表示下列数量关系:(1)a的3倍比a与2的和小;(2)y的一半与4的差是非负数;(3)a的相反数与1的和不是正数;(4)x、y两数的平方差不大于0;(5)x的2倍与1的和小于x的3倍与5的差.8某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式)【能力巩固】9在数轴上与原点的距离小于2的点对应的a满足()A.-2<a<2B.a<2C.a>2D.a>2或a<-210若m<n<0,则在式子①m+1<n+2;①mn >1;①m+n<mn;①1m<1n中,正确的有()A.1个B.2个C.3个D.4个11|a|+a的值一定()A.大于零B.小于零C.不大于零D.不小于零12如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC .b>a>-b> -aD .-a>b>-b>a13当x<a<0时,x 2与ax 的大小关系是 .14某市5月1日的气温T 是(23±3)℃,用不等式表示该市5月1日的气温T 的范围是 .15在实数范围内,定义|a b d c |=ac -bd ,已知|12x 4|<3,则可列出不等式为 . 16商店为了对某种商品促销,将定价为6元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过5 件的部分打8折.若小明用了54元,则他最多可以购买该商品多少件?(只列关系式)【素养拓展】17用a ,b ,c 表示三种不同的物体,现放在天平上比较两次的情况如图所示,那么a ,b ,c 这三种物体按质量从大到小的顺序排列是什么?参考答案基础达标作业1.D2.D3.< >4.(1)<(2)<(3)>(4)<5.x≥26.a+b<2.y-4≥0;(3)-a+1≤0;(4)x2-y2≤0;(5)2x+1<3x-5.7.解:(1)3a<a+2;(2)128.解:设该同学至少应答对x道题,依题意有6x-2(16-x)>60能力巩固作业9.A10.C11.D12.D13.x2>ax14.20 ℃≤T≤26 ℃15.4-2x<316.解:设最多可以购买该商品x件,依题意有6×5+6×0.8(x-5)≤54.素养拓展作业17.解:依据第二个图得到a+c=b+c,可得a=b,依图1得到a+c+c<a+b+c,可得b>c,则a=b>c.。

最新八年级数学不等式练习题1

最新八年级数学不等式练习题1

八年级数学不等式与不等式组单元测试一1.不等式组21x x >⎧⎨>-⎩,的解集是_____;不等式组22x x <⎧⎨<-⎩,的解集是_____.2.不等式组61x x <⎧⎨>⎩,的解集是_____;不等式组51x x >⎧⎨<-⎩,的解集是_____. 3不等式组13x x >-⎧⎨⎩,≤的解集为_____,这个不等式组的整数解是_____.4.x 的21与5的差不小于3,用不等式表示为 。

5.若不等式组8x x m<⎧⎨>⎩,有解,则m 的取值范围是_____.6.不等式1324x <-<的解集是_____.7.某饮料瓶上有这样的字样:Eatable Date 18 months 如果用x (单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为8.当x 时,式子3x-5的值大于5x+3的值.9、若不等式组2,20x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )2006=______. 3、不等式53>-x 的解集是( ) A .35-<x B .35->x C .15-<x D .15>-x 5、已知点A (2-a ,a+1)在第一象限,则a 的取值范围是( )A 、a>2B 、-1<a<2C 、a<-1D 、a<16、下列说法①0=x 是012<-x 的解;②31=x 不是013>-x 的解;③012<+-x 的解集是2>x ;④⎩⎨⎧>>21x x 的解集是1>x ,其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个2、若0<k ,则下列不等式中不能成立的是( )A .45-<-k kB .k k 56>C .k k ->-13D .96k k ->-5.不等式组1020x x +⎧⎨-<⎩,≥的整数解为( )A.1-,1 B.1-,1,2 C.1-,0,1D.0,1,2 6.下列不等式中,解集为14x -<≤的是( )A.14x x -⎧⎨>⎩,;≥ B.14x x >-⎧⎨<⎩,; C.4010x x -<⎧⎨+⎩,;≥ D.401x x ->⎧⎨-⎩,.≥ 7.不等式组23112x x +>⎧⎨-<,的解集在数轴上的表示如下图所示,其中正确的是( )8.解集是如图2 所示的不等式组为( )A.2030x x +⎧⎨->⎩,;≥ B.2030x x +<⎧⎨-<⎩,; C.241103x x -⎧⎪⎨-<⎪⎩,;≤ D.2241103x x -+⎧⎪⎨-<⎪⎩,.≥ 3.若不等式组3x x a >⎧⎨>⎩,的解集为x a >,则a 的取值范围是( ) A.3a < B.3a = C.3a > D.3a ≥三、小小神算手!(本大题共30分)1.(本题10分)解不等式组,并把它们的解集在数轴上表示出来.(1)3150728x x x ->⎧⎨-<⎩;; ① ② (2)312342x x x x --⎧⎨-+>-⎩;.≤ ① ②2.(本题10分)解下列不等式组:A. B. C. D. 图2 ⎪⎧+>-x x )1(315(1)4(1)5723(2)x xx x-+⎧⎨++⎩;;≤①≤②(2)若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围a为何值时,方程组2312x y ax y a-=+⎧⎨+=⎩,的解满足x y,均为正数?义务教育语文课程标准(2011年版)中华人民共和国教育部制定第一部分前言一、课程性质二、课程基本理念(一)全面提高学生的语文素养(二)正确把握语文教育的特点(三)积极倡导自主、合作、探究的学习方式(四)努力建设开放而有活力的语文课程三、课程设计思路第二部分课程目标与内容二、学段目标与内容第一学段(1~2年级)第二学段(3~4年级)第三学段(5~6年级)第四学段(7~9年级)第三部分实施建议一、教学建议二、评价建议(一)充分发挥语文课程评价的多种功能(二)恰当运用多种评价方式(三)注重评价主体的多元与互动(四)突出语文课程评价的整体性和综合性(五)具体建议三、教材编写建议四、课程资源开发与利用的建议附录1关于优秀诗文背诵推荐篇目的建议附录2关于课外读物的建议附录3语法修辞知识要点。

