三角函数大题六大常考题型
专题12 三角函数(全题型压轴题)试题含解析
专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (2)③三角函数零点问题(解答题) (3)④三角函数解答题综合 (6)①三角函数的图象与性质②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (9)③三角函数零点问题(解答题) (12)④三角函数解答题综合 (20)①三角函数的图象与性质设()t f x =,则方程()()2220f x af x ⎡+⎣+⎦=⎤可化为由图象可得:当2t =时,方程()t f x =有2个实数根;当322t <<时,方程()t f x =有4个实数根;①当22m-=时,即②当3-=时,即t=m③当3->时,即t<m②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)由图可知,当1t =或12t -≤<当112t ≤<时,()h x 在区间⎡⎢⎣当21t <-或1t >时,()h x 在区间令ππ2πZ 62,x k k-=+∈故两个零点12,x x关于x故()122πcos cos3x x+=7.(2023春·江西·高一统考期末)已知函数由图可知,30a -≤≤,且21πt t +=,所以()12121ππsin sin 466x x t t ⎛⎫+=-+- ⎪⎝⎭故a 的取值范围为()123,0,sin x x ⎡⎤-+⎣⎦8.(2023春·湖北咸宁·高一统考期末)已知(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合(2)当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()π02f x kf x ⎛⎫++> ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】(1)43310-(2)()3,1--【详解】(1)由题意得,向量()1,3ON = 的相伴函数为()sin 3cos f x x x =+,所以()13πsin 3cos 2sin cos 2sin 223f x x x x x x ⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭∵()85f x =,∴π4sin 35x ⎛⎫+= ⎪⎝⎭.∵ππ,36x ⎛⎫∈- ⎪⎝⎭,∴ππ0,32x ⎛⎫+∈ ⎪⎝⎭,∴23cos 1s πin 335πx x ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)向量()1,3ON = 的相伴函数为()πsin 3cos 2sin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,()π2sin 2cos 03π2π3f x kf x x k x ⎛⎫⎛⎫⎛⎫++=+++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭,cos sin π3π3k x x ⎛⎫⎛⎫+>-+ ⎪ ⎪⎝⎭⎝⎭恒成立.所以①当π06x ≤<,即πππ332x ≤+<时,πcos 03x ⎛⎫+> ⎪⎝⎭,所以πsin π3tan π3cos 3x k x x ⎛⎫+ ⎪⎛⎫⎝⎭>-=-+ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,即max πtan 3k x ⎡⎤⎛⎫>-+ ⎪⎢⎥⎝⎭⎣⎦,由于πππ332x ≤+<,所以πtan 3x ⎛⎫+ ⎪⎝⎭的最小值为πtan 33=,所以max πtan 33k x ⎡⎤⎛⎫>-+=- ⎪⎢⎥⎝⎭⎣⎦;②当π6x =,ππ32x +=,不等式ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭化为10>成立.③当π11π612x <≤,ππ5π234x <+≤时,πcos 03x ⎛⎫+< ⎪⎝⎭,。
三角函数10道大题(带答案)
三角函数大题训练1.已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求 ()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xx x x x f sin 2sin )cos (sin )(-=. (1)求)(x f 的定义域及最小正周期;(2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设(0,)2πα∈,则()22f α=,求α的值.7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=(1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.