2018各省中考数学试卷(含答案解析) (4)

合集下载

2018年陕西省中考数学试卷(带解析答案)

2018年陕西省中考数学试卷(带解析答案)

【解答】解:∵
t = =,
∴S1= S△AOB,S2= S△BOC. ∵点 O 是▱ ABCD 的对称中心, ∴S△AOB=S△BOC= S▱ ABCD,
t = =, hh
∴ = =.
即 S1 与 S2 之间的等量关系是 = . 故答案为 = .
三、解答题(共 11 小题,计 78 分。解答应写出过程)
∴AD= AC=4 . 在 Rt△ADB 中,AD=4 ,∠ABD=60°,
∴BD= AD= . ∵BE 平分∠ABC, ∴∠EBD=30°.
在 Rt△EBD 中,BD= ,∠EBD=30°,
∴DE= BD= ,
∴AE=AD﹣DE= . 故选:C.
第 3页(共 18页)
7.(3 分)若直线 l1 经过点(0,4),l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称, 则 l1 与 l2 的交点坐标为( ) A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)
第 8页(共 18页)
∴△DPA∽△ABM.
18.(5 分)如图,AB∥CD,E、F 分别为 AB、CD 上的点,且 EC∥BF,连接 AD, 分别与 EC、BF 相交于点 G,H,若 AB=CD,求证:AG=DH.
【解答】证明:∵AB∥CD、EC∥BF, ∴四边形 BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE=CF, ∴∠AEG=∠DFH, ∵AB=CD, ∴AE=DF, 在△AEG 和△DFH 中,
A.15° B.35° C.25° D.45° 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°, ∵CD∥AB, ∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

2018中考数学试题及解析

2018中考数学试题及解析

2018中考数学试题及解析第一篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。

A级基础题1.(2018年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2018年浙江宁波)如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0;②b>a>c;③若-1图3-4-1312.(2018年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2018年黑龙江绥化)如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2018年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2018年广东湛江)如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m=±1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,∴D(2,-1).当x=0时,y=3,∴C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,∴P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,∴B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).∴S△BCE=12×6×2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.希望为大家提供的中考数学试题及解析的内容,能够对大家有用,更多相关内容,请及时关注!第二篇:大连市2015年中考数学试题(含解析)辽宁省大连市20XX年中考数学试题(word版含解析)2015辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

各地2018年中考数学试卷等腰三角形(word,含解析)

各地2018年中考数学试卷等腰三角形(word,含解析)

等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。

每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

2018年度山东临沂中考数学试卷(规范标准答案解析版)

2018年度山东临沂中考数学试卷(规范标准答案解析版)

2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( ) A .﹣3 B .﹣1 C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( )A .(y +12)2=1B .(y ﹣12)2=1C .(y +12)2=34D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( )A .5B .4C .3D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元 45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是( ) A .平均数和众数 B .平均数和中位数 C .中位数和众数 D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC=BD ,则四边形EFGH 为矩形; ②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分; ④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等. 其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分) 15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= . 17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。

2018年安徽省中考数学试卷(WORD精校版带标准答案及解析)

2018年安徽省中考数学试卷(WORD精校版带标准答案及解析)

2018年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。

1.(2018安徽)-8的绝对值是()A.-8 B.8 C.±8 D.-1 82. (2018安徽)2017年我省粮食总产量为695.2亿斤,其中695.2亿科学记数法表示()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083. (2018安徽)下列运算正确的是()A.(a2)3=a5B.a2·a4=a8C.a6÷a3=a2D.(ab)3=a3b34. (2018安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5. (2018安徽)下列分解因式正确的是()A.-x2+4x=-x(x+4) B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)6. (2018安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7. (2018安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.-1B.1 C.-2或2 D.-3或18. (2018安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9. (2018安徽)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//C E D.∠BAE=∠DCF10. (2018安徽)如图,直线l1、l2都与直线l垂直,垂足分别为M,N,MN=1正方形ABCD的边3,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1、l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大共4小题,每小题5分,满分30分)11.(2018安徽)不等式x-82>1的解集是。

2018年河北省中考数学试卷及答案解析

2018年河北省中考数学试卷及答案解析

数学试卷 第1页(共20页)数学试卷 第2页(共20页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页)数学试卷 第4页(共20页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共20页)数学试卷 第6页(共20页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)河北省2018年初中毕业文化课考试数学答案解析 第Ⅰ卷一、选择题1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性.2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.【考点】科学记数法.3.【答案】C【解析】该图形的对称轴是直线3l,故选:C.【考点】轴对称图形的概念和性质.4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-,故选:C.【考点】完全平方公式和平方差公式的运用.5.【答案】C【解析】A项,俯视图不符合题意.B项,主视图和左视图均不符合题意.C项,正确.D项,俯视图不符合题意.【考点】立体图形与三视图的关系.6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【考点】基本的尺规作图.7.【答案】A【解析】设的质量为x,的质量为y,的质量为a,假设A正确,则 1.5x y=,此时B,C,D选项中都是2x y=,故A选项错误,符合题意.故选:A.【考点】等式的性质.8.【答案】B【解析】A、利用SAS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出PCA PCB△≌△,∴CA CB=,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.【考点】等腰三角形的三线合一.9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁.【考点】平均数和方差的概念及应用.10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m÷-=-,原题正确,该同学判断正确;数学试卷第9页(共20页)数学试卷第10页(共20页)数学试卷 第11页(共20页) 数学试卷 第12页(共20页)故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A 【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a+,则新正方形的周长为4(2)(a 8)cm4a +=+,因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-.故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,∵点I 为ABC △的内心, ∴AI 平分CAB ∠,∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质.16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点,数学试卷 第13页(共20页) 数学试卷 第14页(共20页)∴①如图1,抛物线与直线相切, 联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220xx c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上, ∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c = 故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数,∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】1421【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=.【考点】正多边形的外角和等于360,每个外角等于360n.三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+. ∵结果为常数,∴50a -=,解得5a =.【解析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值. 【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册.(2)由题意,得总人数为24人,超过5册的学生人数为6410+=数学试卷 第15页(共20页) 数学试卷 第16页(共20页)(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率;(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数). 【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.(2)解:由(1)知,APM BPN △≌△,∴PM PN =, ∴2MN PN =.∴2MN BN =,∴BN PN =, ∴50BPN B α=∠=∠=. (3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题. 24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=, ∴2m =. ∴(2,4)C .设2l 的解析式为(0)y kx k =≠, ∴点(2,4)C 在2l 上,24k =, ∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点, ∴(10,0),(0,5)A B , 即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOCc S OB x ==⨯⨯=△,数学试卷 第17页(共20页) 数学试卷 第18页(共20页)∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =.【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值; (3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k的值为32或2或12-.【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=.∵PQ OB ∥, ∴PQO AOB ∠=∠, ∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQx==,∴19.5x =.故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥. ∵PQ OB ∥, ∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ=.设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a . ∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==. 故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题; (2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形. 26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入ky x=,得18k =.设2h mt =,当1t =时,5h =,∴5m =. ∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①. 根据题意,得18y h =-.∵25h t=,∴2185y t =-②.数学试卷 第19页(共20页) 数学试卷 第20页(共20页)由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=, 解得126,4x x ==-(舍去). 将6x =代入18y x =,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m . (3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙. 【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷(含答案)