2022年最新青岛版八年级数学下册第8章一元一次不等式单元测试试题(含答案及详细解析)

2022年最新青岛版八年级数学下册第8章一元一次不等式单元测试试题(含答案及详细解析)

八年级数学下册第8章一元一次不等式单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x y >,则下列不等式一定成立的是( )A .x y ->-B .22x y <C .66x y <D .44x y +>+2、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能3、某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤334、如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定5、不等式组1224x x x+>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6、甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关 7、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b < 8、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-9、若a b >,则下列式子中一定成立的是( )A .22a b ->-B .22a b >C .11a b -<-D .11a b> 10、已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正整数a ,b ,c 均小于5,存在整数m 满足20221000222a b c m +=++,则()m a b c ++的值为______.2、给出下列不等式:①23x +1>x -x 2;②y -1>3;③x +2x≥2;④x ≤0;⑤3x -y <5,其中属于一元一次不等式的是:___.(只填序号)3、一元一次不等式的概念:2x -6>0,3x -24<4+x 这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.4、某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,根据题意,得:_________,解这个不等式,得:_________,所以至少需要_________名八年级学生参加活动.5、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点三、解答题(5小题,每小题10分,共计50分)1、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的14.如果他平均每天的提成不低于318,求他平均每天的送件数.2、某团委在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的单价比甲种树苗贵10元,用360元购买甲种树苗的棵数恰好与用480元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗的单价各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?3、求不等式组41341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解. 4、某医院计划选购A 、B 两种防护服.已知A 防护服每件价格是B 防护服每件价格的1.5倍,用6000元单独购买A 防护服比用5000元单独购买B 防护服要少2件.(1)A ,B 两种防护服每件价格各是多少元?(2)如果该医院计划购买B 防护服的件数比购买A 防护服件数的3倍多80件,且用于购买A ,B 两种防护服的总经费不超过265000元,那么该医院最多可以购买多少件B 防护服?5、解不等式组()3841710x x x x <+⎧⎨+≤+⎩,并把解集表示在数轴上.-参考答案-一、单选题1、D【解析】【分析】根据不等式的性质逐一进行判断即可得到答案.【详解】选项A ,在不等式x >y 两边都乘以-1,不等号的方向改变得<x y --,故选项A 不正确;选项B ,在不等式x >y 两边都乘上2,不等号的方向不变得22>x y ,故选项B 不正确;选项C ,在不等式x >y 两边都除以6,不等号的方向不变得66>x y ,故选项C 不正确; 选项D ,在不等式x >y 两边都加以4,不等号的方向不变得44x y +>+,故选项D 正确. 故选D .【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键.2、D【解析】【分析】设腰长为x ,则底边为162x -,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.【详解】解:设腰长为x ,则底边为162x -,162162x x x x x --<<-+,48x ∴<<,三边长均为整数, x 可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D .【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.3、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.4、A【解析】【分析】设A,B两人的体重分别为a,b,根据题意列出等式和不等式,即可得出答案.【详解】解:设A,B两人的体重分别为a,b,根据题意得:a+m=n+b,a>b,∴m<n,故选:A.【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.5、D【解析】【分析】首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:由12x +>得:1x >由24x x -≤得:4x ≤综合得:14x <≤故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.6、C【解析】【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元, ∵甲赚了钱,∴32a b +<5()2a b +, 解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.7、B【解析】【分析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.8、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.9、C【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A. a b >,∴22a b -<-,故该选项不正确,不符合题意;B.当0a b >>时,22a b >,故该选项不正确,不符合题意;C. a b >,∴11a b -<-,故该选项正确,符合题意;D. 当0a b >>时,11a b<,故该选项不正确,不符合题意; 故选C【点睛】 本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x+1<-2x的两边同加上2x,不等号的方向不变,即10x+1<0.故选:B.【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.二、填空题1、14【解析】【分析】首先根据正整数a,b,c均小于5,得出2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,即6≤2022+1000m≤48,解不等式组求出m的范围,根据m为整数,得出m=-2,那么2022+1000m=22.观察得只有2+4+16=22,求出a+b+c=1+2+4=7,进而得到m(a+b+c)=-2×7=-14.【详解】解:∵正整数a,b,c均小于5,∴2a+2b+2c≤24+24+24=48,2a+2b+2c≥2+2+2=6,∴6≤2022+1000m≤48,∴-2.016≤m≤-1.974,∵m为整数,∴m=-2,∴2022+1000m=22.∵2a,2b,2c,的取值只能为2,4,8,16,观察得只有2+4+16=22,∴a+b+c=1+2+4=7,∴m(a+b+c)=-2×7=-14.故答案为:-14.【点睛】本题考查了有理数的混合运算,不等式的性质,一元一次不等式组的解法,求出m与a+b+c的值是解题的关键.2、②④【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【详解】①23x+1>x-x2是一元二次不等式,故选项不符合题意;②y-1>3是一元一次不等式,故此选项符合题意;③x+2x≥2中2x不是整式,故选项不符合题意;④x≤0是一元一次不等式,故此选项符合题意;⑤3x-y<5;含两个未知数,故选项不符合题意.故答案为:②④【点睛】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.3、整式一个未知数 1【解析】略4、 15×(60-x )+20x ≥1000 x ≥20 20【解析】略5、 右 左 空心 不含【解析】略三、解答题1、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,列二元一次方程求解;(2)设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,根据题意得: 802016012025230x y x y +=⎧⎨+=⎩, 解得 1.52x y =⎧⎨=⎩, 答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,根据题意得:()120041.52200318m m m m ⎧-⎪⎨⎪+-⎩, 解得160164m ,m 是正整数,m ∴的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.2、 (1)甲种树苗的单价是30元,乙种树苗的单价是40元;(2)他们最多可购买11棵乙种树苗;【解析】【分析】(1)根据题意可得等量关系:480360=乙树苗单价甲树苗单价,根据等量关系列出方程求解即可; (2)根据题意可知不等关系:×110501500-⨯-≤甲树苗单价(%)(乙树苗数量),根据题意列出不等式求解即可.(1)解:设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元,依题意有48036010x x=+ , 解得:x =30,经检验,x =30是原方程的解,x +10=40,∴甲种树苗的单价是30元,乙种树苗的单价是40元.