三角函数大题训练答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos cos )12x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+,所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x =,当2()444x x πππ+=-=-时,m i n ()1f x =- 【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即 4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==; (2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈ 5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co42f x x π=++11sin 222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数, 故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分 (Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(s i n 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A,cos C =sin B =sin(A +C )=sin A cos C +sin C cos A=cos C +23sin C . 整理得:tan C.(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C=,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b舍去). ∴∆ABC 的面积为:S.。
“三角函数”的题型只有这6种,最完整的解析过程,老师点头称赞
“三角函数”的题型只有这6种,最完整的解析过程,老师点
头称赞
三角函数是所有学生在初高中必须要掌握好的问题。
但其内容由于公式多,且习题变换灵活等特点,让许多同学把握不住精髓,在考试时不管是选择还是大题,很容易就丢分了。
但我们所有学生都应该知道这么一个道理:每一块知识点都是有自身的规律的,且出题老师在出题时不可能会脱离最基本的知识。
因此,在解答数学题之前,我们首先就是要把知识点给弄透彻。
老师在阅过无数试卷后,总结出了关于“三角函数”的这么一个规律:但凡考到三角函数,无非就是以下这6个内容。
在这一部分比较薄弱的同学,一定要认真看,理解答案是怎么一步步得来的,在自己做题时才会慢慢变得得心应手。
数学是考试中最拉分的一个科目之一,所以不管是读文科还是读理科,数学一定要抱着“拿到一分是一分”的态度去学习,看了上面这些内容,大家是否也觉得“三角函数”也不是那么难了呢?。
三角函数10道大题(带答案)
三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
高考中三角函数和解三角形的真题(常见的题型)汇总
三角函数类型一:角度的概念、弧长和三角函数的概念1已知角q 的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角q 终边上的一点,且552sin -=q ,则y的值的值2已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是,则这个圆心角所对的弧长是 3若0cos sin <q q ,则角q 在第在第___________________________象限角。
象限角。
象限角。
4 4 已知已知q 为第二象限角;则2q可能为第可能为第_____________________象限角。
象限角。
象限角。
5已知q 为第二象限角;则24a p +所在的象限是所在的象限是_____________________。
6已知角a 的终边过点)60cos 6,8(--m P ,且54cos -=a ,则m 的值为的值为7在平面直角坐标系中,若角a 的顶点在坐标原点,始边在x 轴的非负半轴上,终点经过点)4,3(a a P -)0(<a ,则a a cos sin +的值为的值为8 8 已知角已知角a 的终边经过点)3,4(-,则a cos 等于等于答案:1 -8-8;;21sin 2;3 二或四;4 一或三;5 一或三;6 21;7 51;8 54-。
类型二:同角三角函数的求值与化解(a a a a a cos tan sin ,1cos sin 22×==+)1求300sin =_______=_______。
2已知3cos sin cos sin =-+xx x x ,则x tan 的值是的值是________________________。
3若点)9,(a 在函数xy 3=的图像上,则6tanpa 的值为的值为 4已知a 是第二象限角,135sin =a ,则a cos 的值的值5已知51)25sin(=+a p ,那么a cos 的值的值6已知21tan -=a ,则1cos 22sin 2--a a 等于等于7)1410tan(-的值的值8 8 记记cos(80)k -°=,那么tan100°= 9已知11-tan tan -=a a,则2cos sin sin 2++a a a = 10 已知角)2,0(p Îx ,21cos 22££-x 的解集是_____。
三角函数大题常考题型
三角函数大题常考题型一、引言三角函数是高中数学中非常重要的概念之一,也是数学建模与应用中常用的工具之一。
三角函数大题在高中数学考试中经常出现,对学生的理解与运用能力提出了很高的要求。
本文将从定义、基本性质、常见题型和解题技巧等方面,对三角函数大题进行全面、详细、完整且深入地探讨,帮助读者更好地理解和应对该题型。
二、三角函数的定义三角函数由单位圆上一点的坐标值定义,分为正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)六个。