2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。

2018年河北省中考数学试卷(含答案与解析)

2018年河北省中考数学试卷(含答案与解析)

数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共28页)数学试卷 第6页(共28页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)5/14河北省2018年初中毕业文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性. 2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6, 故选:B .【考点】科学记数法. 3.【答案】C【解析】该图形的对称轴是直线3l , 故选:C .【考点】轴对称图形的概念和性质. 4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-, 故选:C .【考点】完全平方公式和平方差公式的运用. 5.【答案】C【解析】A 项,俯视图不符合题意.B 项,主视图和左视图均不符合题意.C 项,正确.D 项,俯视图不符合题意.【考点】立体图形与三视图的关系. 6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:6则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ. 故选:D .【考点】基本的尺规作图. 7.【答案】A 【解析】设的质量为x ,的质量为y ,的质量为a ,假设A 正确,则 1.5x y =,此时B ,C ,D 选项中都是2x y =,故A 选项错误,符合题意. 故选:A .【考点】等式的性质. 8.【答案】B【解析】A 、利用SAS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;C 、利用SSS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出PCA PCB △≌△,∴CA CB =,∴点P 在线段AB 的垂直平分线上,符合题意,B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B . 【考点】等腰三角形的三线合一. 9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁. 【考点】平均数和方差的概念及应用. 10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误; ③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m ÷-=-,原题正确,该同学判断正确;故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A7/14【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a ,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a +,则新正方形的周长为4(2)(a 8)cm 4a +=+, 因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-. 故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,8∵点I 为ABC △的内心, ∴AI 平分CAB ∠, ∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质. 16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点, ∴①如图1,抛物线与直线相切,联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220x x c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上,∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c =9/14故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数, ∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】14 21【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=. 【考点】正多边形的外角和等于360,每个外角等于360n. 三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+.10∵结果为常数,∴50a -=,解得5a =. 【解析】(1)原式去括号、合并同类项即可得; (2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册. (2)由题意,得总人数为24人,超过5册的学生人数为6410+=(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数; (2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率; (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数. 【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数).【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.11/14(2)解:由(1)知,APM BPN △≌△,∴PM PN =,∴2MN PN =.∴2MN BN =,∴BN PN =,∴50BPN B α=∠=∠=.(3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题.24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=,∴2m =.∴(2,4)C .设2l 的解析式为(0)y kx k =≠,∴点(2,4)C 在2l 上,24k =,∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点,∴(10,0),(0,5)A B ,即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOC c S OB x ==⨯⨯=△, ∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =. 【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值;(3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k 的值为32或2或12-. 【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=. ∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQ x ==,∴19.5x =. 故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥.∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ =. 设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a =.13/14∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==.故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题;(2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形.26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入k y x =,得18k =. 设2h mt =,当1t =时,5h =,∴5m =.∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①.根据题意,得18y h =-.∵25h t =,∴2185y t =-②. 由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=,解得126,4x x ==-(舍去).将6x =代入18y x=,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m .(3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙.【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。

)1.(3分) 下面有理数比较大小,正确的是()A。

<﹣2B。

﹣5<3C。

﹣2<﹣3D。

1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》3.(3分) 下列运算正确的是()A。

(﹣a3)2=﹣a6B。

2a2+3a2=6a2C。

2a2•a3=2a6D。

(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。

| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。

2018年广东省中考数学真题及参考答案

2018年广东省中考数学真题及参考答案

广东省二○一八年初中学业考试暨高中阶段统一招生考试数学试卷注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。

2.答第Ⅰ卷时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。

务必在题号所指示的答题区域内作答。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是A .圆B .菱形C .平行四边形D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .1B .1C .1D .18.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11.同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是.12.分解因式:=+-122x x .13.一个正数的平方根分别是51-+x x 和,则x=.14.已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为.(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2018年江西省中考数学试题含答案解析(Word版)

2018年江西省中考数学试题含答案解析(Word版)

机密★2018年6月19日江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。

2.请将答案写在答题卡上,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. ﹣2的绝对值是 A.B. C.D.【解析】 本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★ 2.计算的结果为A. B. C. D.【解析】 本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A ★3.如图所示的几何体的左视图为第3题A B C D 【解析】 本题考察三视图,容易,但注意错误的选项B 和C. 【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是(第4题)乒乓球径毛球足球篮球A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】 本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★5.小军同学在网格纸上将某些图形进行平移操作,他发现平移 前后的两个图形所组成的图形可以是轴对称图形.如图所示, 现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A. 3个 B. 4个 C. 5个 D. 无数个【解析】 本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当 时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】 本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当 时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距(第5题)离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两。

2018年中考数学试卷及答案(pdf解析版)

2018年中考数学试卷及答案(pdf解析版)