(2)设他们可购买y棵乙种树苗,依题意有,30×(1﹣10%)(50﹣y)+40y≤1500 ,解得,71113y≤,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查列分式方程解决实际问题,以及列不等式解决实际问题,能够根据题意找出等量关系并列出方程是解决本题的关键.3、该不等式的整数解为-2,-1,0,1.【解析】【分析】首先求出不等式组中每一个不等式的解集,再根据大小小大中间确定不等式的解集即可.【详解】解:41341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,由①得:x>-3,由②得x≤1,不等式组的解集为:-3<x≤1,则该不等式的整数解为-2,-1,0,1.【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律,同大取大,同小取小,大小小大中间找,大大小小找不到.4、 (1)B种防护服每件价格是500元,A种防护服每件价格是750元(2)该医院最多可以购买380件B防护服【解析】【分析】根据题意可知等量关系:500060002B A-=防护服单价防护服单价,根据A防护服每件价格是B防护服每件价格的1.5倍,可用一个未知数表示出A,B两种防护服单价,进而可列分式方程解决本题;根据该医院计划购买B防护服的件数比购买A防护服件数的3倍多80件,可知A,B两种防护服购买数量之间的关系,由题意可得,购买A型防护服装所需经费+B型防护服所需经费≤265000,故列出不等式解决即可.(1)设B种防护服每件价格是x元,则A种防护服每件价格是1.5x元,依题意得:5000600021.5x x-=,解得:x=500,经检验,x=500是原方程的解,且符合题意,则1.5x=750,答:B种防护服每件价格是500元,A种防护服每件价格是750元.(2)设该医院可以购买y件A防护服,则购买(3y+80)件B防护服,依题意得:750y+500(3y+80)≤265000,解得:y≤100,则3y+80≤380,答:该医院最多可以购买380件B 防护服.【点睛】本题考查列方式方程解应用题,用不等式解决应用题,能够根据题意找到等量关系并列出方程是解决本题的关键.5、不等式组的解集为24x -≤<,数轴见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得4x <,解不等式②得 2x ≥-,在数轴上表示为:∴此不等式组的解集为24x -≤<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( )A .B .C .D .2.如图,已知一次函数y =kx +b 的图象经过点A (﹣1,2)和点B (﹣2,0),一次函数y =mx 的图象经过点A ,则关于x 的不等式组0<kx +b <mx 的解集为( )A .﹣2<x <﹣1B .﹣1<x <0C .x <﹣1D .x >﹣1 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y < B .x y > C .x y ≤ D .x y ≥ 4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 7.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 10.已知a <b ,下列变形正确的是( ) A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.下列不等式变形中,一定正确的是( ) A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 二、填空题13.不等式21302x --的非负整数解共有__个. 14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.17.如图,数轴上所表示关于x 的不等式组的解集是__________.18.若不等式12x x -<的解都能使关于x 的一次不等式()11a x a -<+成立,则a 的取值范围是________. 19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.现对x ,y 定义一种新的运算T ,规定:(,)++=+ax by c T x y x y (其中a ,b ,c 为常数,且0abc ≠).例如:10(1,0)10⨯+⨯+==++a b c T a c . 已知(3,1)2,(2,3) 2.8,(1,1)3-===T T T .(1)求a ,b ,c 的值;(2)求关于m 的不等式组(4,54)3,(2,32)1T m m T m m -<⎧⎨->⎩的整数解. 22.解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.再求它的所有的非负整数.23.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题:(1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩26.已知一次函数y x b =+的图像经过点(1,3)A -.(1)求该函数的表达式;(2)x 取何值时,0y >?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】解出不等式,在进行判断即可;【详解】251x -+≥,24x -≥-,2x ≤,解集表示为:;故答案选C .【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.A解析:A【分析】利用函数图象,写出在x 轴上方且函数y=kx+b 的函数值小于函数y=mx 的函数值对应的自变量的范围即可.【详解】解:当x >﹣2时,y =kx +b >0;当x <﹣1时,kx +b <mx ,所以不等式组0<kx +b <mx 的解集为﹣2<x <﹣1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.8.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.9.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.二、填空题13.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.【分析】先将m看做常数解方程组求出再代入可得关于m的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题解析:72 m<【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.17.【分析】数轴的某一段上面表示解集的线的条数与不等式的个数一样那么这段就是不等式组的解集实心圆点包括该点空心圆圈不包括该点>向右<向左两个不等式的公共部分就是不等式组的解集【详解】解:由图示可看出从- 解析:12x -<≤【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是空心圆,表示x>-1;从2出发向左画出的折线且表示2的点是实心圆,表示x≤2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:12x -<≤.故答案为:12x -<≤.【点睛】本题考查在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】求出不等式的解求出不等式的解集得出关于a 的不等式求出a 即可【详解】解:解不等式可得∵不等式的解都能使不等式成立∴∴解得故答案为:【点睛】本题考查解一元一次不等式不等式的性质等知识点能根据已知 解析:113a ≤< 【分析】 求出不等式12x x -<的解,求出不等式()11a x a -<+的解集,得出关于a 的不等式,求出a 即可.【详解】 解:解不等式12x x -<可得2x >-, ∵不等式12x x -<的解都能使不等式()11a x a -<+成立, ∴10a -<,11a x a +>-, ∴121a a +≤--, 解得113a ≤<, 故答案为:113a ≤<. 【点睛】本题考查解一元一次不等式,不等式的性质等知识点,能根据已知得到关于a 的不等式是解此题的关键..19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)231a b c =⎧⎪=⎨⎪=⎩;(2)关于m 的不等式组(4,54)3(2,32)3T m m T m m -<⎧⎨->⎩的整数解有1,2,3. 【分析】(1)由题意易得323123 2.82311311a b c a b c a b c ⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,然后求解即可; (2)由题意,得243(54)135223(32)113m m m m ⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,则有大于14且小于72的整数有1,2,3,然后问题可求解.【详解】解:(1)由题意,得3231232.82311311a b ca b ca b c⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,整理,得34 23146a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得231abc=⎧⎪=⎨⎪=⎩;(2)由题意,得243(54)135223(32)113m mm m⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,解得17 42 <<m,∵大于14且小于72的整数有1,2,3,∴关于m的不等式组()()4,5432,323T m mT m m⎧-<⎪⎨->⎪⎩的整数解有1,2,3.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.22.0,1,2【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来,写出符合条件的x 的非负整数解即可.【详解】解:3(1)51?124?2x xxx-<+⎧⎪⎨-≥-⎪⎩①②,由①得,x>-2,由②得,73x≤,故此不等式组的解集为:723x-<≤,在数轴上表示为:,它的所有的非负整数解为:0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)33xy=⎧⎨=⎩;(2)B;(3)三种,方案见解析【分析】(1)求方程3x-y=6的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支; 或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.。