其定义如下:1.正弦函数(sin):在单位圆上,点P在终边的位置对应的y坐标值;2.余弦函数(cos):在单位圆上,点P在终边的位置对应的x坐标值;3.正切函数(tan):在单位圆上,点P在终边的位置对应的y坐标值除以x坐标值;4.余切函数(cot):在单位圆上,点P在终边的位置对应的x坐标值除以y坐标值;5.正割函数(sec):在单位圆上,点P在终边的位置对应的x坐标值的倒数;6.余割函数(csc):在单位圆上,点P在终边的位置对应的y坐标值的倒数。
三、基本性质三角函数有许多重要的基本性质,下面我们将简要介绍其中的一些:1. 周期性正弦函数和余弦函数的周期都是2π,即对于任意实数x,有sin(x+2π)=sin(x)和cos(x+2π)=cos(x)成立。
而正切函数、余切函数、正割函数和余割函数没有周期。
2. 奇偶性正弦函数是奇函数,即sin(-x)=-sin(x),而余弦函数是偶函数,即cos(-x)=cos(x)。
而正切函数、余切函数、正割函数和余割函数都是既不奇也不偶的。
3. 对称性正弦函数的图像关于y轴对称,即sin(-x)=-sin(x),而余弦函数的图像关于x轴对称,即cos(-x)=cos(x)。
而正切函数、余切函数、正割函数和余割函数都没有对称性。
4. 定义域和值域正弦函数和余弦函数的定义域是全体实数,值域是闭区间[-1,1];正切函数和余切函数的定义域是全体实数,值域是实数集合;正割函数的定义域是实数集合,值域是(-∞,-1]∪[1,∞),而余割函数的定义域是实数集合,值域是(-∞,-1]∪[1,∞)。
部编版高中数学必修一第五章三角函数带答案常考点
(名师选题)部编版高中数学必修一第五章三角函数带答案常考点单选题1、已知角α的终边与单位圆交于点P (−12,√32),则sinα的值为( ) A .−√32B .−12C .√32D .122、已知cosα=2√55,则cos 4α−sin 4α=( )A .35B .45C .1225D .−12253、已知函数f(x)=sin (x +π3).给出下列结论: ①f(x)的最小正周期为2π; ②f (π2)是f(x)的最大值;③把函数y =sinx 的图象上所有点向左平移π3个单位长度,可得到函数y =f(x)的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③4、《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕像,它取材于现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的每只手臂长约π4m ,肩宽约为π8m ,“弓”所在圆的半径约为1.25m ,则如图掷铁饼者双手之间的距离约为( )A .π2m B .5√24m C .5π8m D .2m 5、已知sinαcosα=12,则tanα+1tanα的值为( )A .12B .−12C .−2D .26、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−7177、若函数f(x)=sin(ωx +π3)(0<ω<3)的图象向右平移2π3个长度单位后关于点(π2,0)对称,则f(x)在[−7π24,π2]上的最小值为( )A .1B .−√22C .−√32D .√6−√248、cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√32多选题9、下列不等式中成立的是( ) A .sin1<sin π3B .cos2π3>cos2C .cos (−70∘)>sin18∘D .sin4π5>sin17π610、已知函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为偶函数 B .函数f(x)在[π12,π6]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(x +φ)的图象11、已知函数f(x)=sin(3x +φ) (−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为奇函数 B .函数f (x )在[π12,π3]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .函数f (x )的图象向右平移π4个单位长度得到函数y =−cos3x 的图象 填空题12、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.13、若α∈(π2,π),且cos2α−sinα=14,则tanα=_____.部编版高中数学必修一第五章三角函数带答案(三十七)参考答案1、答案:C分析:根据三角函数的定义即可求出. 因为角α的终边与单位圆交于点P (−12,√32), 所以根据三角函数的定义可知,sinα=y =√32. 故选:C . 2、答案:A分析:利用同角三角函数基本关系式先化简再求值. ∵cosα=2√55, ∴cos 4α−sin 4α=(cos 2α+sin 2α)(cos 2α−sin 2α)=cos 2α−sin 2α=2cos 2α−1=2×(2√55)2−1=35.故选:A.小提示:利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)选择合适的公式进行化简求值. 3、答案:B分析:对所给选项结合正弦型函数的性质逐一判断即可. 