2018年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2014•南平)﹣4的相反数( ) A.4B.﹣4C.D.﹣分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选:A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3.(4分)(2014•南平)一个袋中只装有3个红球,从中随机摸出一个是红球( ) A.可能性为B.属于不可能事件C.属于随机事件D.属于必然事件考点:随机事件;可能性的大小.分析:根据要求判断事件的类型,再根据必然事件、不可能事件、随机事件的概念选择即可.解答:解:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选:D.点评:本题主要考查必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)(2014•南平)下列计算正确的是( ) A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识求解即可求得答案.解答:解:A、(2a2)4=16a8,故A选项错误;B、a3+a,不是同类项不能计算,故B选项错误;C、a2÷a=a,故C选项正确;D、(a﹣b)2=a2+b2﹣2ab,故D选项错误.故选:C.点评:本题主要考查了合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识,解题的关键是熟记法则及公式.5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( ) A.45°B.60°C.90°D.180°考点:平行线的性质.分析:利用平行线的性质和对顶角的性质进行解答.解答:解:如图,∵a∥b,∴∠1=∠3,∠2=∠4.又∵∠3=∠5,∠4=∠6,∠5+∠6=90°,∴∠1+∠2=90°.故选:C.点评:本题考查了平行线的性质.正确观察图形,熟练掌握平行线的性质和对顶角相等.6.(4分)(2014•南平)下列说法正确的是( ) A.了解某班同学的身高情况适合用全面调查 B.数据2、3、4、2、3的众数是2 C.数据4、5、5、6、0的平均数是5 D.甲、乙两组数据的平均数相同,方差分别是S=3.2,S=2.9,则甲组数据更稳定考点:方差;全面调查与抽样调查;算术平均数;众数.分析:根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.解答:解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.点评:本题考查了方差,方差越小数据越稳定是解题关键.7.(4分)(2014•南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( ) A.1,2,1B.1,2,2C.1,2,3D.1,2,4考点:三角形三边关系.分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:解:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确;故选:B.点评:此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.8.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( ) A.y=10x+30B.y=40x C.y=10+30x D.y=20x考点:函数关系式.分析:根据师生的总费用,可得函数关系式.解答:解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选:A.点评:本题考查了函数关系式,师生的总费用的等量关系是解题关键.9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( ) A.1:2B.2:3C.1:3D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( ) A.B.C.D.1考点:规律型:数字的变化类;算术平方根.分析:根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案.数解答:解;每三个数一循环,1、,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,1=,故选:B.点评:本题考查了数字的变化类,利用了数字的变化规律.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数 π .考点:无理数.专题:开放型.分析:①开方开不尽的数,②无限不循环小数,③含有π的数,由此可写出答案.解答:解:由题意可得,π是无理数.故答案可为:π.点评:此题考查了无理数的定义,关键是掌握无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,难度一般.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .考点:线段垂直平分线的性质.分析:直接根据线段垂直平分线的性质进行解答即可.解答:解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是 80 .考点:中位数.分析:将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.解答:解:将这组数据从小到大排列,中间的数为80,所以中位数是80.故答案为:80.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为 (﹣5,3) .考点:关于原点对称的点的坐标.专题:几何图形问题.分析:两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.解答:解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为(﹣5,3).点评:主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为 .考点:概率公式.分析:列举出所有情况,看所求的情况占总情况的多少即可.解答:解:可能出现的情况有:正正,正反,反正,反反,所以全部正面朝上的概率为.点评:此题考查了列举法求概率,解题的关键是找到所有的情况.16.(3分)(2014•南平)分解因式:a3﹣2a2+a= a(a﹣1)2 .考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′= 65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是 ①③ .(写出所有正确结论的序号)考点:圆的综合题.分析:①连接AO1,AO2,BO1,BO2根据菱形的判定定理即可得出结论;②根据垂径定理即可得出结论;③连接O1O2,AB,BD,根据三角形中位线定理即可得出结论;④先判断出△BCD是等边三角形,再根据等边三角形外心的性质即可得出结论.解答:解:①如图1所示,连接AO1,AO2,B O1,BO2,∵圆⊙O1与⊙O2是等圆,∴AO1=AO2=BO1=BO2,∴四边形AO1BO2为菱形,故此小题正确;②∵AD是⊙O2的弦,∴O2在线段AD的垂直平分线上,∴点D的横坐标不是点O2的横坐标的两倍,故此小题错误;③连接O1O2,AB,BD,∵y轴是⊙O2的切线,∴O1O2⊥y轴,∵AD∥1O2.∵四边形AO1BO2为菱形,∴AB⊥O1O2,O1E=O2E,∴∠BAD=90°,∴BD过点O2,∴O2E是△ABD的中位线,∴AD=O1O2=BD,∴∠ADB=60°;④∵由③知,2AD=BD,∴CD=BD=BC,∴△BCD的外心是各边线段垂直平分线的交点,∵O1O2的中点是△BCD中位线的中点,∴△BCD的外接圆的圆心不是线段O1O2的中点,故此小题错误.故答案为:①③.点评:本题考查的是圆的综合题,涉及到切线的性质、菱形的判定定理及直角三角形的性质,难度适中.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)2.(4分)(2014•南平)如图,几何体的主视图是( ) A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有4个正方形,第二层从左起第二个有一个正方形.故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2﹣1+2+﹣1=2+;(2)原式=•=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•南平)解不等式组:.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:由①得:x<2,由②得:2﹣(x+1)≥0,2﹣x﹣1≥0,1﹣x≥0,x≤1,即不等式组的解集为x≤1.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据找不等式组解集的规律找出不等式组的解集.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.考点:相似三角形的判定与性质.专题:证明题.分析:利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.解答:证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.点评:此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了 50 名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用一般的人数除以它所占的百分比即可得抽查的学生总数;(2)用抽查的学生总数减去不喜欢、一般、很喜欢的学生人数,得到较喜欢的人数,再补全图中的条形图即可;(3)用全校的学生数乘以学生喜欢(含“较喜欢”和“很喜欢”)足球运动所占的百分比即可.解答:解:(1)10÷20%=50(名),故答案为:50;(2)50﹣5﹣10﹣15=20(名),补全统计图如下:(3)500×(1﹣10%﹣20%)=350(名).答:全校约有350名学生喜欢足球运动.点评:本题主要考查了条形统计图,用样本估计总体及扇形统计图,解题的关键是把条形统计图和扇形统计图中的数据正确的结合起来求解.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)考点:切线的判定;解直角三角形.分析:(1)连接OC,根据等腰三角形的性质求出OC⊥AB,根据切线的判定得出即可;(2)解直角三角形求出OC,即可求出答案.解答:(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.(2)解:∵由(1)得OC⊥AB,∴∠ACO=90°,∴OC=AC▪tan34°=6×tan34°≈4.047,∴⊙O的周长=2π▪OC=2×3.142×4.047≈25.43.点评:本题考查了等腰三角形的性质,切线的判定,解直角三角形的性质,主要考查学生的计算和推理能力,题目比较好,难度适中.24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式,求得m、a的值;然后把点A、B的坐标分别代入一次函数解析式来求k、b的值;(2)利用一次函数图象上点的坐标特征求得点C的坐标;然后由S△ACD=S梯形AEOC﹣S△COD﹣S△DEA进行解答.解答:解:(1)∵点A(4,1)在反比例函数上,∴∴k=4×1=4,∴.把B(a,2)代入,得2=,∴a=2,∴B(2,2).∵把A(4,1),B(2,2)代入y=kx+b∴解得,∴一次函数的解析式为;(2)∵点C在直线AB上,∴当x=0时,y=3,∴C(0,3)过A作AE⊥x轴于E.∴S△ACD=S梯形AEOC﹣S△COD﹣S△DEA==5.点评:本题考查了反比例函数与一次函数的交点问题.解题时,注意“数形结合”数学思想的应用.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据待定系数法即可求得;(2)把C(m,m﹣1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得□DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD 的值为2,所以EF的最小值是2;解答:(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),由A(﹣1,0)、B(3,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴□DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;点评:本题考查了待定系数法求解析式,抛物线上点的坐标的求法,三角形相似的判定和性质,矩形的判定和性质等,本题是二次函数的综合性题,其难点是三角形相似的判定:两组对应边对应成比例且夹角相等的两个三角形相似;26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为 60 °.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 45 °.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 36 °.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.考点:四边形综合题.分析:(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△ACE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.解答:解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.点评:本题主要考查了四边形综合题,涉及三角形全等的判定及性质,正多边形的内角及等腰三角形的性质,解题的关键是正确作出辅助线,运用三角形全等求出对应边相等.。