数学八年级上下册不等式试卷

数学八年级上下册不等式试卷

1、若a > b,则下列不等式中一定成立的是:A. a - 2 < b - 2B. 2a < 2bC. -a > -bD. a + c > b + c解析:根据不等式的性质,当两边同时加上或减去同一个数时,不等号的方向不变。

因此,对于选项D,a + c > b + c,由于a > b,所以加上相同的数c后,不等号方向仍然保持,故D选项正确。

(答案:D)2、若x < 5,则下列不等式中错误的是:A. x + 3 < 8B. x - 2 < 3C. 2x < 10D. x/2 > 2.5解析:对于选项D,若x < 5,则x除以2应小于2.5,而非大于2.5。

因此,D选项是错误的。

(答案:D)3、若-3 < x < 2,则下列哪个区间是x + 5的取值范围?A. -8 < x + 5 < -3B. -3 < x + 5 < 2C. 2 < x + 5 < 7D. -8 < x + 5 < 7解析:根据不等式的性质,当两边同时加上或减去同一个数时,不等号的方向不变。

因此,对于-3 < x < 2,两边同时加5,得到2 < x + 5 < 7。

(答案:C)4、若a > b,c < 0,则下列不等式中一定成立的是:A. ac > bcB. a/c > b/cC. a - c > b - cD. a + c > b + c解析:对于选项C,由于a > b,且-c > 0(因为c < 0),所以两边同时加上-c,不等号方向不变,得到a - c > b - c。

(答案:C)5、若x > y > 0,则下列不等式中不一定成立的是:A. x2 > y2B. √x > √yC. 1/x < 1/yD. x3 < y3解析:对于选项D,由于x > y > 0,且三次方函数在整个实数范围内是单调递增的,所以x3 > y3,而非x3 < y3。

八年级不等式试题及答案

八年级不等式试题及答案

八年级不等式试题及答案1. 若不等式 \( ax + b > 0 \) 的解集为 \( x < -\frac{b}{a} \),求 \( a \) 和 \( b \) 的符号。

答案:\( a < 0 \) 且 \( b > 0 \)。

2. 解不等式 \( 3x - 7 < 0 \)。

答案:\( x < \frac{7}{3} \)。

3. 若 \( x \) 是不等式 \( 2x - 5 < 0 \) 的解,求 \( x \) 的取值范围。

答案:\( x < \frac{5}{2} \)。

4. 已知 \( x \) 和 \( y \) 满足 \( x + y > 0 \) 且 \( x - y < 0 \),求 \( x \) 和 \( y \) 的关系。