因为f(x)=sin(x +π3),所以周期T =2πω=2π,故①正确;f(π2)=sin(π2+π3)=sin5π6=12≠1,故②不正确;将函数y =sinx 的图象上所有点向左平移π3个单位长度,得到y =sin(x +π3)的图象, 故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.4、答案:B分析:由题意知这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长.由题得:弓所在的弧长为:l=π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d=2Rsinπ4=√2×1.25AB=5√24m.故选:B5、答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果.∵sinαcosα=12,∴tanα+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2,故选:D.6、答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可.由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα,0<α<π,∴π2<α<π,∴cosα<0,而sinα>0,∴cosα−sinα<0;令t=cosα−sinα(t<0),则t2=1−sin2α,∴t2=1−sin2α=1+120169=289169,t<0∴t=−1713∴1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C.7、答案:C分析:由图像平移过程写出平移后的解析式g(x)=sin(ωx+π3−2ωπ3),利用正弦函数的对称性求参数ω,最后由正弦型函数的单调性求区间最小值即可.将f(x)向右平移2π3个长度单位后,得到g(x)=sin[ω(x−2π3)+π3]=sin(ωx+π3−2ωπ3),∵g(x)关于(π2,0)对称,∴g(π2)=sin(ωπ2+π3−2ωπ3)=sin(π3−ωπ6)=0,∴π3−ωπ6=kπ,k∈Z,即ω=2−6k,k∈Z,又0<ω<3,则ω=2,即f(x)=sin(2x+π3),由x∈[−7π24,π2]知:2x+π3∈[−π4,4π3],则sin(2x+π3)∈[−√32,1],∴f(x)在[−7π24,π2]上的最小值为−√32.故选:C. 8、答案:D分析:由题意结合诱导公式可得cos2π12−cos25π12=cos2π12−sin2π12,再由二倍角公式即可得解.由题意,cos2π12−cos25π12=cos2π12−cos2(π2−π12)=cos2π12−sin2π12=cosπ6=√32.故选:D.9、答案:ACD分析:结合诱导公式,根据y =sinx 和y =cosx 的单调性依次判断各个选项即可得到结果. 对于A ,∵y =sinx 在(0,π2)上单调递增,又0<1<π3<π2,∴sin1<sin π3,A 正确;对于B ,∵y =cosx 在(π2,π)上单调递减,又π2<2<2π3<π,∴cos2π3<cos2,B 错误;对于C ,∵cos (−70∘)=cos70∘=sin20∘,又sin20∘>sin18∘,∴cos (−70∘)>sin18∘,C 正确; 对于D ,∵sin4π5=sin (π−π5)=sin π5,sin 17π6=sin (3π−π6)=sin π6,又sin π6<sin π5,∴sin 4π5>sin17π6,D 正确.故选:ACD. 10、答案:BC分析:根据函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,由3×π4+φ=kπ+π2,k ∈Z 求得函数的解析式,再逐项判断.因为函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称, 所以3×π4+φ=kπ+π2,k ∈Z ,即φ=kπ−π4,k ∈Z ,又因为−π2<φ<π2,则φ=−π4, 所以f(x)=sin(3x −π4),A.函数f (x +π12)=sin(3(x +π12)−π4)=sin3x 为奇函数,故错误;B. 因为x ∈[π12,π6],则3x −π4∈[0,π4],又y =sinx 在[0,π4]上递增,所以函数f(x)在[π12,π6]上单调递增,故正确;C. T =2π3因为|f (x 1)−f (x 2)|=2,则f (x 1),f (x 2) 分别为函数的最大值和最小值,则|x 1−x 2|的最小值为T 2=π3,故正确;D.将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(9x −π4)的图象,故错误; 故选:BC 11、答案:AC解析:利用f(x)=sin(3x +φ)的图象关于直线x =π4对称,即可求出φ的值,从而得出f (x )的解析式,再利用三角函数的性质逐一判断四个选项即可.因为f(x)=sin(3x +φ)的图象关于直线x =π4对称,所以3×π4+φ=π2+kπ(k ∈Z ) ,得φ=−π4+kπ,k ∈Z ,因为 −π2<φ<π2,所以k =0,φ=−π4, 所以f(x)=sin (3x −π4), 对于A :f (x +π12)=sin [3(x +π12)−π4]=sin3x ,所以f (x +π12)为奇函数成立,故选项A 正确; 对于B :x ∈[π12,π3]时,3x −π4∈[0,3π4],函数f (x )在[π12,π3]上不是单调函数;故选项B 不正确; 对于C :因为f (x )max =1,f (x )min =−1,又因为|f (x 1)−f (x 2)|=2,所以|x 1−x 2|的最小值为半个周期,即2π3×12=π3,故选项C 正确;对于D :函数f (x )的图象向右平移π4个单位长度得到y =sin [3(x −π4)−π4]=sin (3x −π)=−sin3x ,故选项D 不正确; 故选:AC小提示:本题主要考查了利用三角函数的对称轴求函数解析式,考查了三角函数平移变换、三角函数的周期、单调性、最值,属于中档题 12、答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α). ∵cosα=−35, α为第二象限的角,∴sinα=√1−cos 2α=45,∴sin(π−α)=sinα=45. 