2018年湖北省中考数学真题试卷6套(含答案及名师解析)

2018年湖北省中考数学真题试卷6套(含答案及名师解析)

2018年湖北省中考数学真题试卷6套(含答案及名师解析)2018年湖北省武汉市中考数学真题一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6B.a2+a﹣6C.a2+6D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB于点E,且P A=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM ∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m 的值及相应点P的坐标.【参考答案】一、选择题(共10小题,每小题3分,共30分)1.A【解析】温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.D【解析】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.B【解析】3x2﹣x2=2x2,故选:B.4.B【解析】这组数据的众数和中位数分别42,38.故选:B.5.B【解析】(a﹣2)(a+3)=a2+a﹣6,故选:B.6.A【解析】点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.D【解析】设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.B【解析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解析】原式=+﹣=故答案为:12.0.9【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解析】原式=+=故答案为:14.30°或150°【解析】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.216【解析】t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.(1)证明:连接OP、OB.∵P A是⊙O的切线,∴P A⊥OA,∴∠P AO=90°,∵P A=PB,PO=PO,OA=OB,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵P A、PB都是切线,∴P A=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=P A=2a,∵△P AK∽△POA,∴P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠P AC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).2018年湖北省恩施州中考数学真题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的倒数是()A.﹣8B.8C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1B.2C.3D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8B.﹣8C.4D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3B.a<3C.a≥3D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.(3分)因式分解:8a3﹣2ab2=.14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【参考答案】一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.2.B【解析】A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.3.D【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.B【解析】0.000000823=8.23×10﹣7.故选:B.5.B【解析】∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.6.A【解析】∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.7.C【解析】64的立方根是4.故选:C.8.D【解析】解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.9.A【解析】由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.10.C【解析】设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.11.D【解析】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.12.B【解析】∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.2a(2a+b)(2a﹣b)【解析】8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).14.x≥﹣且x≠3【解析】根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.15.π【解析】∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.16.1946【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.三、解答题(本大题共有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:•(1+)÷=••=,把x=2﹣1代入得,原式===.18.证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.19.解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.20.解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.21.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.22.解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.23.(1)证明:如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)解:设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)解:PF=FD,理由是:∵∠APD=∠ABE=90°,∠P AD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠P AD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.24.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.2018年湖北省黄石市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×108C.0.696×107D.6.96×1053.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a45.(3分)如图,该几何体的俯视图是()A.B.C.D.6.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<410.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二、填空题(本大题给共6小题,每小题3分,共18分)11.(3分)分解因式:x3y﹣xy3=.12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(3分)分式方程=1的解为14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(3分)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|18.(7分)先化简,再求值:.其中x=sin60°.19.(7分)解不等式组,并求出不等式组的整数解之和.20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240D x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m >0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.【参考答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.D【解析】A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.2.B【解析】696000千米=696000000米=6.96×108米,故选:B.3.C【解析】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.B【解析】A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=;故选:B.5.A【解析】从几何体的上面看可得,故选:A.6.C【解析】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.D【解析】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.9.B【解析】解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.10.A【解析】∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.二、填空题(本大题给共6小题,每小题3分,共18分)11.xy(x+y)(x﹣y)【解析】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).12.4π【解析】∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.x=0.5【解析】方程两边都乘以2(x2﹣1)得,8x+2﹣5x﹣5=2x2﹣2,解得x1=1,x2=0.5,检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,当x=1时,x﹣1=0,所以x=0.5是方程的解,故原分式方程的解是x=0.5.故答案为:x=0.514.100(1+)【解析】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tan A=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).15.【解析】根据题意列表得:2345。

2018年吉林省中考数学试卷(答案+解析)

2018年吉林省中考数学试卷(答案+解析)