答案:\( x < y \)。

5. 解不等式组 \( \begin{cases} x - 2 > 0 \\ 3x + 4 \leq 8\end{cases} \)。

答案:\( 2 < x \leq \frac{4}{3} \)。

6. 已知 \( a \) 和 \( b \) 是两个正整数,且 \( a + b > 10 \),求 \( a \) 和 \( b \) 的最小值。

答案:\( a = 1 \),\( b = 10 \)。

7. 若不等式 \( 2x + 3 > 5x - 7 \) 的解集为 \( x < 5 \),求\( x \) 的取值范围。

答案:\( x < 5 \)。

8. 已知 \( x \) 是不等式 \( 3x - 2 \geq 4 \) 的解,求 \( x \) 的取值范围。

答案:\( x \geq 2 \)。

9. 解不等式 \( \frac{x - 1}{2} \leq 3 \)。

答案:\( x \leq 7 \)。

10. 若 \( x \) 和 \( y \) 满足 \( 2x - 3y < 0 \) 且 \( x + y > 0 \),求 \( x \) 和 \( y \) 的关系。

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为  .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是  .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案)

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案)

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案) 1.(雅安校级月考)不等式组323x x ->⎧⎨<⎩的解集是( ) A .x <3B .3<x <5C .x >5D .无解 2.下列各题中,结论正确的是( )A .若a >0,b <0,则b a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b a<0 3.若不等式组5x 23x 5x 5a+≤-⎧⎨-+<⎩无解,则a 的取值范围是( )A .17a 2≤B .a 12≤C .17a 2<D .a 12<4.不等式组9511x x x a ++⎧⎨+⎩<> 的解集是x >2,则a 的取值范围是( ) A .a≤2 B .a≥2 C .a≤1 D .a >15.下列变形中,不正确的是( )A .由x -5>0可得x >5B .由12x >0可得x >0 C .由-3x >-9可得x >3 D .由-34x >1可得x <-43 6.下列说法错误的是( ).A .不等式x -3>2的解集是x >5B .不等式x <3的整数解有无数个C .x =0是不等式2x <3的一个解D .不等式x +3<3的整数解是0 7.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m ≤3D .m ≥3 8.关于x 的不等式组0312(1)x m x x -≤⎧⎨->+⎩恰有四个整数解,则m 的取值范围是( ) A .78m <<B .78m <≤C .78m ≤<D .78m ≤≤ 9.不等式组3213x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( )10.-2x >6的解集为( )A .x >-3B .x <-3C .x≥-3D .x≤-311.若关于x 的不等式组31x x a <⎧⎨+≤⎩的解集为x<3,则a 的取值范围是______________. 12.已知x =3是方程2xa -=x +1的解,那么不等式(2-5a )y<13的解是________. 13.代数式2x-5的值不大于0,则x 的取值范围是 __________14.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等组为:_________________15.不等式7-2x >1的解集为____________.16.若a<b ,则 3a________ 3b , -a+1 ________-b+1,(m 2+1)a _______(m 2+1)b .(用“ >”,“ <”或“=”填空)17.不等式组212x x m -≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__. 18.已知a 、b 、c 是非负数,且2a+3b+c=10,a+b-c=4,如果S=2a+b-2c ,那么S 的最大值和最小值的和等于_________.19.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是____________.20.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.21.解不等式(组):.22.甲乙两地相距200千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距50km 的A 、B 两个加油站,当客车进入A 站加油时,出租车恰好进入B 站加油,求A 加油站到甲地的距离.(3)若出租车到达甲地休息10分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返..的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?23.23.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式) 24.某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务。

初二不等式测试题及答案

初二不等式测试题及答案

初二不等式测试题及答案一、选择题(每题3分,共30分)1. 若不等式组\(\left\{\begin{array}{l}x+y=2\\ x-y=0\end{array}\right.\)的解集为\(\left\{\begin{array}{l}x=1\\y=1\end{array}\right.\),则\(2x+y\)的值为()。

A. 3B. 4C. 5D. 6答案:B2. 若\(a > 0\),\(b < 0\),则\(a+b\)与\(a-b\)的大小关系是()。

A. \(a+b < a-b\)B. \(a+b > a-b\)C. \(a+b = a-b\)D. 不能确定答案:A3. 若\(a < 0\),\(b > 0\),则\(a+b\)与\(a-b\)的大小关系是()。

A. \(a+b < a-b\)B. \(a+b > a-b\)C. \(a+b = a-b\)D. 不能确定答案:B4. 若\(a < 0\),\(b < 0\),则\(a+b\)与\(a-b\)的大小关系是()。

A. \(a+b < a-b\)B. \(a+b > a-b\)C. \(a+b = a-b\)D. 不能确定答案:A5. 若\(a > 0\),\(b > 0\),则\(a+b\)与\(a-b\)的大小关系是()。

A. \(a+b < a-b\)B. \(a+b > a-b\)C. \(a+b = a-b\)D. 不能确定答案:B6. 若\(a < 0\),\(b < 0\),则\(a+b\)与\(a-b\)的大小关系是()。

A. \(a+b < a-b\)B. \(a+b > a-b\)C. \(a+b = a-b\)D. 不能确定答案:A7. 若\(a > 0\),\(b < 0\),则\(ab\)与\(a-b\)的大小关系是()。

八年级数学不等式单元测试

八年级数学不等式单元测试

不等式单元测试一、 选择题:1. 下列命题中;不成立的是( )A .d b c a d c b a ->-⇒<>,B 。

ba ab b a 110,<⇒>> C .bc a c b a ->-⇒> D 。

cb d a dc b a >⇒>>>>0,0 2. 如果,10<<a 那么下列不等式中正确的是( )A .()()01log 1>+-a aB 。

()()3311a a +>-C 。

()()213111a a ->-D 。

()111>-+a a 3. 设A={},21|<-x x B=⎭⎬⎫⎩⎨⎧>-02|x x x ;则A ⋂B=( ) A .{}31|<<-x x B 。

{}20|><x x x 或C 。

{}01|<<-x xD 。

{}3201|<<<<-x x x 或4. 用一张钢板制作一个容积为4立方米的无盖长方体水箱;可用长方体钢板有四种不 同的规格(长⨯宽的尺寸如各选项所示;单位均为:米);若既要够用;又要所剩最 少;则应选择钢板的规格是( )A 。