所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题. 13、答案:−√33分析:根据同角平方和关系可解得sin α=12,进而根据角的范围可得α=5π6,进而可求.因为cos 2α−sin α=14,所以4(1-sin 2α)-4sin α-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32(舍去).∵α∈(π2,π),∴α=5π6,因此tan α=tan5π6=−√33. 所以答案是:−√33。
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
三角函数典型题型归纳
三角函数典型题型归纳三角函数专题题型全归纳
第七章:三角函数
第一节:三角函数概念及同角三角函数关系
题型一:概念辨析
题型二:象限角及终边相同的角
题型三:扇形的弧长及面积公式
题型四:三角函数的定义及应用
题型五:同角三角函数直接应用
题型六:同角三角函数之弦的齐次式
第二节:诱导公式及恒等变换
题型一:诱导公式的运用
题型二:恒等变换
题型三:角的拼凑
第三节:三角函数的图像及性质
题型一:三角函数的周期
题型二:三角函数的定义域
题型三:三角函数的单调性
题型四:三角函数的对称性
题型五:三角函数的奇偶性
题型六:三角函数的值域
第四节:三角函数的图像变换及综合
题型一:图像变换
题型二:已知图像求解解析式
题型三:三角函数性质综合(多选题专练)题型四:三角函数解答题
题型五:三角函数实际应用
第五节:解三角形
题型一:正余弦定理选择
题型二:边角互换
题型三:与三角形面积有关
题型四:三角形形状判断
题型五:三角形的个数判断
题型六:最值与取值范围
题型七:解三角形在平面图形中的运用
题型八:解三角形的实际应用
题型九:解三角形解答题专练。
(完整版)高考大题-三角函数题型汇总精华(含答案解释)
【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。
三角函数10道大题(带答案解析)
三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。
答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。
根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。
设斜边长度为5,对边长度为3,则邻边长度为4。
因此,cosA = 4/5。
2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。
答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。
由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。
设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。
因此,sinB = 2/根号13。
3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。
答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。
根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。
设斜边长度为2,邻边长度为1,则对边长度为根号3。
因此,tanC = 根号3/1。
4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。
答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。
由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。
设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。
因此,cosD = 根号3/2。
5. 题目:已知tanE = 1,且E为锐角,求sinE的值。
答案解析:由tanE = 1可知,对边与邻边的比值为1。
根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。
设邻边长度为1,对边长度为1,则斜边长度为根号2。
因此,sinE = 1/根号2。
6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。
答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
(完整版)三角函数常考题型汇总,推荐文档