2018年吉林省中考数学试卷一、选择题(共6小题,每小题2分,满分12分) 1.(2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣32.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .3.(2分)下列计算结果为a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)34.(2分)如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB =9,BC =6,则△DNB 的周长为( )A .12B .13C .14D .156.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .{x +y =352x +2y =94B .{x +y =354x +2y =94C .{x +y =354x +4y =94D .{x +y =352x +4y =94二、填空题(共8小题,每小题3分,满分24分) 7.(3分)计算:√16= .8.(3分)买单价3元的圆珠笔m 支,应付 元.9.(3分)若a +b =4,ab =1,则a 2b +ab 2= .10.(3分)若关于x 的一元二次方程x 2+2x ﹣m =0有两个相等的实数根,则m 的值为 .11.(3分)如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.(3分)如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B =∠C =90°,测得BD =120m ,DC =60m ,EC =50m ,求得河宽AB = m .13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,AB ̂=BC ̂,若∠AOB =58°,则∠BDC = 度.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,则该等腰三角形的顶角为 度.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下: 原式=a 2+2ab ﹣(a 2﹣b 2) (第一步) =a 2+2ab ﹣a 2﹣b 2(第二步) =2ab ﹣b 2 (第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程.16.(5分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5分)在平面直角坐标系中,反比例函数y=kx(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1; 第二步:点D 1绕点B 顺时针旋转90°得到点D 2; 第三步:点D 2绕点C 顺时针旋转90°回到点D . (1)请用圆规画出点D →D 1→D 2→D 经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题 方案示意图测量步骤(1)用 测得∠ADE =α;(2)用 测得BC =a 米,CD =b 米.计算过程22.(7分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲30013乙0150分析数据:表二种类平均数中位数众数方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2√3cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(10分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)×(﹣2)=2.故选:A.2.(2分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.3.(2分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.4.(2分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.5.(2分)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB =9,BC =6,则△DNB 的周长为( )A .12B .13C .14D .15【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6, ∴BD =12BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故选:A .6.(2分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .{x +y =352x +2y =94B .{x +y =354x +2y =94C .{x +y =354x +4y =94D .{x +y =352x +4y =94【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【解答】解:由题意可得, {x +y =352x +4y =94, 故选:D .二、填空题(共8小题,每小题3分,满分24分) 7.(3分)计算:√16= 4 .【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16, ∴√16=4,故答案为4.8.(3分)买单价3元的圆珠笔m 支,应付 3m 元. 【分析】根据总价=单价×数量列出代数式. 【解答】解:依题意得:3m .故答案是:3m .9.(3分)若a +b =4,ab =1,则a 2b +ab 2= 4 .【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.10.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.11.(3分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=√32+42=5,∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),12.(3分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴ABEC=BDCD,AB=BD×ECCD,解得:AB =120×5060=100(米).故答案为:100.13.(3分)如图,A ,B ,C ,D 是⊙O 上的四个点,AB ̂=BC ̂,若∠AOB =58°,则∠BDC = 29 度.【分析】根据∠BDC =12∠BOC 求解即可;【解答】解:连接OC .∵AB̂=BC ̂, ∴∠AOB =∠BOC =58°, ∴∠BDC =12∠BOC =29°,故答案为29.14.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,则该等腰三角形的顶角为 36 度.【分析】根据等腰三角形的性质得出∠B =∠C ,根据三角形内角和定理和已知得出5∠A =180°,求出即可.【解答】解:∵△ABC 中,AB =AC , ∴∠B =∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =12,∴∠A :∠B =1:2, 即5∠A =180°, ∴∠A =36°,故答案为:36.三、解答题(共12小题,满分84分)15.(5分)某同学化简a (a +2b )﹣(a +b )(a ﹣b )出现了错误,解答过程如下: 原式=a 2+2ab ﹣(a 2﹣b 2) (第一步) =a 2+2ab ﹣a 2﹣b 2(第二步) =2ab ﹣b 2 (第三步)(1)该同学解答过程从第 二 步开始出错,错误原因是 去括号时没有变号 ;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号; 故答案是:二;去括号时没有变号;(2)原式=a 2+2ab ﹣(a 2﹣b 2) =a 2+2ab ﹣a 2+b 2=2ab +b 2.16.(5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE =CF ,求证:△ABE ≌△BCF .【分析】根据正方形的性质,利用SAS 即可证明; 【解答】证明:∵四边形ABCD 是正方形, ∴AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中, {AB =BC∠ABE =∠BCF BE =CF, ∴△ABE ≌△BCF .17.(5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率. 【解答】解:列表得:A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种, 所以该同学两次摸出的小球所标字母相同的概率=39=13.18.(5分)在平面直角坐标系中,反比例函数y =kx (k ≠0)图象与一次函数y =x +2图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.【分析】先求出P 点的坐标,再把P 点的坐标代入反比例函数的解析式,即可求出答案. 【解答】解:∵把x =1代入y =x +2得:y =3, 即P 点的坐标是(1,3),把P 点的坐标代入y =kx 得:k =3,即反比例函数的解析式是y =3x.19.