2⨯5B 。

2⨯⨯⨯55. 不等式()21log 21<-+x x 的解集为( ) A.⎪⎪⎭⎫⎢⎣⎡+-251,1 B. ⎪⎭⎫⎢⎣⎡-45,1 C.⎪⎪⎭⎫ ⎝⎛+-251,251 D.⎪⎪⎭⎫ ⎝⎛--251,1 6. 设+∈R b a ,;且1≥--b a ab ;则有( )A .()122+≥+b aB 。

12+≤+b a C 。

12+<+b a D 。

()122+>+b a 7. 关于x 的方程043191=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛x x m 有实数解;则实数m 的范围是( ) A .5≥m B 。

4≥m C 。

44≤≤-m D 。

八年级数学不等式单元检测题

八年级数学不等式单元检测题

《不等式》单元检测题班级 学号 姓名 分数一、选择题(每小题只有一个正确选项;请将正确选项的代号选出并填入第一题后的表格内。

每题5分;共60分)。

1、与1212>-+x x 同解的不等式是( ) (A )212-+x x 1> (B )1212>-+x x (C ) 212->+x x (D )1212>-+x x 2.不等式22251322)21(x x x x --+-≤的解集是( )(A ){}23≤≥x x x 或 (B ){}32≤≤x x (C ){}32<<x x (D ){}23<>x x x 或 3.若A ={x | |x -1|<2}, B ={x |x21->0};则A ∩B =( )。

(A ){x |-1<x <3} (B ){x |x <0或x >2} (C ){x |-1<x <0或2<x <3} (D ){x |-1<x <0} 4. 已知6<a <10,2a≤b ≤2a , c =a +b , 则c 的取值范围是( )。

(A ) 9≤c ≤30 (B )9≤c ≤18 (C )9<c <30 (D )15<c ≤30 5、不等式3121π-x og 2log 21π≥的解集是( )(A )⎩⎨⎧⎭⎬⎫≤≤-656ππx x (B )⎭⎬⎫⎩⎨⎧≠≤≤-3,656πππx x x 且 (C )⎭⎬⎫⎩⎨⎧≥-≤6565ππx x x 或 (D )⎭⎬⎫⎩⎨⎧≠≤≤-36565πππx x x 且 6、若a,b >1;且ab =100;则lga ·lgb 的最大值是 ( )(A)0 (B)1 (C)2 (D)25 7、若a >1,m=12,1-++=++a a n a a ;则m 与n 的关系是( )(A )m <n (B )m >n (C )m ≤n (D )m ≥n8、在的条件下,,00>>b a 三个结论:①22ba b a ab +≤+; ②,2222b a ba +≤+ ③b a b a a b +≥+22;其中正确的个数是 ( ) (A )、0 (B )、1 (C )、2 (D )、3 9、已知0>>a b ;且a +b =1;则有( )(A)b >a 2+b 2>2ab >21>a (B)b >a 2+b 2>21>2ab >a (C)a 2+b 2>b >21>a >2ab (D)a 2+b 2>2ab >b >21>a10、已知a 、b 为实数,则“a+b>2”是“a 、b 中至少有一个大于1”的( ) A. 充分不必要条件 B. 必要不充分条件 C.充要条件 D. 不充分也不必要条件11.不等式ax 2+ax +(a -1)<0的解集是全体实数;则a 的取值范围是( )。

《一元一次不等式》青岛版数学八年级下册单元测试(解析版)

《一元一次不等式》青岛版数学八年级下册单元测试(解析版)

青岛版数学八年级下册:第八章《一元一次不等式》单元测试一、单选题1.下面给出了五个式子:①5>0,②3x +y >0,③x +3≤3,④a ﹣1,⑤x ≠3;其中不等式有( ) A . 2个 B . 3个 C . 4个 D . 5个2.若关于x 的一元一次不等式组 {2x +1>3(x −2)x <m 的解是x <7,则m 的取值范围是( )A . m ≤7B . m <7C . m ≥7D . m >7 3.关于x 的不等式组 {x −1≤3a −x <2 有5个整数解,则a 的取值范围是( )A . 1<a ≤2B . 1<a <2C . 1≤a <2D . ﹣1≤a <0 4.下列不等式变形错误的是( )A . 若 a >b ,则 1﹣a <1﹣bB . 若 a <b ,则 ax 2≤bx 2C . 若 ac >bc ,则 a >bD . 若 m >n ,则 mx 2+1 > nx 2+1 5.关于x 的不等式组 {2x <3(x −3)+13x+24>x +a无解,则a 的取值范围是( )A . a >−32B . a ≥ −32C . a <32D . a ≤ 326.甲在集市上先买了 3 只羊,平均每只 a 元,稍后又买了 2 只,平均每只羊 b 元,后来他以每只 a+b 2元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是( )A . a <bB . a =bC . a >bD . 与 a 、 b 大小无关 7.设“●”“▲”“■”表示三种不同的物体,现用天平称称了两次,情况如图所示,那么●▲■这三种物体按质量从大到小的顺序排列( )A . ■●▲B . ■▲●C . ▲●■D . ▲■● 8.若方程组{4x +y =k +1x +4y =3)的解满足0<x +y <1,则k 的取值范围是( )A . -4<k <1B . -4<k <0C . 0<k <9D . k >-49.用长为40 m的铁丝围成如图所示的图形,一边靠墙,墙的长度AC=30 m,要使靠墙的一边长不小于25 m,那么与墙垂直的一边长x(m)的取值范围为( )A. 0≤x≤5B. x≥103C. 0≤x≤ 103D. 103≤x≤510.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的12.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2 cm,若铁钉总长度为a cm,则a满足( )A. 2.5<a<4B. 2.5≤a<3.5C. 3≤a<4D. 3<a≤3.511.若[m]表示不大于m的最大整数,例如:[5]=5,[﹣3,6]=﹣4,则关于x的方程[ 3x+17﹣5]=7的整数解有()A. 1个B. 2个C. 3个D. 4个12.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买()块肥皂.A. 5B. 4C. 3D. 2二、填空题13.若是关于的一元一次不等式,则的取值是________。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1