三角函数()ϕω+=x A y sin一、选择题:1. “”是“函数取得最大值”的( )4x π=sin 2y x =A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在中,如果,,那么角等于()ABC ∆sin A C =30B =°A A . B .C .D .3045°60°120°3.函数是()212sin ()4y x π=--A .最小正周期为的偶函数 B. 最小正周期为的奇函数 ππC. 最小正周期为的偶函数D. 最小正周期为的奇函数2π2π4. sin 225︒=( )A .1B .1-C D .5.设函数,其中,()142cos 3sin 323-+θ+θ=x x x x f ⎥⎦⎤⎢⎣⎡π∈θ650∥则导数的取值范围是( )()1-'f A . []63∥B .[]343+∥C .[]634∥-D . []3434+-∥6.的内角的对边分别为,若,,则的ABC ∆,,A B C ,,a b c cos2A =5bc =ABC ∆面积等于( )A 、B 、4CD 、27.在ABC ∆中,,,,则(AB = BC 1=cos cos AC B BC A =AC AB ⋅= )A .或 322B .32C . 2D .28.在ABC ∆中,,,,则( )AB = BC 1=sin sin A B =AC AB ⋅=A . 2B .C .32D .129.下列函数中,周期为的偶函数是πA. B.cos y x =sin 2y x =C.D . tan y x =sin(2)2y x π=+10.函数x x y 2cos 2sin =的最小正周期是,最大值是 。
11.为了得到函数的图像,只需把的图象上所有的点x x y cos sin +=x x y cos sin -=(A )向左平移个单位长度(B )向右平移个单位长度4π4π(C )向左平移个单位长度(D )向右平移个单位长度2π2π12.已知函数()sin y x =ω+ϕ(0,0)2πω><ϕ≤(A ) (B )(2,)3π(2,)6π(C ) (D )1(,)23π1(,)26π13.已知,,则 .π(,π)2α∈π1tan()47α+=sin α+14.函数在下列哪个区间上为增函数(B )2cos 1y x =+(A )(B )(C ) (D )π[0, 2π[, π]2[]0, π[]π, 2π15.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为,则cos α= .4516.已知 ,,则的值是135sin =α23,2(ππα∈)4tan(απ+A. - B. - C. D.17771717771717.已知是第二象限角,且 ,则的值为 ( )α3sin()5πα+=-tan 2αA .B .C .D .45237-247-83-18.在中,角,,所对应的边分别为ABC ∆A B C ,,,且,则角的大小a b c 222b c bc a +=+A 为________.AαAxyO19.的内角的对边分别为,若,则ABC △A B C ,,a b c,,120c b B ===a =20.在△ABC 中,,,分别是三个内角A ,B ,C 的对边,若,,a b c 1=a 2=b ,则 。
13.4三角函数常考问题题型与辅助角公式
三角函数常考问题类型问题类型一:()sin 0,0y A wx A w ϕ=+>>(1)定义域:R(2)值域:【-A ,A 】(3)特殊点:,22,220,y A wx k y A wx k y wx k πϕππϕπϕπ=+=+=-+=-+=+= (4)2T wπ= (5)单增:2,222wx k k ππϕππ⎛⎫+∈-+⎪⎝⎭ 单减:32,222wx k k ππϕππ⎛⎫+∈++⎪⎝⎭ (6)对称轴:2wx k πϕπ+=+(7)对称点:,0wx k y ϕπ+==(8)奇偶性:2k k ϕππϕπ==+,为奇函数,为偶函数 例1 (全国高考)设函数()()sin 2(0)f x x ϕπϕ=+-<<,y=f(x)的一条对称轴是8x π=,求(1)求ϕ(2)y=f(x)的单调递增区间解析:(1)f (x )的对称轴为22x k πϕπ+=+,又8x π=满足上式,则282k ππϕπ⨯+=+3144k k πϕπϕπ⇒=+⇒=-⇒=-(2)322,2,422x k k πππππ⎛⎫-∈-+ ⎪⎝⎭ 5,88x k k ππππ⎛⎫⇒∈++ ⎪⎝⎭例2 将函数sin 6y x π⎛⎫=+⎪⎝⎭的图像按照(),0a m =-平移后的图像关于y 轴对称,那么m 的最小值为(A ) A3π B 6π C 23π D 56π 解析:sin()sin()66y x m y x m ππ=+=++左 对称轴为62x m k πππ++=+,又关于y 轴对称,则x=0满足上式,代入则有min 33m k m πππ=+⇒=,因此选A问题类型二:sin cos y A wx B wx =+辅角公式:当A>0时:()sin cos A wx B wx wx ϕ+=+,其中tan ,,22B A ππϕϕ⎛⎫=∈- ⎪⎝⎭ 注:(1)cos ϕϕ==(2)辅角公式必须要求A>0那么当A<0时,可提取负号或提取A ,然后再用辅角公式因为要求A 大于0,此时cos 0ϕ>,辅助角ϕ才是一个锐角或者负锐角,就可以限制在,22ππ⎛⎫- ⎪⎝⎭比较方便,所以人为规定A 大于0,其实为任意值也可以,此时就不能保证ϕ是锐角形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【一】知识要点详解
1.要点:
(1)三角函数的化简、求值与证明;
(2)三角函数的图像与性质:图像的变换和作图;周期性、奇偶性,单调性;
(3)三角函数的最值问题;
(4)解三角形:在三角恒等变换的基础上融合正弦定理、余弦定理;
(5)解三角函数的实际应用.