(7分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 甲队每天修路的长度 ,庆庆同学所列方程中的y 表示 甲队修路400米所需时间或乙队修路600米所需时间 ;(2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:x 表示甲队每天修路的长度;y 表示甲队修路400米所需时间或乙队修路600米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程, ∴x 表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程, ∴y 表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间. (2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可). (3)选冰冰的方程:400x=600x+20,去分母,得:400x +8000=600x , 移项,x 的系数化为1,得:x =40, 检验:当x =40时,x 、x +20均不为零, ∴x =40.答:甲队每天修路的长度为40米. 选庆庆的方程:600y﹣400y=20,去分母,得:600﹣400=20y , 将y 的系数化为1,得:y =10, 经验:当y =10时,分母y 不为0, ∴y =10, ∴400y=40.答:甲队每天修路的长度为40米.20.(7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1; 第二步:点D 1绕点B 顺时针旋转90°得到点D 2; 第三步:点D 2绕点C 顺时针旋转90°回到点D . (1)请用圆规画出点D →D 1→D 2→D 经过的路径; (2)所画图形是 轴对称 对称图形; (3)求所画图形的周长(结果保留π).【分析】(1)利用旋转变换的性质画出图象即可; (2)根据轴对称图形的定义即可判断; (3)利用弧长公式计算即可;【解答】解:(1)点D →D 1→D 2→D 经过的路径如图所示:(2)观察图象可知图象是轴对称图形, 故答案为轴对称.(3)周长=4×90⋅π⋅4180=8π.21.(7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平课题 测量学校旗杆的高度活动目的 运用所学数学知识及方法解决实际问题方案示意图测量步骤 (1)用 测角仪 测得∠ADE =α; (2)用 皮尺 测得BC =a 米,CD =b 米.计算过程【分析】在Rt △ADE 中,求出AE ,再利用AB =AE +BE 计算即可; 【解答】解:(1)用 测角仪测得∠ADE =α; (2)用 皮尺测得BC =a 米,CD =b 米. (3)计算过程:∵四边形BCDE 是矩形, ∴DE =BC =a ,BE =CD =b ,在Rt △ADE 中,AE =ED •tan α=a •tan α,∴AB =AE +EB =a •tan α+b .22.(7分)为了调查甲、乙两台包装机分装标准质量为400g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲303013乙031510分析数据:表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:包装机分装情况比较好的是乙(填甲或乙),说明你的理由.【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义,方差小分装质量较为稳定即可得.【解答】解:整理数据:表一质量(g)393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411频数种类甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙.23.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为 4000 m ,小玲步行的速度为 100 m /min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y 与时间x 之间的函数关系式; (3)两人相遇实际上是函数图象求交点.【解答】解:(1)结合题意和图象可知,线段CD 为小东路程与时间函数图象,折线O ﹣A ﹣B 为小玲路程与时间图象 则家与图书馆之间路程为4000m ,小玲步行速度为2000÷20=100m /s 故答案为:4000,100(2)∵小东从离家4000m 处以300m /min 的速度返回家,则xmin 时, ∴他离家的路程y =4000﹣300x 自变量x 的范围为0≤x ≤403(3)由图象可知,两人相遇是在小玲改变速度之前 ∴4000﹣300x =200x 解得x =8∴两人相遇时间为第8分钟.24.(8分)如图①,在△ABC 中,AB =AC ,过AB 上一点D 作DE ∥AC 交BC 于点E ,以E 为顶点,ED 为一边,作∠DEF =∠A ,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,▱ADEF 的形状为 菱形 ;(3)延长图①中的DE 到点G ,使EG =DE ,连接AE ,AG ,FG ,得到图②,若AD =AG ,判断四边形AEGF 的形状,并说明理由.【分析】(1)根据平行线的性质得到∠BDE =∠A ,根据题意得到∠DEF =∠BDE ,根据平行线的判定定理得到AD ∥EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE =12AC ,得到AD =DE ,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE ⊥EG ,根据有一个角是直角的平行四边形是矩形证明. 【解答】(1)证明:∵DE ∥AC , ∴∠BDE =∠A , ∵∠DEF =∠A , ∴∠DEF =∠BDE ,∴AD ∥EF ,又∵DE ∥AC , ∴四边形ADEF 为平行四边形;(2)解:▱ADEF 的形状为菱形, 理由如下:∵点D 为AB 中点, ∴AD =12AB ,∵DE ∥AC ,点D 为AB 中点, ∴DE =12AC , ∵AB =AC , ∴AD =DE ,∴平行四边形ADEF 为菱形, 故答案为:菱形; (3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形, ∴AF ∥DE ,AF =DE , ∵EG =DE ,∴AF ∥DE ,AF =GE ,∴四边形AEGF 是平行四边形, ∵AD =AG ,EG =DE , ∴AE ⊥EG ,∴四边形AEGF 是矩形.25.(10分)如图,在矩形ABCD 中,AB =2cm ,∠ADB =30°.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB ﹣BC 运动,在AB 上的速度是2cm /s ,在BC 上的速度是2√3cm /s ;点Q 在BD 上以2cm /s 的速度向终点D 运动,过点P 作PN ⊥AD ,垂足为点N .连接PQ ,以PQ ,PN 为邻边作▱PQMN .设运动的时间为x (s ),▱PQMN 与矩形ABCD 重叠部分的图形面积为y (cm 2) (1)当PQ ⊥AB 时,x =23s ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.【分析】(1)当PQ ⊥AB 时,BQ =2PB ,由此构建方程即可解决问题; (2)分三种情形分别求解即可解决问题; (3)分两种情形分别求解即可解决问题; 【解答】解:(1)当PQ ⊥AB 时,BQ =2PB , ∴2x =2(2﹣2x ), ∴x =23s .故答案为23s .(2)①如图1中,当0<x ≤23时,重叠部分是四边形PQMN .y =2x ×√3x =2√3x 2. ②如图②中,当23<x ≤1时,重叠部分是四边形PQEN .y =12(2﹣x +2tx ×√3x =√32x 2+√3x ③如图3中,当1<x <2时,重叠部分是四边形PNEQ .y =12(2﹣x +2)×[√3x ﹣2√3(x ﹣1)]=√32x 2﹣3√3x +4√3; 综上所述,y ={2√3x 2(0<x ≤23)√32x 2+√3x(23<x ≤1)√32x 2−3√3x +4√3(1<x <2).(3)①如图4中,当直线AM 经过BC 中点E 时,满足条件.则有:tan ∠EAB =tan ∠QPB ,∴√32=√3x 2−2x−x, 解得x =25.②如图5中,当直线AM 经过CD 的中点E 时,满足条件.此时tan ∠DEA =tan ∠QPB ,∴2√31=√3x2−2x−x, 解得x =47,综上所述,当x =25或47时,直线AM 将矩形ABCD 的面积分成1:3两部分.26.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a =﹣1时,抛物线顶点D 的坐标为 (﹣1,4) ,OE = 3 ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设∠DEO =β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【分析】(1)求出直线CD 的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,OC=√3OE=3√3,∴﹣3a=3√3,∴a=﹣√3,∴45°≤β≤60°,a的取值范围为﹣√3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,DM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).第21页(共21页)。