一、选择题1.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .2.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y+卖出,结果发现自己亏了钱,其原因是( ) A .x y <B .x y >C .x y ≤D .x y ≥3.若关于x 的一元次不等式组2324274(1)x mx x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( )A .2B .7C .11D .104.不等式360+≤x 的解集是( ) A .2x -≤B .2x ≤C .12x ≥D .2x ≥-5.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个7.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 8.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b9.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .10.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米11.已知a<b,下列变形正确的是()A.a﹣3>b﹣3 B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+112.不等式11 2x>-的解集是()A.12x>-B.2x>-C.2x<-D.12x<-二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.一次函数1y ax b与2y mx n=+的部分自变量和对应函数值如下表:x⋅⋅⋅0123⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅x16.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.17.已知一次函数y ax b=+的图象如图,根据图中信息请写出不等式0ax b+≥的解集为___________.18.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.19.某品牌电脑,成本价3000元,售价4125元,现打折销售,要使利润率不低于10%,最低可以打_____折.20.若关于x的不等式2x﹣a≥3的解集如图所示,则常数a=_____.三、解答题21.某通讯公司推出一款针对手机用户的5G收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x(分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y关于x的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?22.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A,B两种钢笔作为奖品,已知A,B两种每支分别为10元和20元,设购入A种x支,B种y支.(1)求y关于x的函数表达式;(2)若购进A种的数量不少于B种的数量,则至少购进A种多少支?23.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?24.解不等式:111 23x x+--≤.25.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】解:根据题意得,他买西瓜每斤平均价是300200500x y+,以每斤2x y+元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y+,解之得,x >y .所以赔钱的原因是x >y . 故选:B . 【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.3.D解析:D 【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可. 【详解】不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数),整理得:3152k m +=≤, 解得:0k ≤≤3,∴0k =或1或2或3,∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=, 故选:D . 【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.A解析:A【分析】利用不等式的性质即可得到不等式的解集.【详解】解:3x+6≤0,3x≤-6,x≤-2,故选:A.【点睛】本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.5.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C.点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.8.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.10.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:150 0815 .x解得x≥24.3cm,∴导火线的长至少为25厘米.故选D.【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选B.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.B解析:B【分析】根据解一元一次不等式基本步骤系数化为1可得.【详解】解:两边都乘以2,得:x>-2,故选:B . 【点睛】本题考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4. 【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可. 【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S Sa b c h ===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6, ∴h=4或h=5, 故答案为:5或4. 【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2 解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断. 【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1). 则当x <2时,kx+b >mx+n , 故答案为:x <2. 【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x a x >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 17.【分析】观察函数图形得到当x≥-1时一次函数y=ax+b 的函数值不小于0即ax+b≥0【详解】解:根据题意得当x≥-1时ax+b≥0即不等式ax+b≥0的解集为x≥-1故答案为:x≥-1【点睛】本题解析:1x ≥-【分析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.【详解】解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x ≥ ,故甲种运输车辆至少需要6辆. 故答案:6. 19.八【分析】设打折由题意得不等关系:售价×打折-进价≥进价×利润率根据不等关系列出不等式再解即可【详解】设打x 折由题意得:4125×-3000≥3000×10解得:x≥8故答案为:八【点睛】本题主要考解析:八【分析】设打x 折,由题意得不等关系:售价×打折-进价≥进价×利润率,根据不等关系列出不等式,再解即可.【详解】设打x 折,由题意得: 4125×10x -3000≥3000×10%,解得:x≥8,故答案为:八.【点睛】本题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,设出未知数,列出不等式.20.-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集再求出所给不等式的解集与已知解集相比较即可求出a的值【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1解不等式:2x﹣a≥3解得:x≥解析:-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1,解不等式:2x﹣a≥3,解得:x≥3+2a,故3+2a=﹣1,解得:a=﹣5.故答案为:﹣5.【点睛】本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.三、解答题21.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y与x的表达式为y=kx+b,则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 22.(1)y =11202x -+;(2)至少购进A 种钢笔80支 【分析】(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式; (2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.23.(1)该厂每天能生产A 型口罩0.8万只或B 型口罩1万只;(2)当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润【分析】(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只,由2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,列出方程组,即可求解;(2)由总利润=A 型口罩的利润+B 型口罩的利润,列出一次函数关系式,由不等式组和一次函数的性质可求解.【详解】解:(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只.根据题意,得23 4.632 4.4x y x y +=⎧⎨+=⎩, 解得0.81x y =⎧⎨=⎩, 答:该厂每天能生产A 型口罩0.8万只或B 型口罩1万只.(2)设该厂应安排生产A 型口罩m 天,则生产B 型口罩(7)m -天.根据题意,得()0.870.87 5.8m m m m ≥-⎧⎨+-≥⎩, 解得3569m ≤≤, 设获得的总利润为w 万元, 根据题意得:0.50.80.31(7)0.1 2.1w m m m =⨯+⨯⨯-=+,∵0.10m =>,∴w 随m 的增大而增大.∴当m =6时,w 取最大值,最大值为0.16 2.1 2.7⨯+=(万元).答:当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润.【点睛】本题主要考查二元一次方程组的应用以及一次函数的应用,根据工作效率×工作时间=工作总量即可列出(1)问的方程;第二问根据总利润=单件利润×数量列出关系式,求解即可.属于基础类应用题.24.1x ≤【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:去分母,得()()31216x x +--≤.去括号,得33226x x +-+≤.移项,得32632x x -≤--.合并同类项,得1x ≤.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 25.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W∴随x的增大而减小,∴当9x=时,W最小,220044000220094400024200=-+=-⨯+=(元)W x∴-=--=4044,207x x y答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(下)《不等式》测试题
姓名 班级 总分
一、填空题(每题2分,共计20分)
⑴用恰当的不等号表示下列关系:
①x 的3倍与8的和比y 的2倍小: ;
②老师的年龄a 不小于你的年龄b : .
⑵不等式3(x+1)≥5x —3的正整数解是
⑶当a 时,不等式(a —1)x >1的解集是x <
11-a . ⑷已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <3
1的解集是 ⑸已知函数y=2x —3,当x 时,y ≥0;当x 时,y <5. X+8<4x -1
⑹若不等式组 的解集是x >3,则m 的取值范围是 x >m
x -a ≥0
⑺已知关于x 的不等式组 的整数解共有5个,则a 的取值范围是 3-2x >-1
2x -a <1
⑻若不等式组 的解集为—1<x <1,那么(a —1)(b —1)的值等于 x -2b >3
⑼小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.
⑽2001年某省体育事业成绩显着,据统计,在有关大赛中获得奖牌数如右表所示(单位:枚)如果只获得1枚奖牌的选手有57人,那么荣获3枚奖牌的选手最多有 人.
二、选择题(每题4分,共计40分)
⑾已知“①x+y=1;②x >y ;③x+2y ;④x 2—y ≥1;⑤x <0”属于不等式的有 个.
; B. 3; ; D. 5.
⑿如果m<n<0,那么下列结论错误的是
-9<n -9; B.—m>—n ; C.n 1>m 1; D.n
m >1. (13)设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列为
A.■、●、▲。