2.方法:
(1)使用三角函数公式进行解题时应考虑使用诱导公式进行化简;使用两角和与差的三角函数公式合并三角函数;使用二倍角的三角函数公式降幂扩角、升幂缩角;使用同角三角函数关系式,结合已知条件,化弦为切或化切为弦,化到最简后,带入已知的三角函数值,求得结果.
(2)三角函数最值的三个方面:
化成“三个一”:化成一个角的一种三角函数的一次方形式;如;
化成“两个一”:化成一个角的一种三角函数的二次方结构;
“合二为一”:辅助角的使用;
(3)解三角形方法:一法化边;二法化角;注意要考虑三角形内角的范围.
【二】例题详解
题型一:结合向量的数量积,考查三角函数的化简或求值
【例1】(2007年高考安徽卷)已知,为的最小正周期,,求的值.【解答】因为为的最小正周期,故.因为,又,故.
由于,所以
.
【评析】合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、
差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入
求值或化简。
题型二:结合向量的夹角公式,考查三角函数中的求角问题
【例2】(2006年高考浙江卷)如图,函数(其中)的图像与轴交于点(0,1)。
(Ⅰ)求的值;
(Ⅱ)设是图像上的最高点,M、N是图像与轴的交点,求与的
夹角。
【解答】(I)因为函数图像过点,
所以即
因为,所以.
(II)由函数及其图像,得
所以从而
,故.
【评析】此类问题的一般步骤是:先利用向量的夹角公式:求出被求角的三角函数值,再限定所求角的范围,最后根据反三角函数的基本运算,确定角的大小;或者利用同角三角函数关系构造正切的方程进行求解。
题型三:结合三角形中的向量知识考查三角形的边长或角的运算
【例3】(山东卷)在中,角的对边分别为,.(1)求;
(2)若,且,求.
【解答】(1),,
又,解得:,
,是锐角,.
(2),,,
又,,,
,.
【评析】根据题中所给条件,初步判断三角形的形状,再结合向量以及正弦定理、余弦定理实现边角转化,列出等式求解。
题型四:结合三角函数的有界性,考查三角函数的最值与向量运算
【例4】(2007年高考陕西卷),其中向量,
,,且函数的图象经过点.(Ⅰ)求实数的值;
(Ⅱ)求函数的最小值及此时值的集合。
【解答】(Ⅰ)
由已知,得.
(Ⅱ)由(Ⅰ)得
∴当时,的最小值为,
由,得值的集合为.
【评析】涉及三角函数的最值与向量运算问题时,可先根据向量的数量积的运算法则求出相应的函数基本关系式,然后利用三角函数的基本公式将所得出的代数式化为形如
,再借助三角函数的有界性使问题得以解决。
题型五:结合向量平移问题,考查三角函数解析式的求法
【例5】(2007年高考湖北卷)将的图象按向量平移,则平移后所得图象的解析式为()
A.B.
C.D.
【解答】∵,∴平移后的解析式为
,选.
【评析】理清函数按向量平移的一般方法是解决此类问题之关键,
平移后的函数解析式为.
题型六:结合向量的坐标运算,考查与三角不等式相关的问题
【例6】(2006年高考湖北卷)设向量,函数.
(Ⅰ)求函数的最大值与最小正周期;
(Ⅱ)求使不等式成立的的取值集.
【解答】(Ⅰ)∵
∴的最大值为,最小正周期是
(Ⅱ)要使成立,当且仅当,
即,
即成立的的取值集合是.【评析】结合向量的坐标运算法则,求出函数的三角函数关系式,再根据三角公式对函数的三角恒等关系,然后借助基本三角函数的单调性,求简单三角不等式的解
集。
【跟踪训练】
1.设函数,其中向量,
.
(Ⅰ)求函数的最大值和最小正周期;
(Ⅱ)将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的.
2.已知向量.
(Ⅰ)若,求;
(Ⅱ)求的最大值.
【参考答案】
1.解:(Ⅰ)由题意得,
,
所以,的最大值为,最小正周期是.
(Ⅱ)由得,即,于是,.
因为为整数,要使最小,则只有,此时即为所求.
2.解:(Ⅰ)若,则,由此得:,所以,.
(Ⅱ)由得:
当时,取得最大值,即当时,的最大值为.。