2018年全国中考数学真题云南中考数学(解析版-精品文档)

2018年全国中考数学真题云南中考数学(解析版-精品文档)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分) 1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________.【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________. 【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310. 4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果. 5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OAOC=________.【答案】14.【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,ABAC =5.若BC 边上的高等于3,则BC 边的(第5题图)CDABO长为________.【答案】1或9.【解析】设边BC上的高为AD.当边BC上的高AD在△ABC的内部时,如答图1所示,在Rt△ABD中,由勾股定理得BD5,在Rt△ACD中,由勾股定理得CD4,所以BC=5+4=9.在边BC上的高AD在△ABC的外部时,如答图2所示,同理BD=5,CD=4,所以BC=5-4=1.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数yx取值范围为·······()A.x≤0 B.x≤1 C.x≥0 D.x≥1【答案】B.【解析】函数yx满足1x-≥0,解得x≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省怀化市中考数学试卷试卷满分:分 教材版本:湘教版一、选择题:本大题共10小题,每小题4分,共40分. 1.(2018·怀化市,1,4分) -2018的绝对值是( )A .2018B .-2018C .20181D .±2018 1.A ,解析:-2018的绝对值表示在数轴上表示-2018的点到原点的距离,因此答案为2018. 2.(2018·怀化市,2,4分)如图,直线a ∥b ,∠1=60°,则∠2=( )A .30°B .60°C .45°D .120°2.B ,解析:根据两直线平行,同位角相等,可得∠2=∠1=60°.3.(2018·怀化市,3,4分) 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途径城市和国家最多的一趟专列全程长13 000 km ,将13 000 用科学记数法表示为( )A .13×103B . 1.3×103C . 13×104D . 1.3×1043.D ,解析:科学记数法是指将一个数表示 成a ×10n 的形式,其中a 是整数数位有且只有一位的数,也就是0<︱a ︱≤1,当原数的绝对值不小于1时,n 等于原数的整数位数减去1所得的差;当原数的绝对值小于1时,n 等于原数左起第一个非0数字前面的0的个数的相反数.因此13 000 =1.3×104. 4.(2018·怀化市,4,4分)下列几何体中,其主视图为三角形的是( )A .B .C .D .4.D ,解析:主视图是指从正面看到的图形,从左到右四个图形的主视图分别是长方形、正方形、圆、三角形,故选D.5.(2018·怀化市,5,4分)下列说法正确的是( )A .调查舞水河的水质情况,采用抽样调查的方式B .数据2,0,-2,1,3的中位数是-2C .可能性是99%的事件在一次实验中一定会发生D .从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生5.A ,解析:B 选项中位数应为1;C 选项是随机事件,不一定发生;D 选项考察对象是数据,样本容量应为2000,没有单位.故B 、C 、D 选项都是错误的.6.(2018·怀化市,6,4分)使3-x 有意义的x 的取值范围是( )A .x ≤3B .x <3C . x ≥3D . x >36.C ,解析:根据二次根式的定义可知x -3≥0,解得x ≥3.7.(2018·怀化市,7,4分)二元一次方程组⎩⎨⎧-=-=+22y x y x 的解是( )A .⎩⎨⎧-==20y xB . ⎩⎨⎧==20y xC . ⎩⎨⎧==02y x D . ⎩⎨⎧=-=02y x7.B ,解析:可用加减法解,①+②,得2x =0,∴x =0;①-②,得2y =4,∴y =2.∴⎩⎨⎧==2y x .8.(2018·怀化市,8,4分)下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角8.答案:A ,解析:B 选项相似三角形的面积比应等于相似比的平方;C 选项菱形的对角线互相垂直平分,不一定相等;D 选项相等的两个角不一定是对顶角故B 、C 、D 选项都是错误的. 9.(2018·怀化市,9,4分) 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km 所用时间相等,设江水的流速为vkm /h ,则可列方程为( )A .308030100-=+v v B . v v +=-308030100 C . v v -=+308030100 D . 308030100+=-v v 9.答案:C ,解析:本题的相等关系是顺流航行100km 所用的时间与逆流航行80km 所用的时间相等.而顺流航速为30+v ,逆流航速为30-v ,因此可列方程vv -=+308030100.10.(2018·怀化市,10,4分)函数y =kx -3与y =xk(k ≠0)在同一坐标系内的图象可能是( )A .B .C .D . 10.答案:B ,解析:直线y =kx -3与y 轴交于点(0,-3),可否定A 、D 选项;再从k 的取值符号是否一致(k >0时,直线与双曲线都经过第一、三象限;k <0时,直线与双曲线都经过第二、四象限)可以否定C.二、填空题:本大题共6小题,每小题4分,共24分. 11.(2018·怀化市,11,4分)因式分解:ab +ac = .11.答案:a (b +c ),解析:直接提公因式a 即可.12.(2018·怀化市,12,4分)计算:a 2·a 3= .12.答案: a 5,解析:根据同底数幂乘法法则“同底数幂相乘,底数不变,指数相加”计算即可. 13.(2018·怀化市,13,4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是 .13.答案:0.6,解析:根据等可能条件下概率的计算公式,共有5种等可能结果,其中摸出奇数号球的有3种,所以P (摸出的小球标号为奇数)=3÷5=0.6. 14.(2018·怀化市,14,4分) 关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 .14.答案:1,解析:由题知04442=-=-m ac b ,解得m =1.15.(2018·怀化市,15,4分)一个多边形的每一个外角都是36°,则这个多边形的边数为 .15.答案:10,解析:因为任意多边形的外角和都是360°,因此用外角和除以36°,即可.16.(2018·怀化市,16,4分)根据下列材料,解答问题.等比数列求和:概念:对于一列数a 1,a 2,a 3,…,a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即21a a =q (常数),那么这一列数a 1,a 2,a 3,…,a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和.解:令S =1+3+32+33+…+3100,则3S =3+32+33+…+3100+3101,因此,3S -S =3101-1,所以S =213101-,即1+3+32+33+…+3100=213101-. 仿照例题,等比数列1,5,52,53,…,52018的和为 .16.答案:4152019-,解析:令S =1+5+52+53+…+52018,则5S =5+52+53+…+52018+52019,因此,5S -S =52019-1,所以S =4152019-,即1+5+52+53+…+52018=4152019-.三、解答题(本大题共8小题,满分86分,解答应写出文字说明、证明过程或演算步骤)17.(2018·怀化市,17,8分) 计算:2sin 30°-(π-2)0+︱3-1︱+(21)-1. 17.思路分析:本小题为实数的计算,根据特殊角的锐角三角函数值可知sin 30°的值;根据0指数幂的性质可求出第二项;根据绝对值的意义可化简第三项;根据负指数指数幂的计算公式可求出最后一项.解答过程:解:原式=2×21-1+3-1+2=1+3.18.(2018·怀化市,18,8分) 解不等式组⎩⎨⎧->-+≤+②①13)1(57233x x x x ,并把它的解集在数轴上表示出来.0–1–2–3–4–51234518.思路分析:解一元一次不等式组的一般步骤是:(1)先解出各个不等式;(2)将各不等式的解集在数轴上表示出来;(3)利用各不等式解集分公共部分,得出不等式组的解集. 