B.■、▲、●。

C .▲、●、■。

D.▲、■、●。

金牌 银牌 铜牌 亚洲锦标赛 10 1 0 国内重大比赛 29 21 10
⒁已知a ,b 两数在数轴上的位置如图所示,设M=a+b,N=—a+b,H=a —b ,则下列各式正确的是 >N>H ; >M>N ; >M>N ; >H>N. ⒂不等式组⎩
⎨⎧>≤35x x 的解集在数轴上表示,正确的是 . A. B. C. D
⒃已知(x+3)2
+m y x ++3=0中,y 为负数,则m 的取值范围是
〉9 〈9 〉-9 〈-9
⒄观察下列图像,可以得出不等式组
3x+1〉0
的解集是
-+1〉0
〈31 B.-3
1〈x 〈0 〈x 〈2 D.-31〈x 〈2 ⒅某种出租车的收费标准是:起步价7元(即行驶的距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收元(不足1千米按1千米计算)某人乘这种出租车从甲地到乙地共付车费19元,那么此人从甲地到乙地经过的路程的最大值是 千米.
⒆某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买 块肥皂.
⒇韩日“世界杯” 期间,重庆球迷一行若干人从旅馆乘车到球场为中国队加油,现有某个车队,若全部安排乘该车队的车,每辆坐4人则多16人无车坐,若每辆坐6人,则坐最后一辆车的人数不足一半.这个车队有 辆车
三、解答题
(21)解下列不等式(组):(每题8分,共计24分)
(1) 5(x+2)≥1―2(x ―1) (2)
()1
273212-≤-++x x x
(3)解不等式组:⎪⎩⎪⎨⎧>-+<+02)8(2
1042x x
(22)若方程组⎩⎨
⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围. (6分)
(23)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图像.根据图像解答下列问题:(6分)
(1)在轮船快艇中,哪一个的速度较大?
(2)当时间x 在什么范围内时,快艇在轮船的后面?当时间x 在什么范围内时,快艇在轮船的前面?
(3)问快艇出发多长时间赶上轮船?
四、实际应用题(每题8分,共计24分)
(24)某校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为240元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?
(25)某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆元,一般车的保管费是每辆元.
(1)一般车停放的辆次数为x,总的保管费为y元,试写出y与x的关系式;
(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于25﹪,但不大于40﹪,试求该保管站这个星期日收入保管费总数的范围.
(26)在举国上下众志成城,共同抗击非典的非常时期,某厂接受了生产一批高质量医用口罩的任务。

要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于万只,该厂的生产能力是:若生产A型口罩每天能生产万只,若生产B型口罩每天能生产万只,已知生产一只A型口罩可获利元,生产一只B 型口罩可获利元。

设该厂在这次任务中生产了A型口罩x万只。

问:(1)该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_ ___万元;
(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围
(3)如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?。

相关文档
最新文档