解答过程:解:解不等式①,得x ≤4;解不等式②得x >2. 把不等式①、②的解集在数轴上表示出来,如下图所示:由图可知,不等式①、②的解集的公共部分是2<x ≤4, ∴原不等式组的解集是2<x ≤4. 19.(2018·怀化市,19,10分) 已知:如图,点A ,F ,E ,C 在同一直线上,AB ∥DC ,AB =CD ,∠B =∠D .(1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG =5,求AB 的长.19.思路分析:(1)要证△ABE ≌△CDF ,已经具有两个条件,再利用AB ∥DC ,找出一对等角,即可证明;(2)求AB 的长,即求CD 的长,根据题中中位线条件,易求. 解答过程:解:(1)证明:∵AB ∥DC ,∴∠A =∠C ,∵AB =CD ,∠B =∠D ,∴ △ABE ≌△CDF (ASA ); (2)∵E ,G 分别为线段FC ,FD 的中点,∴EG =21CD ,∵EG =5,∴CD =10,∵△ABE ≌△CDF ,∴AB =CD =10. 20.(2018·怀化市,20,10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A ,B两种树苗,共21棵,已知A 种树苗每棵90元,B 种树苗每棵70元.设购买A 种树苗x 棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数关系式,其中0≤x ≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需20.费用. 思路分析:(1)根据购买两种树苗所需费用=A 种树苗费用+B 种树苗费用,即可解答;(2)根据购买B 种树苗的数量少于A 种树苗的数量,列出不等式,确定x 的取值范围(注意取整),再根据(1)得出的y 与x 的函数关系式,利用一次函数的增减性,结合自变量的取值即可得出费用最省的方案. 解答过程:解:(1)由题知y =90x +70(21-x ),整理得y 与x 的函数关系式为y =20x +1470(0≤x ≤21,且x 为整数);(2)由(1)知y =20x +1470,∴y 随x 的增大而增大,∵21-x <x ,∴x >10.5,∴x 的最小整数值为11,∴当x =11时,y 最小=20×11+1470=1690,此时21-x =10.综上,费用最省的方案是:购买A 种树苗11棵,购买B 种树苗10棵,该方案所需费用为1690元. 21.(2018·怀化市,21,12分) 为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:人数(人)201510 戏曲10%国画20%书法25%诗词25%民乐20%(1)学校这次调查共抽取了 名学生; (2)补全条形统计图; (3)在扇形统计图,“戏曲”所在扇形的圆心角度数为 ; (4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法? 21.思路分析:(1)根据喜欢戏曲、诗词、书法、国画的人数(任选其一),除以它们占总人数的百分比,即可得出总人数;(2)根据总人数求出喜欢民乐的人数,补全条形统计图即可;(3)用360°乘对应百分比可得;(4)喜欢书法的人数占总人数的25%乘总人数即可得结论. 解答过程:解:(1)100;(2)喜欢民乐的人数为:100×20%=20(人),补全条形图如下:20国画书法民乐诗词戏曲兴趣爱好人数(人)30252015105O(3)36°;(4)2000×25%=500,因此可估计该校约有500名学生喜欢书法. 22.(2018·怀化市,22,12分)已知,如图,AB 是⊙O 的直径,AB =4,点F ,C 是⊙O 上两点,连接AC ,AF ,OC ,弦AC 平分∠F AB ,∠BOC =60°,过点C 作CD ⊥AF 交AF 的延长线于点D ,垂足为点D .(1)求扇形OBC 的面积(结果保留π); (2)求证:CD 是⊙O 的切线.22.思路分析:(1)利用扇形面积公式计算即可;(2)利用等腰三角形、角平分线,证出OC ∥AD ,从而证明OC ⊥CD ,就能证明CD 是⊙O 的切线.解答过程:解:(1)∵直径AB =4,∴半径OB =2,∵∠BOC =60°,∴S 扇形OBC =3602602⨯π=32π;(2)∵AC 平分∠F AB ,∴∠DAC =∠BAC ,∵OA =OC ,∴∠OCA =∠BAC ,∴∠OCA =∠DAC ,∴AD∥OC ,∴∠OCD +∠ADC =180°,∵CD ⊥AF ,∴∠ADC =90°,∴∠OCD =90°,∴DC ⊥OC ,∴CD 是⊙O 的切线. 23.(2018·怀化市,23,12分) 已知:如图,在四边形ABCD 中,AD ∥BC ,点E 为CD 边上一点,AE与BE 分别为∠DAB 和∠CBA 的平分线.(1)请你添加一个适当的条件 ,使得四边形ABCD 是平行四边形,并证明你的结论; (2)作线段AB 的垂直平分线交AB 与点O ,并以AB 为直径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE =4,sin ∠AGF =54,求⊙O 的半径.EA BD23.思路分析:(1)本小题为开放性问题,答案不限,只要能证出四边形ABCD 为平行四边形即可.但是在证明时应注意证明的方向,是由所给的条件证明四边形ABCD 为平行四边形,而不是相反;(2)按照基本作图要求画图即可,注意保留作图痕迹;(3)利用图中的边角关系探究得出∠ABE 与∠AGF 的数量关系,这样就能把看似分散的条件集中到直角三角形ABE 中,从而解决问题.注意后两问没有第(1)问平行四边形的条件,不可误用. 解答过程:解:(1)答案不限,比如添加条件:AD =DE ,证明如下:∵AE 为∠DAB 的平分线,∴∠DAE =∠EAB ,∵AD =DE ,∴∠DAE =∠AED ,∠EAB =∠AED ,∴AB ∥CD ,又∵AD ∥BC ,∴四边形ABCD 是平行四边形;(2)如图,直线MN 和⊙O ,即为所求;(3)∵AD ∥BC ,∴∠DAB +∠ABC =180°,∵AE 与BE 分别为∠DAB 和∠CBA 的平分线,∴∠DAE =∠BAE =21∠DAB ,∠ABE =21∠ABC ,∴∠BAE +∠ABE =90°,∴∠AEB =90°,∵AB 为⊙O 直径,∴∠AFB =90°,∴∠DAE +∠AGF =90°,∴∠ABE =∠AGF ,∵sin ∠AGF =54,∴sin ∠ABE =54=ABAE,∵AE =4,∴AB =5,∴⊙O 的半径为2.5.A24.(2018·怀化市,24,14分)如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.(备用图)24.思路分析:(1)先根据已知点,用待定系数法求出抛物线是解析式,再求出点C 的坐标,这样就可用待定系数法求出直线AC 的解析式;(2)变中寻不变,要使△BDM 的周长最小,而BD 长不变,因此就是要使MB +MD 最小,这可以利用轴对称模型——“将军饮马”来解决;(3)利用已知的直角构造相似的直角三角形,利用抛物线解析式设出点P 的坐标,在利用相似三角形对应边成比例,或者利用锐角三角函数,列出方程,求出所设参数,即可求出点P 的坐标. 解答过程:解:(1)由题知⎩⎨⎧=++=+-06902c a c a ,解得⎩⎨⎧=-=31c a ,∴抛物线的解析式为y =-x 2+2x +3.当x =0时,y =-x 2+2x +3=3,∴C (0,3).设AC :y =kx +3,则-k +3=0,∴k =3,∴直线AC 的解析式为y =3x +3;(2)如答图1,∵抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,∴D (1,4).取点D 关于y 轴的对称点D ′(-1,4),连BD ′交y 轴于点M ,此时MB +MD 最小,从而△BDM 的周长最小.设BD ′:y =mx +n ,则⎩⎨⎧=+-=+403n m n m ,解得⎩⎨⎧=-=31n m ,∴BD ′:y =-x +3,当x =0时,y =-x +3=3,∴点M 的坐标为(0,3).(第24题答图1) (第24题答图2) (第24题答图3) (3)存在.设P (t ,-t 2+2t +3).①当∠ACP =90°时,如答图2,过点P 作PE ⊥y 轴于E ,则∠PEC =∠AOC =90°,∵∠ACO +∠PCE =∠CPE +∠PCE =90°,∴∠ACO =∠CPE ,∴tan ∠ACO =tan ∠CPE ,∴31==OC OA PE CE ,∴PE =3CE , ∴t =3[3-(-t 2+2t +3),解得t 1=0(舍去),t 2=37,当t =37时,-t 2+2t +3=920,∴P (37,920);②当∠CAP =90°时,如答图2,过点P 作PF ⊥x 轴于F .同①得AF =3PF ,∴t -(-1)=3[-(-t 2+2t +3)],解得t 1=-1(舍去),t 2=310,当t =310时,-t 2+2t +3=920,∴P (310,913). 综①、②可得,存在符合条件的点P ,其坐标为(37,920)或(310,913).。

相关文档
最新文档